TEXTBOOK

If you can't explain it simply, you
don't understand it well enough.




The three fundamental areas of engineering
mechanics are statics, dynamics, and strength of
materials.

Statics and dynamics are devoted primarily to the
study of the external effects upon rigid bodies—that
is, bodies for which the change in shape (deformation)
can be neglected.

In contrast, strength of materials deals with the effects
and deformations that are caused by the applied
loads.

A machine part or structure must be strong enough to
carry the applied load without breaking and, at the
same time, the deformations must not be excessive.
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Equilibrium analysis will determine the force P, but not the strength or
the rigidity of the bar.

In strength of materials, the statics solution is extended
to include an analysis of the forces acting inside the bar
to be certain that the bar will neither break nor deform
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Method of sections

This method introduces an imaginary cutting plane that
isolates a segment of the structure. The cutting plane
must include the cross section of the member of
interest. The axial force acting in the member can then
be found from the FBD of the isolated segment because
it now appears as an external force on the FBD.

External forces acting on Free-body diagram

a body. for determining the internal force
system acting on section ().



Resolving the internal Resolving the internal
force R into the axial force P and the couple C® into the torque 7 and the

shear force V. bending moment M.

Twisting Bending

Deformations produced by the components of internal forces and
coupues.

V: The component of the resultant force lying in the plane of

the cross section, tending to shear (slide) one segment of the

bar relative to the other segment, is called the shear force.

M: The component of the resultant couple that tends to bend

the bar is called the bending moment. @



STRESS

The stress vector acting on the cross
section at point O is defined as
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The commonly used sign
convention for axial forces is to
define tensile forces as positive
and compressive forces as
negative. This convention is
carried over to normal stresses:
Tensile stresses are considered

Normal and shear o _
stresses acting on the cross sectionat {0 be positive, compressive

point O stresses negative.

If the stresses are uniformly distributed
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When the loading is uniform, its resultant passes through
the centroid of the loaded area.
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Saint Venant's principle

The difference between the
effects of two different but
N statically  equivalent  loads

ar loaded axially by N : . - ; ;

(a) uniformly distributed load of becomes very small al

intensity p; and (b) a statically sufficiently large distances from
equivalent centroidal force P = pA. the load.
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Normal stress distribution in a strip caused by a concentrated load.
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O nax = 1.60P/A
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Normal stress distribution in a grooved bar.

Stresses on inclined planes
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Determining the stresses acting on an inclined section of a bar.
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Stresses acting on two
mutually perpendicular inclined
sections of a bar.

Procedure for stress analysis

» If necessary, find the external reactions using a free-
body diagram (FBD) of the entire structure.

» Compute the axial force P in the member using the
method of sections.

This method introduces an imaginary cutting plane that
isolates a segment of the structure. The cutting plane must
include the cross section of the member of interest. The
axial force acting in the member can then be found from
the FBD of the isolated segment.



- After the axial force has been found by equilibrium
analysis, the normal stress in the member can be obtained

from o =F / A where A Is the cross-sectional area of the

member at the cutting plane.

For purposes of design, the computed stress must be
compared with the allowable stress, also called the
working stress.

To prevent failure of the member, the computed stress
must be less than the working stress.

(1) weights of the members are negligible compared to the
applied loads;

(2) joints behave as smooth pins;

(3) all loads are applied at the joints. Under these
assumptions, each member of the ftruss is an axially o
loaded bar.



Sample Problem

The bar ABCD (a) consists of three cylindrical steel
segments with different lengths and cross-sectional
areas. Axial loads arc applied as shown. Calculate the
normal stress in each segment.

l7ﬁ—"l

4000 Ib 9000 1b Pep=7000 Ib 7000 Ib
A%B Pge-= 5000 Ib ; D

(b) Free-body diagrams (FBDs)
PUb)
4000 -
A K =G
13 g % =
T L ' -7000

1.7

(¢) Axial force diagram
(tension assumed positive)




Sample Problem S

For the truss shown, calculate the normal stresses in
(1) member AC and (2) member BD. The cross-
sectional area of each member is 900 mm?.

30KN

I 4pancls atdm=16m N
@

Py¢ = 53.33 kN (tension)

(b) FBD of pin A







Sample Problem

Figure (a) shows a two-member truss supporting a
block of weight W. The cross-sectional areas of the
members arc 800 mm2 for AB and 400 mm2 for AC.
Determine the maximum safe value of W if the working
stresses are 110 MPa for AB and 120 MPa for AC.

1 Design for Normal Stress in Bar AB
P“ PAC
40* &
A X
W
(b) FBD of pin A

Design for Normal Stress in Bar AC

Choose the Correct Answer

The maximum safe value of W is the smaller of the preceding
two values—namely.

W=61.7kN Answer

()



Sample Problem s
The rectangular wood panel is formed by gluing
together two boards along the 30-degree scam.
Determine the largest axial force P that can be carried
safely by the panel if the working stress for the wood

iIs 1120 psi and the normal and shear stresses in the
glue are limited to 700 psi and 450 psi respectively.

p Design for Working Stress in Wood

[’ P =g, A=1120(4 » 1.0) = 4480 1b

Design for Normal Stress in Glue

T = —ros- i
iy
700 L O 30°
— =5
@x1.0) "

Design for Shear Stress in Glue

F
g=—=sinz2e
2.

P
A = e
Hax Lo
P — 41601b

Choose the Correct Answer

Comparing the above three solutions, we see that the
largest safe axial load that can be safely applied is
governed by the normal stress in the glue, its value
being P =3730 Ib Answer @
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By definition, normal stress acting on an interior plane
is directed perpendicular to that plane.

When the shear force V is uniformly distributed over
the shear area A, so that the shear stress can be
computed as

P
]
P | P = Punch
Sl : = i [| Metal sheet
—— [T
] | »
P
P B r
—t:ﬁ_;J [I'A(J
= :::'T I-:::
FBD "
V=P
FBD
(a) (b) (c)

Examples of direct shear: (a) single shear in a rivet; (b) double shear in

a bolt; and (c) shear in a metal sheet produced by a punch. ‘I



Bearing Stress

If two bodies are pressed against

each other,

compressive forces are developed on the area of
contact. The pressure caused by these surface loads
is called bearing stress.

We assume that the bearing stress

is uniformly

distributed over a reduced area. The reduced area is
taken to be the projected area of the rivet.

P, P
O =—=—
£ Ay td
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P { P \{ =
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(a)

(&)

Projected area
of rivet

(¢c) FBD

Example of bearing stress: (a) a rivet in a lap joint; (b) bearing stress is
not constant; (c) bearing stress caused by the bearing force Py is assumed to be

uniform on projected area td.



Sample Problem

The lap joint is fastened by four rivets of 3/4-in.
diameter. Find the maximum load P that can be
applied if the working stresses are 14 ksi for shear in
the rivet and 18 ksi for bearing in the plate. Assume
that the applied load is distributed evenly among the
four rivets, and neglect friction between the plates.

E & 4
| l &\«v"’; = (b)FBD g~
O N IRC

The equilibrium condition is V = P/4,

Design for Shear Stress in Rivets

V=t
;:{Mx 1{}3}[@}

F=24700 1b

Design for Bearing Stress in Plate
Py =atd

gz (18 x 10°)(7/8)(3/4)

P =47300 b

P= 24700 Ib Answer
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In general terms, strain is a geometric quantity that
measures the deformation of a body.
There are two types of strain: normal strain, which
characterizes dimensional changes, and shear strain, which
describes distortion (changes in angles).

The normal strain is defined as the elongation per unit

length
i
£ =—
L
= ; 8 -
00—7 A Undeformed
I * > |Ax
I L+§ .
0’7—7 A Deformed

—*l |*—Ax + Ad

Deformation of a prismatic bar.
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Stress-Strain Diagram

- J

Gage iength

Specimen used in the standard tension test.

Stress

True rupture

o
Ultiats: . eogth

/
strength il

Nominal
rupture

strength

Elastic limit
Proportional limit

o Strain
Stress-strain diagram obtained from the standard tension test on a
structural steel specimen.

Proportional Limit and Hooke's Law

The stress-strain diagram is a straight line from the origin O to a
point called the proportional limit. This plot is a manifestation of
Hooke's law:

o= Ee¢

where E is a material property known as the modulus of elasticity or

Young's modulus.



Elastic Limit
A material is said to be elastic if, after being loaded, the material
returns to its original shape when the load is removed.
The permanent deformation that remains after the removal of the

load is called the permanent sei

Yield Point
The point where the stress-strain diagram becomes almost
horizontal is called the and the corresponding stress is
krnown as the or

Ultimate Stress
The ultimate stress or ultimate strength is the highest siress on the
stress-strain curve.

Rupture Siress

The rupture stress or rupture strength is the Siress at which jailure

Failed tensile test
specimen showing necking, or
narrowing, of the cross seclion.

Working stress and factor of safety

The working stress also called the allowable stress is the _ -
axial siress used in design. In most designs, the working stress should be
limited to values not exceeding the proportional limit so that the stresses
remain in the elastic range.
It is customary to base the working stress on either the vield stress
or the ultimate stress divided by a suitable number N, called the

¥ Tigle
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Axially Loaded Bars

Axially loaded bar.

If the strain (or stress) in the bar is not uniform, then the axial
strain varies with the x-coordinate and the elongation of the bar can
be obtained by integration

The magnitude of the internal force P must be found from
equilibrium analysis.

Note that a positive (tensile) P results in positive § (elongation);

conversely, a negative P (compression) gives negative &
(shortening).



Sample Problem

The steel propeller shaft ABCD carries the axial loads shownin
Fig. Determine the change in the length of the shaft caused by these
loads. Use E = 29 x 10°psi for steel.

0.5' in.

2000 1b —X

075in, 0000l

i =)

‘._’.:'_...
Al t

! | =

(.75 in.

4000 b

-
I

2000 1b

A
2000 1b

B|7 ctl .
t |

4 ft—=l=— 4 fi—

(a)

Py =20001b

Pye-=20001b

‘—I

A

Pyp = Pge = 2000 1b (T)

D

B~ =4000 Ib 4000 1b
cD ]‘ |
D
(b)

1 ()

sy BL_1[(PLN o
T 4~EA E|[\ A/,

Pep =40001b (C)

T 29 x 106

= 0.013 58 in.

7(0.5) /4

(elongation)

7(0.75)° /4

I [2000(5x 12) 2000(4x 12) 4000(4 x 12)
7(0.75)° /4

Answer @



Sample Problem

The cross section of the 10-m-long flat steel bar AB has a constant
thickness of 20 mm, but its width varies as shown in the figure.
Calculate the elongation of the bar due to the 100-kN axial load.
Use E =200 GPa for steel.

120} mm
40 mm Area= A
I e e
TA 7’___——«A,__h
; | B
* >
: L=10m——

Equilibrium requires that the internal axial force P = 100 kN
IS constant along the entire length of the bar. However, the cross-
sectional area A of the bar varies with the .x-coordinate.

The cross-sectional areas at A and B are A4 = 20 x 40 =800
mm? and Ag = 20 x 120 = 2400 mm?. Between A and B the cross-
sectional area is a linear function of x:

A=Ay + (A ~Ad}%=3{][}mm3 +{150E}mm3}%

5_JL P Jl“m 100 x 10°

JEATTT ), [200% 109)[(300 + 160%) x 109

10 m
o 0.5 L0
— 0.5 = 22 11n(800 + 160x

_L. 2007 160x 160 (800 +160x)]

0.5 2400
= In—=343x 10" m=343 mm Answer

~ 160 800

(=)



Sample Problem

The rigid bar AC is supported by the steel rod AC of cross-sectional
area 0.25 in%. Find the vertical displacement of point C caused by the
2000-Ib load. Use E= 29 x 10° psi for steel.

EF,=0 47 Pycsind0® -2000=0  Pyc=31111

Lge 8% 12

= = = 125.32 in.
Lac cos 40 cos 40° 1

: PL 3111(125.32) _ _
B bac=(22) = — 0.05378in. (elongat
e AC (EALC (29 % 10)(0.25) in. (elongation)

) x The geometric relationship between
2000 Th 6 4c and the displacement A of C is
(b) illustrated in the displacement diagram.

d4c 0.05378 .
— = = (0.0837 in.
sin 40° sin 40 1 @

Ae




Generalized Hooke's Law

Uniaxial loading; Poisson's ratio

Experiments show that when a bar is stretched by an axial force,
there is a contraction in the transverse dimensions.

y The transverse strain is
P J f Tnitialishans uniform throughout the cross
\/\ L / Deformed shape sgctlor_l an-d Is the same in any
/ S S direction in the plane of the cross
2 “ \. S section.
\‘\’ \,"\ ‘ )
~ P
\_,;\ £, = £. = —VE..
! z X
\x
Transverse dimensions Where v - Poisson’s ratio is a

contract as the bar is stretched by an

axial force P. dimensionless quantity that ranges

between 0.25 and 0.33 for metals.

The generalized Hooke's law for uniaxial loading:

&y Ty
Exy — — Ep = Ex = —¥—

E : ) E

Biaxial Loading

try| —

v
(0:—v8)) &=7(0,—10) &=—2(sc+a)

J}.

\O'x _ (ex+ve)E o - (€p + ver)E

1 —2 Y 1 — 2
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Triaxial Loading

Stresses acting on a
material element in triaxial loading.

Shear loading

Shear stress causes the deformation shown in Fig. The lengths of
the sides of the element do not change, but the element undergoes
a distortion from a rectangle to a parallelogram. The shear strain,
which measures the amount of distortion, is the angle y. It can be

shown that the relationship between shear stress T and shear
strain y is linear within the elastic range, that is,

T =Gy
"l 7 e <
pacs I'____—_f__?%- Initial shape
] * L—Deformed shapc  which is Hooke's law for shear.
1'/ | /T The material constant G is
| |
A called the shear modulus of
e elasticity (or simply shear
‘ modulus), or the modulus of
Deformation of a rigidity
material element caused by shear '

stress.

E

2(1+v) @
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Problem

Steel rod (Young’s modulus E =2-10* xN/cm?) is under the action
of axial forces P and 2P. Draw longitudinal forces N and normal stresses
o,diagrams. Analyze strength of a rod if working stress is [o]=16

xN/cm? . Determine elongation of the rod Al .

O

®

EXTENTION AND COMPRESSION
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DATA

No F, cm? a,m b, m c,m | P, kN
1 2,0 1,2 1,4 1,6 11
2 2,2 1,4 1,6 1,4 12
3 2,4 1,8 1,6 1,2 13
4 2,6 1,6 2,0 1,0 14
5 2,8 2,0 1,8 1,2 15
6 3,0 2,2 1,6 1,4 16
7 3,2 2,4 1,4 1,6 17
8 3,4 2,6 1,2 1,8 18
9 3,6 2,8 1,0 1,4 19
10 3,8 2,4 1,6 1,2 20
11 2,2 1,6 1,4 1,2 10
12 2,4 1,6 1,8 1,0 11
13 2,6 2,0 1,8 1,0 13
14 2,8 1,8 2,0 1,4 14

Problem sample
Given: E=2-10* kN/cm? a=200 cm; b=150 cm, ¢=100 cm F=10 cm?,
P, =100 xN u P, =300 xN, [c]=16 xN/cm? (Fig. 2).

A
a) Z 2) ()) e)
R=200 xN R @ P @ Nem”
W72 7777 ’ »
A 200 10 B
3 3 —
S |
o L 2F=20 cm’® —
N N5 ]
L =
\ ¢ N O 10
- A2 2 1 20 ==
65 e
i A |P=300 kN P,
= 6) A N1
¥ 200 20
S| 1 ' = U=
o
] | F=10cm” i & )
Y | —1100 [
& 10
P,=100 kN Py Py




Solution.

1. Define reaction R in rigid clamp.
>Z=0: —-R+P,—R =0, R=P,—P =300-100=200 &N.
2. Draw N diagram.

N, = B, =100 xN.
N, =P, — P, =300—-100=200 N.
N, =R =200 «N.
3. Draw o, diagram.
O, = N, /F
o, :M=&:+@:+10 xN/cm?,
" F F 10
o, = N, N, __200_ »4 «N/em?
> F, F 10

o =Na_Na 2000 Njem?.

* F, 2F 20
4.  Analyze strength of the rod.
Strength condition is ™ <[c]. In our case

o™ =|o |=20 xNfem? > [o]=16 xN/cm?,
Then the area of the second segment is to be increased:
F, =|N,|[o]=20016=125 cm*.

Take on a second segment F, =125 cm®.
5. Calculate elongation of the rod ar.

max

GZZ

N, |
Al=Y =Kk
Zk:EFk

N, N,I, N,, 100-100 200-150 200-200
Al =3 171 + 2°2 + 33 _ _ _
EF, EF, EF, 2:10*.10 2-10*-125 2.10°-20
Hence, the length of the rod decreases 1,7 mm.

=-0,17 cMm.




Properties of Plane Areas

First Moments of Area; Centroid

The first moments of a plane area A about the x- and y-axes are defined as

., = L yad = J xdd

A

¥ e St ,where dA is an
| i infinitesimal element of A located at (x,y), as
x A
' P ' shown in Fig.
,-//f & i )
P i 5 The centroid C of the area is defined as the
/;” ! point in the xy-plane that has the coordinates
0 ' x
x -

x=

[
A Y=

0.
A

The following are useful properties of the first moments of area:
.If the origin of the xy-coordinate system is the centroid of the area (in
which case ¥=7=0) then @ = 0, = 0.

.Whenever the area has an axis of symmetry, the centroid of the area will
lie on that axis.

Second Moments of Area

We define the second moments of a plane area A with respect to the xy-
axes by

fx=J yodA }}:J x"dA L:,.=J xy dA
4 4 4

The integrals Ix and ly are commonly called the moments of inertia,
whereas Ixy is known as the product of inertia.



We define the polar moment of inertia of an area about point O (strictly
speaking, about an axis through O, perpendicular to the plane of the area)

by

Jo = J P dA
A

where r is the distance from O to the area element dA.

The polar moment of inertia of an area about a point O equals the sum of
the moments of inertia of the area about two perpendicular axes that
intersect at O.

Jﬂ=fx"‘liiv

Parallel-Axis Theorems

The parallel-axis theorem for the moment of inertia of an area

¥ I, = ‘Tx - ATE
¥ |
¥ -Area=4A ]
- The parallel-axis theorem for
_ = F products of inertia
| X s 8 {; A § S
P
= | T ; =
3 - | ¥ ‘rx}l = fx_v T _,4_3;_];
- |
~ ks
-d__.-r" | ¥
- |

0 &

The parallel-axis theorem for the polar moment of inertia

2

Jo=Jo + AF

where 7 = /%2 + 72 15 the distance between O and C



Radii of Gyration

AT ST
BILE e

“18gpont®

The radii of gyration about the x-axis, the y-axis, and the point O are
defined as

-'rx _ "rJ' — "Irﬂ
A

ko =1k, +k,

Review of Properties of Plane Areas

Rectangle Circle Half parabolic complement
y‘ b | ¥
7 _afx)\2 T —_3b
- o [T =2
P =_3h
h c . ,/ = J *=To
— — X
L 2 bt —H
b = _3?5.’:3 b
A L <720 T 2T
Ix:ﬁ I}=ﬁ I‘l=0 I_@ _@
LB PR R S T A
3 73 Wooa _ B PR
TT120 Y 12
Right triangle Semicircle Half parabola
s ’|
3 = | = IT
_‘_ . _/< e \ u :
. / R_1™ 14
: a ., L I i I3HR . l
i ~.d *
| N 3y I. = 0.1098R* I,=0
. . R = BbA? 2bh*
AL S L S L=h="r I,=0 =T T T
T3 T3 T TR d : -
ki Bh Bh? f.=w _=ﬂ
- - o 480 v 15
R VI T S 7
~ b B it
=g Mg
Isosceles triangle Quarter circle Circolar sector
¥ ¥ | ¥ T
| | i [ e )
A 0 fy—— x
| .\\ i 4 ||\ g T
| s | ] e vy
= im \ —_ 2R sina e/
| 3 i ) S I = 3 \J
X . ! x Foe
b b f—r— )
: * T—F 0054888 1,1, = "% =l = 2
_ /R _bjfi i _o s = : x = Iy T
T YT 4 v a - .
o T, = —001647RY I, =% £y = — (22 +sin 2)
Iy = 7 Iy =0 Iy =0

The radii of gyration are related by



Triangle Quarter ellipse
—_a+h __hk ¥ P
Y X=—7%— ¥=3 =1
——a —a--l 3 3 I_ﬂ T_|_ _ / at Bt
\ T 5 ‘\\
B -4 c
C | ™ _l_ \"—x
x ; |
| b | -
I 1 5
b , b [ =00548ab’ L=
*=36 =1z lab
; _b b i, = 3 =22
=@ —ab+b?) L =7o(c>+ab+b) R
) @b
— 2p2 =
e A

Transformation of Second Moments of Area

In general, the values of Ix, ly, and Ixy for a plane area depend on the location of
the origin of the coordinate system and the orientation of the xy-axes. In the
previous section, we reviewed the effect of translating the coordinate axes
(parallel-axis theorem). Here the changes caused by rotating the coordinate
axes are given.

=btb Lo oo 1 sin2e
2 2 -
I, _Lth L-h cos 26 + Iy sin 26

To=2"% Gn 204 1., cos 26

Principal Moments of Inertia and Principal Axes
The axes for which I, is max, I, is min and I,,=0 are called principal axes.

The respective moments are called principal moments of inertia.
The expression for the principal moments of inertia:

L _L+h , [(h-h 242 tan 2g — 2oy
I 2 = 2 e I. -1,

()



Torsion of Circular Shafts

In many engineering applications, members are required t
carry torsional loads. Consider the torsion of circular shaft

Because a circular cross section is an efficient shape for
resisting torsional loads, circular shafts are commonly
used to transmit power in rotating machinery.

Deformation of a circular shaft caused by the torque 7. The initially
straight line 4B deforms into a helix.

During the deformation, the cross sections are not
distorted in any manner—they remain plane, and the
radius r does not change.

The length L of the shaft remains constant.

Based on these observations, we make the following
assumptions:

(=)



Each cross section rotates as a rigid entity about the axis
of the shaft.

Angle y is a shear strain of
the element

DD’ = pd0 = ydx

de
@ The quantity ——is the angle
of twist per unit length.

From the Hooke’s law

do
T—G‘)’—Ga

()

(a) Shear strain of a
material element caused by twisting
of the shaft; (b) the corresponding

shear stress.




For the shaft to be in equilibrium, the resultant of the shear
stress acting on a cross section must be equal to the
internal torque T acting on that cross section.

dP = tdA = G(d0/dx)p dA

The moment (torque) of dP
about the center O is

pdP = G(d0/dx)p* dA.

do

Arca=A
JpdP=T G—J prdA=T
A

dx

Calculating the resultant
of the shear stress acting on the cross > - polar moment of
section. Resultant is a couple equal .[4 P~ dA=J inertia
to the internal torque 7.

Angle of twist
do T L % gy
o (D = =| —ax | T=const _TL
dx GJ g Jo < Jo GJ & b= GJ

Tp b nnlm

Distribution of shear

stress along the radius of a circular
shaft. @



Positive T or 0 Negative T or Tmax = —

Sign conventions for torque 7 and angle of twist 6.

Hollow shaft
Solid shaft
@ R r
d AI I d
4 4 ) D 1

Polar moments of inertia of circula

. 2T 16T
Solid shaft: Toax = — 3= —x
2TR 16TD

Hollow shaft: 7max =

2R — %) n(D*—d%)

* Draw the required free-body diagrams and write the equations of
equilibrium.

* Derive the compatibility equations from the restrictions imposed
on the angles of twist.

* Use the torque-twist relationships to express the angles of twist in
the compatibility equations in terms of the torques.

* Solve the equations of equilibrium and compatibility for the

torques.



Sample Problem

A 2-in.-diameter solid steel cylinder is built into the
support at C and subjected to the torques T, and Tj.
Determine the maximum shear stresses in segments AB
and BC of the cylinder, and compute the angle of rotation
of end A. Use G =12 x 10° psi for steel.

Tg-monm T,,-goomn
2 in. dia.
@@
Tc- 500 Ib-ft Tg— 400 Ib-ft A=900 Ib-ft
Tp=400 Ib-ft
\' Tc=500 Ib-ft T4=900 Ib-ft
5ft (& 3ft B 5ft A

T4p=9001b-ft 7,=900Ibft

~
@7 Ty=900 Ib-ft E T,=900 Ib-ft
\I ) —
Ny

A

Tx=500Ibﬂ Tg-400 Ibﬂ TA=9001bﬂ
T=400 Ibft
Tpc=500 lb-ﬂl l ‘ T4=900 Ib-ft
\l _x
B A
(b) FBDs (c) FBDs (using the right-hand rule)

By making use of section method determine the torque in
each of the two segments of the cylinder:

T 45 = 900 Ib. ft, Tg, = 500 Ib. ft, T, = 500 Ib. ft



Tt (900 x 12)(1.0)

) o = — 6380 psi
(Fmax) .z == 1.5708 pst
Tach (500 x 12)(1.0) .

) = —2E — — 3820
(tme)pe == 1.5708 pst

The rotation of end A of the cylinder is obtained by
summing the angles of twist of the two segments:

B4 =048 +85c

 TupLap+ TacLpe (900 x 12)(5 x 12) + (500 x 12)(3 x 12)
- GJ - (12 x 108)(1.5708)
= 0.04584rad = 2.63°

t.4

The positive result indicates that the rotation vector of A is
in the positive .x-direction: that is, 84 is directed
counterclockwise when viewed from A toward C.
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The four rigid gears, loaded as shown in Fig.(a), are
attached to a 2-in.-diameter steel shaft. Compute the angle
of rotation of gear A relative to gear D. Use G = 12 x 10° psi

for the shaft.

Tep 1000To-ft 900Mb-ft  5001b-ft

- - o e
C B A
Tpe 9001b-ft 5001b - ft
— ——
B A
Typ 5001b-ft
<t
A
@ (b) FBDs

It is convenient to represent the torques as vectors (using the right-
hand rule) on the FBDs in Fig. (b). We assume that the internal
torques are positive according to the sigh convention introduced
earlier (positive torque vectors point away from the cross section).
Applying the equilibrium condition to each FBD, we obtain

The rotation of gear A relative to gear D can be viewed as the
rotation of gear A if gear D were fixed. This rotation is obtained by
summing the angles of twist of the three segments:




Sample Problem

A solid steel shaft in arolling mill transmits 20 kW of powe

at 2 Hz. Determine the smallest safe diameter of the shaft i

the shear stress is not to exceed 40 MPa and the angle of
twist is limited to 6°in a length of 3 m. Use G = 83 GPa.

This problem illustrates a design that must possess
sufficient strength as well as rigidity.

Determine the torque:

P 20% 107

T = = =1591.5N-m
onf — 2m(2)
Satisfy the strength condition:
_ 16T ¢ 16(1591.5)

which vields d = 58.7 x 10— m = 58.7 mm.

Satisfy the requirement of rigidity:

g TL o m)_ 1591.5(3)
CGJ 180/ (83 x 10%)(nd*/32)

from which we obtain & = 48.6 % 10— m = 48.6 mm.

To satisfy both strength and rigidity requirements, we
must choose the larger diameter namely,



Sample Problem

The shaft consists of a 3-in.-diameter aluminum segment
that is rigidly joined to a 2-in.-diameter steel segment. The
ends of the shaft are attached to rigid supports. Calculate
the maximum shear stress developed in each segment
when the torque T = 10kipein. is applied. Use G = 4 x 10°
psi for aluminum and G = 12 x 10° psi for steel.

. !?L].L.l;-:linun] Steel
3-in. diameter -\ / 2-in. diameter
=
T |
[ 6 ft | Ifr |

{a)
From the FBD of the entire shaft in Fig. (b), the equilibrium

equation is
Tu 10 kip - in. Ty
P~ ey N .
\ Ty EM.=0  (10x10%) - T, —Ty =0
L\ LS \.

(b} FBD

Compatibility. A second relationship between the torques
is obtained by noting that the right end of the aluminum
segment must rotate through the same angle as the left

end of the steel segment. Then

TL TL Ta(3x 12 Talbx 12 ) )
(—) = (—) { ) Tl ] Ta =45761b-1n. T =54241b - 1n.
st

GJ a7/ 6y T 4 6y " 3y
a (12x1095(2)° #x109503)* \vhence

16T 16(4576) ;
Tk N = = = 863 ps1
16T 16(5424) _
max)y = = = 3450 A
(Tmax )y (ﬁ e ll =) psi nswer



TORTION OF CIRCULAR SHAFTS
Problem
Steel circular shaft (shear module G=08-10* kN/cm?) is loaded by
4 torques M, (Fig. 1). (1) Draw torque diagram; (2) Define safe
diameters of the shaft at []=8 kN/cm?; (3) Draw twist angle diagram.

..: 1 M, Mz M, § My M, Mz 4 M,y

- —— {m ______ & @z __________ &_ _____ f_ _____ 1}

A )N ) s’ N\ \ \

’ AM g Mo aMs  p My 7 AM1 4 IM>  /IMs p My
@f ..... (:‘__{ L g_ _____ s_ 4-- f‘ _____ (; ..... t _____ &_

|

L
i
i
|
|
f ==
|
|
T
i
1
|
u\g\l
|
!
T
i
|
R
i
i
5
|
i

\ ’ < \
<a><b;<c~><d7 (a;<b;<c~><d7
Fig.1

Ne M, | M, | My, | My, | & | b, | c, | d,
KN-M | KN'M | kN'M [ kN'M | M M M M
1 1,0 2,0 1,0 10 (1012|141 1,6
2 1,0 2,0 1,0 08 (1214|1619
3 2,0 4,0 1,0 10 (1416|1012
4 3,0 5,0 1,6 14 (1611012 ]|14
5 4,0 6,0 1,8 14 (111111815
6 2,0 4,0 1,2 12 (131131511
7 2,0 3,0 1,2 10 115115113 |1,3
38 3,0 4,0 1,0 10 (1,711,715 ]|14
9 4,0 5,0 1,8 16 119]119]1,7|1,3
0 5,0 6,0 2,0 16 |1,2]114114|1,2




Problem sample
Given:

M, =15 kN-M; M,=55 KN'M; M,=32 xKN'M; M,=18 KN-M;
a=15M; b=2 M, c=1M, d=12 M; G=0,8-10" kN/cm’; [r]=8 kN/cm’

a) M,;=1,5 xN-u M;=3,2 kN-m
M,=2 xN-u \ M,=5.5 kN'u M,=1.8 xNu
4 3 2 )i
725N\ N \'\ AN A 7
4 4 B B ¢ 'p ' |E
a:I,5 M b=2wm c=Iwm d21,2 M
6)
2,0 2,0
@ 0.5 0,5
TTTTTTTTTTTTTITT
@
18 1.8
50 50
0,0208
o) 0.0156 m
rad
e (O
0,0052
0,0165
Fig.2
Solution

1. Define torque in fixed support.

Equilibrium equation
SM, =0, M,~M,~M,+M, +M, =0;
M,=M,+M,-M,-M,=15+55-32-18=2 kKN-M.

2. Draw torque diagram.



Forsection1-1:M, =-M
By analogy for sections 2 -2 u 3 — 3:
M, =-M,-M, =-18-32=-50 kN-m;
M, =-M,-M;+M,=-18-32+55=+05 kN-m.
M, =+M, =+2 KN-m.
3. Determine diameter of the shaft from strength condition.

,=-18 kN-m.

o = amar [

W
P
where W, =d®/16 ~ 0,2d° -section modulus.
M, e =|M,,| =500 KN-cm.
Then
M
1 oo Ms| _ 500

=3 =6,79 cm.
0,2[r] \0,2-8
Rounding we have d =70 mm.

4. Calculate angles of twist and draw twist angles diagram.
|, =nd*/32~01d*

Gl =0,8-10*-0,1-7* =192 -10* kN-cm?.

_M,a 200-150

= = =0,0156 rad;
Y2761 T 192:10°
M,b :
P =— = >0 20?:0,0052 rad;
Gl, 192:10
M,c —500-
Pop = —2—= 200 1?0:—0,0260 rad;
Gl, 192:10

~M,d -180-120

o n_ ~-0,0113 rad.
PoE TG T 192:10°

@, =0.
@0 =0, +@,, =0+0,0156=0,0156 rad;
Oc =@ + @y =0,0156+0,0052=0,0208 rad;
@p = Pc + ¢p =0,0208-0,0260=-0,0052 rad;
¥ =@ + @ =—0,0052—-0,0113=-0,0165 rad.




BENDING

Shear Forces and Bending Moments in Beams
Supports and Loads

w

IP T ) rc(ﬂ,' TE s

5 ] REER i
F[Iz)! FT-I M F‘TLQ P‘r!
R Ry R R Re

(a) Simply supported beam (b) Cantilever beam (c) Overhanging beam

Statically determinate beams.

Wo

| . B A

Py Py
. 2.
_ e ;
MAK M,
Ry
RI Rl R2

(a) Propped cantilever beam (b) Fixed or restrained beam

P ey
|
i Ry IR; IR, R

(c) Continuous beam

Statically indeterminate beams.

Shear-Moment Equations and Shear-Moment Diagrams
Sign conventions
Conventions, which assume the following to be positive:
» Shear forces that tend to rotate a beam element clockwise.

* Bending moments that tend to bend a beam element concave
upward (the beam "smiles”™).



Positive Negative

14 \ 4
Shear |““-—--\ ,------"”'

force Ml

V 14

M M
Bending ( J’\__ _’. ) =y
moment E====1 C D

Procedure for determining shear force and
bending moment diagrams:

 Compute the support reactions from the FBD of the
entire beam.

* Divide the beam into segments so that the loading
within each segment is continuous.

Perform the following steps for each segment of the
beam:

* Introduce an imaginary cutting plane within the
segment, located at a distance x from either end of the
beam, that cuts the beam into two parts.

 Draw a FBD for the part of the beam lying either to the
left or to the right of the cutting plane, whichever is
more convenient.

* Determine the expressions for V and M from the
equilibrium equations obtainable from the FBD.

* Plot the expressions for V and M for the segment.



Sample Problem.

The simply supported beam carries two concentrated loads. (1)
Derive the expressions for the shear force and the bending
moment for each segment of the beam. (2) Draw the shear
force and bending moment diagrams. Neglect the weight of the
beam. Note that the support reactions at A and D have been
computed and are shown in Fig. (a).

Segment AB (0 <x<2m)

F, =0 41 18—V =0

V=418 kN Answer
IMp=0 +0 -18x4+M=0
M =418xkN -m Answer
14 kN 28 kN
\ %4
M M l <——3m——<— 2 m—*
A E / y D
\:' E
|7 B c
X —
Vv
18 kN 24 kN
(b) FBDs




SegmentBC (2m <x<5m)

IF, =0 +1 18—14— V=0

V=418 —14 =44 kN Answer
IMp=0 4+ —18x+14{x-2)4+M=0
M=+418x—14(x—2)=4x+28kN-m Answer
14 kN 28 KN
~—2m M M v 2m—+
A B F F C D
[o D
b«
I v
18 kN 24 kN
{c) FBDs

SegmentCD 5 m <x <7 m)

EF, =0 47 18—-14-28—-1V =0
V=+18-14-28=-24kN Answer
IMg=0 +(5 —18x+414(x—2) +28(x—5)+ M =0
M=418x—14{x—2) - 28(x—5)= —24x 4+ 168 kN -m Answer

14 kN 28 kN
le—2 m Im v .
M M ¥ ]
A q C D 14 kN I8 kN
[e 9 G — 2 —e—— 3 i ———— 2 I —=
x A vE [ D
18 kN Vv 24 kKN [) —X
(d) FBDs | !
18 kN : (e) | 24kN
' | i
| |
| |
VikN) ' |
13 : I
4 |
; X
|
|
I (f) —24
| | |
M (kN - m) : | 148 :
+36 | : :
| | |
| | |
[ [ [
| | |
| | ¥
(g)

Shear force and bending moment diagrams



Sample Problem

The simply supported beam in Fig (a) is loaded by the
clockwise couple €, at B. (1) Derive the shear force and
bending moment equations, and (2) draw the shear force and
bending moment diagrams. Neglect the weight of the beam.
The support reactions A and C have been computed, and their
values are shown in Fig. (a).

¥ r .
o]
P
@ 2@ | | G |—«
e . G
- : g L o 1 gl b
3 | o L (d) | P L
Ca 7L 5 | Ch 1 ! 1
R, =— 4 ! R,::—— 1 1 1
A L 1. :I:E] : : I Vi 1
I 1 , I 1
I 1 | I : x
I 1M | I 1
I 1 I | 1
[= a I : T I
I —_——
|
o . x » I ' £
L L % : I &)
: o 1 “ !
| 2L i | M Le E :
> | 1= 1
4 Co | 0 4 GH.E x
[2 ] E
St
EJ : l- N 3 .
I an 0 —4—(,”
(e) Shear foree and bending moment diagrams
BRI
3
Segment AB (0 < x <ZL) Segment BC (3L/4 <x <L)
Cy _ 5y
s _T_V_O V__T IF, =0 +7 —ﬂ—l’—ﬂ V——ﬂ
Y L - L
C C s s
IMp=0 +0 Fx+M=0 M=——x EME=0 +0 Cx—Co+M=0 M=-—"x+GC



Sample Problem

The cantilever beam in Fig (a) carries a triangular load, the
intensity of which varies from zero at the left end to 360 Ib/ft at
the right end. In addition, a 1000-Ib upward vertical load acts at
the free end of the beam. (1) Derive the shear force and
bending moment equations, and (2) draw the shear force and
bending moment diagrams. Neglect the weight of the beam.

¥ T | 360 b/t IF, =0 +7 1000-15x"— F =10
g =T 1 ¥ v } ¥ LI ¥ = 1000 — 15x% Ib
F : - X
& 121t B X
IMe =0 +(C3 —1000x+ 15x° (E) +M=0
1000 b
{a) M = 1000x — 5x7 Ib- ft
¥
) s 216010 360 Ib/t
'
, i Mg =33601b - ft
| X
Al : B ;
+ — 12t
1000 1k I fig=116010b
| x| (b :
| =
i - :.,i,,.! w = 30 Ihlt E The location of the section where the shear force is zero is found from
L_,-—"'%"# " I ¥ =1000— 15x" =0
A ] C) | which gives
[ i
x 1 x = B.165 ft
1000 Th Yv :
[ {c} 1
! I
| i
V() . I
1000 \ :
1
1

X
' |
—— 8165 1t —r:’\l
. 1160

{d}

|
l
|
b1 - Moy = 1000(8.165) — 5(8.165)" = 5443 1b - ft

3360




The same.

2 ’a,

#,
ST,
I 180 B

120 Ib/ft

4ft on &

@

Poow | ot 120010 Segment AB (0 < x < 4 ft)
l B k : c
A H H e
I 4t 0f—!
: Ry = 880 Ib : R 520 1b
i (b) ;
200 | :
y M |
1
4 le— x t —») a E
14 :
1
? (x—4) | Segment BC (4 ft < x < 14 ft)
P e § | N :
200 1b 2 120c-4)1b |
B r M
! £)
41t - A ————]
Ry = 880 Ib
= xft n
@)
¥
Pn 120 Ibift
i c
—_—
2 4
an 10 ft
Ry =880 1b Ro= 501
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¥ (Ib) 680 :
i
1
1
1
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I 5.667 :
200 | |
! . ® |
i : '
1 I i
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! i 1127
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‘ :
; x (ft)
|
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DIFFERENTIAL EQUATIONS OF EQUILIBRIUM FOR BEAMS

Consider the beam that is subjected to a distributed load of intensity w(x), where w(x) is
assumed to be a continuous function.

y
‘ “l)(/x]/l/
l/lv—\l Yy r Y

_EL A B O i

X4

47-"5 R

|
V W
Al
M
LS
A X
I Va

The force equation of equilibrium for the element is
dDFE=0 T V-wdx-(V+dv)=0.

From which get

The moment equation of equilibrium yields
dx
>My=0 —M-Vdx+(M +dM)+de?:O.
After canceling M and dividing by dx, we get

dM  wdx
+—t—=
dx 2

v 0

Because dx is infinitesimal, the last term can be dropped (this is not an approximation),

yielding

(=)



BENDING STRESS

The stresses caused by the bending moment are known as bending stresses, or
flexure stresses. The relationship between these stresses and the bending moment is
called the flexure formula

Simplifying assumptions

These assumptions lead us to the following conclusion: Each cross section of the
beam rotates as a rigid entity about a line called the neutral axis of the cross section.
The neutral axis passes through the axis of the beam and is perpendicular to the
plane of symmetry. The xz-plane that contains the neutral axes of all the cross
sections is known as the neutral surface of the beam.

We are limiting our discussion here to the deformations caused by the bending moment
alone. However, it can be shown that the deformations due to the vertical shear force are
negligible in slender beams compared to the deformations caused by bending.

Neutral
' axis of cross
x  section

Symmetrical beam with loads lying in the plane of symmetry.



Compatibility

A segment of the beam bounded by two cross sections that are separated by the
infinitesimal distance dx.

M

/ A
y
L " a b Ncutral
y
oy e Y (.1 _1 i_i’%
Neutral surface
(side view)

Deformation of an infinitesimal beam segment.

The distance between the cross sections, measured along the neutral surface, remains
unchanged at dx. The longitudinal fibers lying on the neutral surface are undeformed,
whereas the fibers above the surface are compressed and the fibers below are stretched.

ab’ = (p-y)do.
The original length of this fiber is ab=dx = pd§.
ab’'—ab (p-y)do-pdo y

E = o = — -

ab pdo fol
E
From Hooke’s law © = Ee= _; y
Equilibrium

The normal force acting on the infinitesimal area dA of the cross section is dP = odA.
Substituting o=—(E/ p)y , we obtain

dP m— ydA
yo,

where y is the distance of dA from the neutral axis.

Equilibrium requires that —_[A ydP =M | —IA ydP =0 and —IA zdP =0



Resultant Axial Force Must Vanish

E
The condition for zero axial force is _[A zdP = _;I yzdA=0
A

E
Because E/ p#0 | the last equation can be satisfied only if _[A zdP = _;I yzdA = 0.

Resultant is a couple equal to the internal bending moment M.

Resultant Moment About y-Axis Must Vanish

The integral IA zydA js called the product of inertia of the cross-sectional area.

According to our assumptions, the y-axis is an axis of symmetry for the cross section, in
which case this integral is zero.

Resultant Moment About the Neutral Axis Must Equal M

—jAydP=%jAy2dA=|v|.

2
_[A y dA =l Is the moment of inertia of the cross-sectional area about the neutral axis

(the z-axis). Hence

m=2L

1
por; El @

M



Flexure formula; section modulus

Substituting the expression for 1/ o, we get the flexure formula:

The maximum value of bending stress is
Mo €
Omax =~ |

where ||V| |max is the largest bending moment in the beam regardless of sign, and C is the
distance from the neutral axis to the outermost point of the cross section or

where S = I/c is called the section modulus of the beam.

Section moduli of simple cross-sectional shapes.

< b~
Na| |,
S = I’L'? S = er! ﬂd?’
6 4 32
Tube Triangle
NA \R r/ It c= 3
- l NA/ O\
o <~—b—>
T o4 4 bh?
=" (R4_ =Y
S=r ® 1) 5=




Procedures for determining bending stresses

*Use the method of sections to determine the bending moment M (with its correct
sign) at the cross section containing the given point.

*Determine the location of the neutral axis.

*Compute the moment of inertia | of the cross-sectional area about the neutral
axis. ( If the beam is a standard structural shape, its cross- sectional properties are
tabulated.)

 Determine the y-coordinate of the given point.

*Compute the bending stress from © = —My /1 . 1 correct signs are used for M

and y, the stress will also have the correct sign (tension positive, compression
negative).

Maximum Bending Stress: Symmetric Cross Section
If the neutral axis is an axis of symmetry of the cross section, the maximum tensile and
compressive bending stresses in the beam are equal in magnitude and occur at the
section of the largest bending moment.

Procedure for determining the maximum bending stress in a prismatic beam

« Draw the bending moment diagram Identify the bending moment M., .

» Compute the moment of inertia | of the cross-sectional area about the neutral
axis.

« Calculate the maximum bending stress from O, =|M| _c/1=|M| /S

where c is the distance from the neutral axis to the top or bottom of the cross
section.

Procedure for determining Maximum Tensile and Compressive Bending Stressesfor
Unsymmetrical Cross Section

*Draw the bending moment diagram. ldentify the largest positive and negative
bending moments.

*Determine the location of the neutral axis and record the distances Ctop and

Cbot from the neutral axis to the top and bottom of the cross section.

*Compute the moment of inertia I of the cross section about the neutral axis.
*Calculate the bending stresses at the top and bottom of the cross section where

the largest positive bending moment occurs from © = —My /1 | At the top of the
cross section, where Y = Cy, , we obtain o,,, =—Mc,,, / | . At the bottom of the

cross section, we have Y = —Cyo , so that Oy = MC,, /' | . Repeat the calculations

for the cross section that carries the largest negative bending moment. Inspect the
four stresses thus computed to determine the largest tensile (positive)
and compressive (negative) bending stresses in the beam.

(1)



SHEAR STRESS

Analysis of flexure action

Isolate the shaded portion of the beam by using two cutting planes: a vertical cut along

section 1 and a horizontal cut located at the distance Y  above the neutral axis. The
isolated portion is subjected to the two horizontal forces P and F (vertical forces are not

shown). The axial force P is due to the bending stress acting on the area A’of section 1,
whereas F is the resultant of the shear stress acting on the horizontal surface.

Equilibrium requires that F = P.

. o0y
- — JF v
I 7F?P7T7 ————a— A% :z———ci —~7NA
- _ &
g
C'I o
Arca=A= ‘ //i

Calculating the resultant force of the normal stress over a portion of the
cross-sectional area.

The bending stress isoc=—My/ 1, where y is the distance of the element from the
neutral axis, and | is the moment of inertia of the entire cross-sectional area of the
beam about the neutral axis. Therefore,
M
oW
I
Integrating over the area A" we get

P=| dp= —gj ydA = —MTQ

|



where Q = L, dAis the first moment of area A" about the neutral axis. A
Denoting the distance between the neutral axis and the centroid C' of the area A’ by y’

we can write Q= A'? . Q represents the first moment of the cross-sectional area that
lies above Y . Because the first moment of the total cross-sectional area about the
neutral axis is zero, the first moment of the area below Y' is -Q. The magnitude of Q
can be computed by using the area either above or below y', whichever is more

convenient. The maximum value of Q occurs at the neutral axis where Yy = 0. It follows
that the horizontal shear force F is largest on the neutral surface.

Horizontal shear stress

Variation of the first moment Q of area A’about the neutral axis for a
rectangular cross section.

Q

The resultant force acting on face 1 of the body is P=-M T

The bending moment acting at section 2 is M + dM. The resultant normal force acting
on face 2 of the body is

P+dP:—(m+dM)%.

Because these two forces differ by

(P+dP)—P:—(M+dM)$—(—M %:—dm%

equilibrium can exist only if there is an equal and opposite shear force dF acting on the
horizontal surface.

If we let = be the average shear stress acting on the horizontal surface, its resultant is

dF =dbdx | where b is the width of the cross section at y = Y'. The equilibrium
requirement for the horizontal forces is

(P+dP)—P+7bdx =0.



00 00
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Determining the longitudinal shear stress from the free-body diagram
of a beam element.
Substituting for (P +dP)—P we get
Q dM Q
—dM — + zbdx = O which aives? = ——
: which gives ax b
Recalling the relationship V = dM/dx we obtain

Vertical shear stress

A shear stress is always accompanied by a complementary shear stress of equal

magnitude. In a beam, the complementary stress 7’
is a vertical shear stress that acts on the cross section

of the beam. Because 7 =7, the last Eq. can be e
used to compute the vertical as well as the -y
horizontal shear stress at a point in a beam. The b “?

resultant of the vertical shear stress on the cross- ' }
sectional area A of the beam is the shear force e

V:jArdA,

-

The vertical stress 7' acting at a point on a o
cross section equals the longitudinal shear - \
stress 7 acting at the same point.




Rectangular and wide-flange sections

The shaded area is A'=b[(h/2)-y], its centroidal coordinate being y'=[(h/2)+y]/2.
Thus,

o7 AT A2 )

The shear stress is distributed parabolically across the depth of the section. The
maximum shear stress occurs at

|

- L _ v the neutral axis. If we substitute y
h| |4 - =0and | =bh®/12 | we obtain
2, L iy Y 3V 3V
S S - -
h | 2bh 2 A"
5 . 3V

Y ‘ 2 A y

e p —> s

In wide-flange sections, most of the bending moment EHC —NA z

Is carried by the flanges, whereas the web resists the
bulk of the vertical shear force.

Procedure for analysis of shear stress

*Determine the vertical shear force V acting on the cross section containing the
specified point.

L_ocate the neutral axis and compute the moment of inertia I of the cross-sectional
area about the neutral axis.

*Compute the first moment Q of the cross-sectional area that lies above (or below)
the specified point.

*Calculate the shear stress from 7 = VQ/Ib, where b is the width of the cross
section at the specified point. Note that = is the actual shear stress only if it is
uniform across b; otherwise, 7 should be viewed as the average shear stress.

The maximum shear stress Tmax On a given cross section occurs where Q=b is

largest. If the width b is constant, then Tmax occurs at the neutral axis because that

Is where Q has its maximum value. If b is not constant, it is necessary to compute
the shear stress at more than one point in order to determine its maximum value.



COMPLEMENTARY PROBLEMS




JYVVYYY

.

w

[RATARK]

NN

W

YYVYVYY

—

NN

W

YYVVYYY

NN

M
-

w

TYYYYYY

YIvYIYY

asz

L A
Y

=

/

adz

A

i
o
o

M T

NN

-

YYYYYYY

NNNNN

M

IYYTYvY

©® 0 ® © ©® O 0 06

NNNNN

P

W

JYVYVYY

YIVYYYY

NNNNN

W

JYYNYYY

YYYYYYY

) ©

NN

A

p
g

o
=

—
-
-

aa

i

aj

aj)

a)

aj

aj

a)l

a)

P -
¥ RRRRRIRIARARLNL IS
2 , s
~— w P
I M TTTTITTY ¥
%ﬁ% b}
o’ e
W g
YYYYYYY b)
359%%2 B zé;; .
- M w
g YYYYYYY &)
)
' P — >
—> w P
TRV Y YTy ¥ b)
o T
a1 az
_“ = |'| - - _ a3
F - M
Y
%% | >
w
i
YYYYY M
&/ -
W
M —
YYYYRN Yy yAYYY 7;-@
/g — az Z
dsz ': = / . -
w P
Y .
b)
,};, 2
w
— b)
M KRRARAR]
— 3,
> j -—




Sample Problem 1

Given: q=20 kN/m, M =50 kN-m [o]=16 kN/cm? [r]=8 kN/cm?
a=1m;a,=2m,;1=4m.

Draw the shear force and bending moment diagrams.

M=70 KN'm L G=20N/m
, i /
ﬂ|1 2| |3 4 1 |5 |6
| It WAAAAAAAAA]
A <
R,=40 KN
a;=1m a,=2m
S (W
40
40
80
40
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Determine the required cross-sectional diameter of the beam.

The strength condition by the normal stresses has the form

— I\/Iémax < [O‘J

X

O max

where - the section modulus in bending. For the circular cross-section

3

beams itis S, :%zo,ldg’.

The maximum absolute value of the bending moment occurs in the third
section of the beam M, __ =|M,,|=8000 kN-cm.

Then the required beam diameter determined by the formula

,Istl _[8000 _
d>3 0’1[0_] =3 01.16 =17,1 cm.




Take d =170 mm.

Then

16,6 -16

The overstrain is :100% = 3,75% < 5%, which is allowed.

*

N

_ "V ymax

Fmax =3

where A=rd?/4.

The maximum absolute value of the shear force is V, ZM ‘=40 KN
1-5
Therefore

The strength condition by shear stress is satisfied.



Given: q=20 kN/m, P=50 kN, M =60 kN-m, [c]=16 kN/cm?, [r]=8
kN/cm?, 1=6 m.

Rx=37,5 KN Rg=132,5 KN
\ M=60 KN'-m A P=50 kN
/ .
A 1 7 | B F
§ 1 7 213 4%'s 6
4 <— g£20 KN/m -
0,5/=3m
R I=6m a=6m
37,5 50 50
: ‘ (:) (:::)KN

1,875m 22,5

35,16
22,5

From the diagram we have M, _ =[M,,|=8250 kN-cm. Whence




By the properties of I-beam sections we select Ne 30a, having S, =518 m°.

Check the strength of the beam by the maximum shear
stresses.

The maximum absolute value of the shear force for the I-beam is

_ Vy maxQx

Fmax = q
X

For the selected beam we determine the first moment of a half of the
section about the neutral axis S =292 cm® | =7780 cm®, and the wall

thickness d =0,65 cm.

From the diagram we have V.., =Ny4‘ =82,5 kN.
Whence

M @ 82,5202
max =] 4~ = 7780-0,65

=4,76 kN/cm? <[r]=8 kN/cm?,

I.e, the strength condition by shear stresses is satisfied.







