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P:The component of the resultant force that is perpendicular 

to the cross section, tending to elongate or shorten the bar, is 

called the normal force. 

V: The component of the resultant force lying in the plane of 

the cross section, tending to shear (slide) one segment of the 

bar relative to the other segment, is called the shear force. 

T: The component of the resultant couple that tends to twist 

(rotate) the bar is called the twisting moment or torque. 

M: The component of the resultant couple that tends to bend 

the bar is called the bending moment. 
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Sample Problem  

The rectangular wood panel is formed by gluing 

together two boards along the 30-degree scam. 

Determine the largest axial force P that can be carried 

safely by the panel if the working stress for the wood 

is 1120 psi and the normal and shear stresses in the 

glue are limited to 700 psi and 450 psi respectively. 

Design for Working Stress in Wood 

 

Design for Normal Stress in Glue 

 

 

 

 

Design for Shear Stress in Glue 

 

 

 

 

Choose the Correct Answer 

Comparing the above three solutions, we see that the 

largest safe axial load that can be safely applied is 

governed by the normal stress in the glue, its value 

being P = 3730 lb                                         Answer 
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Shear Stress 

By definition, normal stress acting on an interior plane 

is directed perpendicular to that plane.  

Shear stress is tangent to the plane on which it acts.  

When the shear force V is uniformly distributed over 

the shear area A, so that the shear stress can be 

computed as 
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Bearing Stress 

 

If two bodies are pressed against each other, 

compressive forces are developed on the area of 

contact. The pressure caused by these surface loads 

is called bearing stress. 

 

We assume that the bearing stress is uniformly 

distributed over a reduced area. The reduced area is 

taken to be the projected area of the rivet. 
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Sample Problem  

The lap joint is fastened by four rivets of 3/4-in. 

diameter. Find the maximum load P that can be 

applied if the working stresses are 14 ksi for shear in 

the rivet and 18 ksi for bearing in the plate. Assume 

that the applied load is distributed evenly among the 

four rivets, and neglect friction between the plates. 

 

The equilibrium condition is V = P/4. 

Design for Shear Stress in Rivets 

 

 

 

Design for Bearing Stress in Plate 

 

 

 

P= 24700 lb                                Answer 
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Strain 
 

In general terms, strain is a geometric quantity that 

measures the deformation of a body. 

There are two types of strain: normal strain, which 

characterizes dimensional changes, and shear strain, which 

describes distortion (changes in angles). 

 

Axial Deformation. Normal (axial) strain 

 

The normal strain is defined as the elongation per unit 

length 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Strain in a point 
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Axially Loaded Bars 

 

 
From the Hooke's law 

 

𝝈 = 𝑬𝝐 

 

But  𝝐 =
𝜹

𝑳
 . Then  

 

 

 

 

 

 

 

If the strain (or stress) in the bar is not uniform, then the axial 

strain varies with the x-coordinate and the elongation of the bar can 

be obtained by integration 

 

 

 

 

 

 

 

The magnitude of the internal force P must be found from 

equilibrium analysis.  

 

Note that a positive (tensile) P results in positive 𝜹 (elongation); 

conversely, a negative P (compression) gives negative 𝜹 

(shortening). 

 

 

 

 

 

20 



Sample Problem  

 
The steel propeller shaft ABCD carries the axial loads shown in 

Fig. Determine the change in the length of the shaft caused by these 

loads. Use 𝑬 = 𝟐𝟗 × 𝟏𝟎𝟔psi for steel. 
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Sample Problem  

 
The cross section of the 10-m-long flat steel bar AB has a constant 

thickness of 20 mm, but its width varies as shown in the figure. 

Calculate the elongation of the bar due to the 100-kN axial load. 

Use E = 200 GPa for steel. 

 

 

 

 

 

 

 

Equilibrium requires that the internal axial force P = 100 kN 

is constant along the entire length of the bar. However, the cross-

sectional area A of the bar varies with the .x-coordinate. 

The cross-sectional areas at A and B are 𝑨𝑨 = 20 x 40 = 800 

𝒎𝒎𝟐 and 𝑨𝑩 = 20 x 120 = 2400 𝒎𝒎𝟐. Between A and B the cross-

sectional area is a linear function of x: 
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Sample Problem  

The rigid bar AC is supported by the steel rod AC of cross-sectional 

area 0.25 𝒊𝒏𝟐. Find the vertical displacement of point C caused by the 

2000-lb load. Use E= 29 x 𝟏𝟎𝟔 psi for steel.  

 

 

 

 

The geometric relationship between 

𝜹𝑨𝑪 and the displacement ∆𝑪 of C is 

illustrated in the displacement diagram.  
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Generalized Hooke's Law 

Uniaxial loading; Poisson's ratio 

Experiments show that when a bar is stretched by an axial force, 

there is a contraction in the transverse dimensions.  

The transverse strain is 

uniform throughout the cross 

section and is the same in any 

direction in the plane of the cross 

section. 

 

Where 𝝊 - Poisson's ratio is a 

dimensionless quantity that ranges 

between 0.25 and 0.33 for metals. 

The generalized Hooke's law for uniaxial loading: 

 

 

 

Biaxial Loading 
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Triaxial Loading 

 

 

 

 

 

 

 

 

Shear loading 

Shear stress causes the deformation shown in Fig. The lengths of 

the sides of the element do not change, but the element undergoes 

a distortion from a rectangle to a parallelogram. The shear strain, 

which measures the amount of distortion, is the angle 𝜸. It can be 

shown that the relationship between shear stress 𝝉 and shear 

strain 𝜸 is linear within the elastic range, that is, 

 

 

which is Hooke's law for shear. 

The material constant G is 

called the shear modulus of 

elasticity (or simply shear 

modulus), or the modulus of 

rigidity. 
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EXTENTION AND COMPRESSION 
 

Problem 
Steel rod (Young’s modulus 4102 E  кN/cm

2 
) is under the action 

of axial forces P and 2P. Draw longitudinal forces N and normal stresses 

z diagrams. Analyze strength of a rod if working stress is [ ]=16 

кN/cm
2 
. Determine elongation of the rod l . 

 
 

 

 

 
 

Fig.1 
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DATA 

№ F, cm2 a, m b, m c, m P, кN 

1 2,0 1,2 1,4 1,6 11 

2 2,2 1,4 1,6 1,4 12 

3 2,4 1,8 1,6 1,2 13 

4 2,6 1,6 2,0 1,0 14 

5 2,8 2,0 1,8 1,2 15 

6 3,0 2,2 1,6 1,4 16 

7 3,2 2,4 1,4 1,6 17 

8 3,4 2,6 1,2 1,8 18 

9 3,6 2,8 1,0 1,4 19 

10 3,8 2,4 1,6 1,2 20 

11 2,2 1,6 1,4 1,2 10 

12 2,4 1,6 1,8 1,0 11 

13 2,6 2,0 1,8 1,0 13 

14 2,8 1,8 2,0 1,4 14 

Problem sample 

Given: 4102 E  кN/cm
2
, 200a  cm; 150b  cm, 100c  cm F=10 cm

2
, 

1001 P  кN и 3002 P  кN, [ ]=16 кN/cm
2
 (Fig. 2).  

 

Fig 2 
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Solution.  
 

1. Define reaction R  in rigid clamp.  

  0Z :    200100300;0 1212  PPRPPR  кN. 

2. Draw N diagram.  

10011  PN  кN. 

200100300122  PPN  кN. 

2003  RN  кN. 

3. Draw 
z  diagram. 

kkz FN
k
 , 

 

10
10

1001

1

1

1


F

N

F

N
z  кN/cm

2
, 

 

20
10

2002

2

2

2


F

N

F

N
z  кN/cm

2
, 

 

10
20

200

2

3

3

3

3


F

N

F

N
z  кN/cm

2
. 

4.  Analyze strength of the rod. 

Strength condition is   max

z . In our case 

20
2

max  zz   кN/cm
2
 >   16  кN/cm

2
, 

Then the area of the second segment is to be increased: 
[ ] 512=16200=22 ,NF σ≥  cm

2
. 

Take on a second segment 5,122 F  cm
2
.   

5. Calculate elongation of the rod l . 

 


k k

kk

EF

lN
l , 

17,0
20102

200200

5,12102

150200

10102

100100
444

3

33

2

22

1

11 















EF

lN

EF

lN

EF

lN
l  см. 

Hence, the length of the rod decreases  7,1  мм. 

___________________ 
 

 

28 



29 

Properties of Plane Areas 
 

First Moments of Area; Centroid 
 
The first moments of a plane area A about the x- and y-axes are defined as 
 

,where dA is an 

infinitesimal element of A located at (x,y), as 

shown in Fig. 

The centroid C of the area is defined as the 
point in the xy-plane that has the coordinates 
 

. 
 
 

The following are useful properties of the first moments of area: 
 

.If the origin of the xy-coordinate system is the centroid of the area (in 

which case ), then   

.Whenever the area has an axis of symmetry, the centroid of the area will 

lie on that axis. 

 
Second Moments of Area 

 
We define the second moments of a plane area A with respect to the xy-
axes by 
 
 

. 
 

The integrals Ix and Iy are commonly called the moments of inertia, 
whereas Ixy is known as the product of inertia. 
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We define the polar moment of inertia of an area about point O (strictly 
speaking, about an axis through O, perpendicular to the plane of the area) 
by 

. 
where r is the distance from O to the area element dA. 
 
The polar moment of inertia of an area about a point O equals the sum of 
the moments of inertia of the area about two perpendicular axes that 
intersect at O. 

 

 
 

Parallel-Axis Theorems 
 

The parallel-axis theorem for the moment of inertia of an area 
 
 

 
 
                  The parallel-axis theorem for 

products of inertia 

 
 

 
 
 
 

The parallel-axis theorem for the polar moment of inertia 
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Radii of Gyration 

 
The radii of gyration about the x-axis, the y-axis, and the point O are 
defined as 

 The radii of gyration are related by 

 
 

 
Review of Properties of Plane Areas
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 Transformation of Second Moments of Area 

 
In general, the values of Ix, Iy, and Ixy for a plane area depend on the location of 
the origin of the coordinate system and the orientation of the xy-axes. In the 
previous section, we reviewed the effect of translating the coordinate axes 
(parallel-axis theorem). Here the changes caused by rotating the coordinate 
axes are given. 

 
 

  

Principal Moments of Inertia and Principal Axes 
 

The axes for which 𝑰𝒙 is max,  𝑰𝒚 is min and  𝑰𝒙𝒚=0 are called principal axes. 

The respective moments are called principal moments of inertia. 
The expression for the principal moments of inertia: 
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The rotation of end A of the cylinder is obtained by 

summing the angles of twist of the two segments: 

 

 

 

 

 

 

 

 

The positive result indicates that the rotation vector of A is 

in the positive .x-direction: that is, 𝜽𝑨 is directed 

counterclockwise when viewed from A toward C. 
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Sample Problem  

A solid steel shaft in a rolling mill transmits 20 kW of power 

at 2 Hz. Determine the smallest safe diameter of the shaft if 

the shear stress is not to exceed 40 MPa and the angle of 

twist is limited to 𝟔°in a length of 3 m. Use G = 83 GPa. 

 

This problem illustrates a design that must possess 

sufficient strength as well as rigidity.  

Determine the torque: 

 

 

 

Satisfy the strength condition: 

 

 

 

Satisfy the requirement of rigidity: 

 

 

 

To satisfy both strength and rigidity requirements, we 

must choose the larger diameter namely, 
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Sample Problem  

The shaft consists of a 3-in.-diameter aluminum segment 

that is rigidly joined to a 2-in.-diameter steel segment. The 

ends of the shaft are attached to rigid supports. Calculate 

the maximum shear stress developed in each segment 

when the torque T = 10kip•in. is applied. Use G = 4 x 𝟏𝟎𝟔 

psi for aluminum and G = 12 x 𝟏𝟎𝟔 psi for steel. 

 

 

 

 

From the FBD of the entire shaft in Fig. (b), the equilibrium 

equation is 

 

 

Compatibility. A second relationship between the torques 

is obtained by noting that the right end of the aluminum 

segment must rotate through the same angle as the left 

end of the steel segment. Then 

Whence 
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TORTION OF CIRCULAR SHAFTS 
Problem  
Steel circular shaft (shear module 4108,0 G  кN/cm

2
) is loaded by 

4 torques 
iM  (Fig. 1). (1) Draw torque diagram; (2) Define safe 

diameters of the shaft at   8  кN/cm
2
; (3) Draw twist angle diagram. 

 

 
Fig.1 
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М1 М2 М3 М4 

М1 М2 М3 М4 М3 

М3 М1 М2 М4 

М4 М1 М2 

4 

1 

3 

2 

№ М1, 

кN·м 

М2, 

кN·м 

М3, 

кN·м 

М4, 

кN·м 

a, 

м 

b, 

м 

c, 

м 

d, 

м 

1 1,0 2,0 1,0 1,0 1,0 1,2 1,4 1,6 

2 1,0 2,0 1,0 0,8 1,2 1,4 1,6 1,9 

3 2,0 4,0 1,0 1,0 1,4 1,6 1,0 1,2 

4 3,0 5,0 1,6 1,4 1,6 1,0 1,2 1,4 

5 4,0 6,0 1,8 1,4 1,1 1,1 1,8 1,5 

6 2,0 4,0 1,2 1,2 1,3 1,3 1,5 1,1 

7 2,0 3,0 1,2 1,0 1,5 1,5 1,3 1,3 

8 3,0 4,0 1,0 1,0 1,7 1,7 1,5 1,4 

9 4,0 5,0 1,8 1,6 1,9 1,9 1,7 1,3 

0 5,0 6,0 2,0 1,6 1,2 1,4 1,4 1,2 42 
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For section 1 – 1: 8,141
 MM z  кN·м. 

By analogy for sections 2 – 2 и 3 – 3: 

0,52,38,1342
 MMM z

 кN·м; 

5,05,52,38,12343
 MMMM z  кN·м. 

2
4

 Az MM  кN·м. 

3. Determine diameter of the shaft from strength condition. 

 

 



W

M z max
max , 

where 33 2,016 ddW  -section modulus. 

500
2max
 zz MM  кN·сm. 

Then 

 
2

3 3
500

6,79
0,2 0,2 8

zM
d


  


 сm. 

Rounding we have 70d  мм. 

4. Calculate angles of twist and draw twist angles diagram. 
44 1,032 ddI    

444 1019271,0108,0 GI  кN·сm
2
. 

 

0156,0
10192

150200
4

4 








GI

aM z

AB  rad; 

0052,0
10192

20050
4

3 








GI

bM z

BС  rad; 

0260,0
10192

100500
4

2 








GI

cM z

CD  rad; 

0113,0
10192

120180
4

1 








GI

dM z

DE  rad. 

   0A .  

0156,00156,00  ABAB   rad; 

0208,00052,00156,0  BCBC   rad; 

0052,00260,00208,0  CDCD   rad; 

0165,00113,00052,0  DEDE   rad. 

_______________________ 
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 Procedure for determining shear force and 

bending moment diagrams: 

• Compute the support reactions from the FBD of the 

entire beam. 

• Divide the beam into segments so that the loading 

within each segment is continuous.  

Perform the following steps for each segment of the 

beam: 

• Introduce an imaginary cutting plane within the 

segment, located at a distance x from either end of the 

beam, that cuts the beam into two parts. 

• Draw a FBD for the part of the beam lying either to the 

left or to the right of the cutting plane, whichever is 

more convenient.  

• Determine the expressions for V and M from the 

equilibrium equations obtainable from the FBD.  

• Plot the expressions for V and M for the segment.  

 

46 



47 



Segment BC (2 m < x < 5 m) 

 

 

 

 

 

 

Segment CD (5 m < x < 7 m) 
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Sample Problem  

The simply supported beam in Fig (a) is loaded by the 

clockwise couple 𝑪𝟎 at B. (1) Derive the shear force and 

bending moment equations, and (2) draw the shear force and 

bending moment diagrams. Neglect the weight of the beam. 

The support reactions A and C have been computed, and their 

values are shown in Fig. (a). 

 

 

Segment AB (0 < x <
𝟑

𝟒
𝐋)                     Segment BC (3L/4 < x < L) 
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Sample Problem  

The cantilever beam in Fig (a) carries a triangular load, the 

intensity of which varies from zero at the left end to 360 lb/ft at 

the right end. In addition, a 1000-lb upward vertical load acts at 

the free end of the beam. (1) Derive the shear force and 

bending moment equations, and (2) draw the shear force and 

bending moment diagrams. Neglect the weight of the beam. 
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DIFFERENTIAL EQUATIONS OF EQUILIBRIUM FOR BEAMS 
 

Consider the beam that is subjected to a distributed load of intensity w(x), where w(x) is 

assumed to be a continuous function. 

 

 
 

The force equation of equilibrium for the element is 

0 ( ) 0.
y

F V wdx V dv       

From which get  

.
dV

w
dx

   

The moment equation of equilibrium yields 

0 ( ) 0
2

.
O

dx
M M Vdx M dM wdx        

 

After canceling M and dividing by dx, we get 

 

0
2

dM wdx
V

dx
   . 

 

Because dx is infinitesimal, the last term can be dropped (this is not an approximation), 

yielding 

 

.
dM

V
dx

  

 



53 

BENDING STRESS 
 

The stresses caused by the bending moment are known as bending stresses, or 

flexure stresses. The relationship between these stresses and the bending moment is 

called the flexure formula  

 

Simplifying assumptions 
 

   •The beam has an axial plane of symmetry, which we take to be the xy-plane.  

   •The applied loads lie in the plane of symmetry and are perpendicular to the axis of 

the beam (the x-axis).  

   •The axis of the beam bends but does not stretch (the axis lies somewhere in the 

plane of symmetry; its location will be determined later).  

   •Plane sections of the beam remain plane (do not warp) and perpendicular to the 

deformed axis of the beam.  

   •Changes in the cross-sectional dimensions of the beam are negligible. 

 

These assumptions lead us to the following conclusion: Each cross section of the 

beam rotates as a rigid entity about a line called the neutral axis of the cross section. 

The neutral axis passes through the axis of the beam and is perpendicular to the 

plane of symmetry. The xz-plane that contains the neutral axes of all the cross 

sections is known as the neutral surface of the beam. 

 

We are limiting our discussion here to the deformations caused by the bending moment 

alone. However, it can be shown that the deformations due to the vertical shear force are 

negligible in slender beams compared to the deformations caused by bending. 

 

 
 

Symmetrical beam with loads lying in the plane of symmetry. 
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Compatibility 
 

A segment of the beam bounded by two cross sections that are separated by the 

infinitesimal distance dx. 

 
Deformation of an infinitesimal beam segment. 

 

The distance between the cross sections, measured along the neutral surface, remains 

unchanged at dx. The longitudinal fibers lying on the neutral surface are undeformed, 

whereas the fibers above the surface are compressed and the fibers below are stretched.  

( )a b y d     . 

The original length of this fiber is ab dx d   .  

( )a b ab y d d y

ab d

   


  

    
   

. 

From Hooke’s law 
E

E y 


    

 

Equilibrium 
 

The normal force acting on the infinitesimal area dA of the cross section is dP dA . 

Substituting ( / )E y   , we obtain 

 

, 

 

where y is the distance of dA from the neutral axis. 

Equilibrium requires that 
A

ydP M  , 0
A

ydP   and 0
A
zdP  . 

 

E
dP ydA


 
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Resultant is a couple equal to the internal bending moment M. 

Resultant Axial Force Must Vanish  

The condition for zero axial force is 0
A

A

E
zdP yzdA


    . 

Because / 0E    , the last equation can be satisfied only if 0.
A

A

E
zdP yzdA


     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resultant Moment About y-Axis Must Vanish 
 

The integral 
A

zydA  is called the product of inertia of the cross-sectional area. 

According to our assumptions, the y-axis is an axis of symmetry for the cross section, in 

which case this integral is zero. 

 

Resultant Moment About the Neutral Axis Must Equal M 
 

2 .
A A

E
ydP y dA M


     

2

A
y dA I  is the moment of inertia of the cross-sectional area about the neutral axis 

(the z-axis). Hence 

EI
M


  or 

1
.

M

EI
  
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Flexure formula; section modulus 
 

Substituting the expression for 1/  , we get the flexure formula: 

My
у =- .

I
 

The maximum value of bending stress is 

max
max

M c

I
    

where max
M  is the largest bending moment in the beam regardless of sign, and c is the 

distance from the neutral axis to the outermost point of the cross section or 

max
max ,

M

S
    

where S = I/c is called the section modulus of the beam. 

  

Section moduli of simple cross-sectional shapes. 

 



57 

Procedures for determining bending stresses 

 
   •Use the method of sections to determine the bending moment M (with its correct 

sign) at the cross section containing the given point.  

   •Determine the location of the neutral axis.  

   •Compute the moment of inertia I of the cross-sectional area about the neutral 

axis. ( If the beam is a standard structural shape, its cross- sectional properties are 

tabulated.)  

   • Determine the y-coordinate of the given point.   

   •Compute the bending stress from /My I   . If correct signs are used for M 

and y, the stress will also have the correct sign (tension positive, compression 

negative). 

 

Maximum Bending Stress: Symmetric Cross Section 
  If the neutral axis is an axis of symmetry of the cross section, the maximum tensile and 

compressive bending stresses in the beam are equal in magnitude and occur at the 

section of the largest bending moment.  

 

Procedure for determining the maximum bending stress in a prismatic beam 

 

 • Draw the bending moment diagram Identify the bending moment maxM .  

• Compute the moment of inertia I of the cross-sectional area about the neutral 

axis.  

• Calculate the maximum bending stress from max max max
/ /M c I M S    , 

where c is the distance from the neutral axis to the top or bottom of the cross 

section. 

 

Procedure for determining Maximum Tensile and Compressive Bending Stressesfor 

Unsymmetrical Cross Section  

 
•Draw the bending moment diagram. Identify the largest positive and negative 
bending moments.  

•Determine the location of the neutral axis and record the distances topc  and 

botc  from the neutral axis to the top and bottom of the cross section.  

•Compute the moment of inertia I of the cross section about the neutral axis.  
•Calculate the bending stresses at the top and bottom of the cross section where  

the largest positive bending moment occurs from /My I   . At the top of the  

cross section, where topy c , we obtain /top topMc I   . At the bottom of the  

cross section, we have boty c  , so that /bot botMc I  . Repeat the calculations  
for the cross section that carries the largest negative bending moment. Inspect the 
 four stresses thus computed to determine the largest tensile (positive) 
 and compressive (negative) bending stresses in the beam. 
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SHEAR STRESS 
 

Analysis of flexure action  
 

Isolate the shaded portion of the beam by using two cutting planes: a vertical cut along 

section 1 and a horizontal cut located at the distance y  above the neutral axis. The 

isolated portion is subjected to the two horizontal forces P and F (vertical forces are not 

shown). The axial force P is due to the bending stress acting on the area Aof section 1 , 

whereas F is the resultant of the shear stress acting on the horizontal surface. 

Equilibrium requires that F = P. 

 

 

 
Calculating the resultant force of the normal stress over a portion of the 

cross-sectional area. 

 

The bending stress is /My I   , where y is the distance of the element from the 

neutral axis, and I is the moment of inertia of the entire cross-sectional area of the 

beam about the neutral axis. Therefore, 

My
dP dA

I
  . 

Integrating over the area A  we get  

A A

M MQ
P dP ydA

I I
 

      , 
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where 
A

Q dA


  is the first moment of area A  about the neutral axis.  

Denoting the distance between the neutral axis and the centroid C  of the area A  by y  

we can write Q A y  . Q represents the first moment of the cross-sectional area that 

lies above y . Because the first moment of the total cross-sectional area about the 

neutral axis is zero, the first moment of the area below y  is -Q. The magnitude of Q 

can be computed by using the area either above or below y , whichever is more 

convenient. The maximum value of Q occurs at the neutral axis where y = 0. It follows 

that the horizontal shear force F is largest on the neutral surface.  

 

Horizontal shear stress 
 

 
Variation of the first moment Q of area Aabout the neutral axis for a 

 rectangular cross section.   

 

The resultant force acting on face 1 of the body is 
Q

P M
I

  . 

The bending moment acting at section 2 is M + dM. The resultant normal force acting 

on face 2 of the body is 

( )
Q

P dP m dM
I

    . 

Because these two forces differ by 

( ) (M ) ( )
Q Q Q

P dP P dM M dM
I I I

          

equilibrium can exist only if there is an equal and opposite shear force dF acting on the 

horizontal surface. 

If we let   be the average shear stress acting on the horizontal surface, its resultant is 

dF =фbdx  , where b is the width of the cross section at y = y . The equilibrium 

requirement for the horizontal forces is 

 

( ) 0.P dP P bdx     
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Determining the longitudinal shear stress from the free-body diagram 

of a beam element. 

Substituting for ( )P dP P   we get  

0
Q

dM b dx
I

   which gives .
dM Q

dx Ib
   

Recalling the relationship V = dM/dx we obtain 

 

VQ

Ib
  . 

 

 

Vertical shear stress 
 

A shear stress is always accompanied by a complementary shear stress of equal 

magnitude. In a beam, the complementary stress   
is a vertical shear stress that acts on the cross section 

of the beam. Because     , the last Eq. can be 

used to compute the vertical as well as the 

horizontal shear stress at a point in a beam. The 

resultant of the vertical shear stress on the cross-

sectional area A of the beam is the shear force 

V
A

dA  .  

 

 

The vertical stress acting at a point on a 

cross section equals the longitudinal shear 

stress  acting at the same point. 
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Rectangular and wide-flange sections 
 

The shaded area is  ( / 2)A b h y   , its centroidal coordinate being  ( / 2) / 2y h y   . 

Thus, 

   
2

2
1

2 2 2 2 4

h h b h
Q A y b y y y      

    
         

. Then 

2

2
.

2 4

VQ V h
y

Ib I
   

 
 
 

 

 

The shear stress is distributed parabolically across the depth of the section. The 

maximum shear stress occurs at 

the neutral axis. If we substitute y 

= 0 and 
3 /12I bh  , we obtain 

max

3 3

2 2

V V

bh A
   . 

 

In wide-flange sections, most of the bending moment 

is carried by the flanges, whereas the web resists the 

bulk of the vertical shear force.  

 

 

Procedure for analysis of shear stress 
 

•Determine the vertical shear force V acting on the cross section containing the 

specified point.  

•Locate the neutral axis and compute the moment of inertia I of the cross-sectional 

area about the neutral axis.  

•Compute the first moment Q of the cross-sectional area that lies above (or below) 

the specified point. 

•Calculate the shear stress from   = VQ/Ib, where b is the width of the cross 

section at the specified point. Note that   is the actual shear stress only if it is 

uniform across b; otherwise,   should be viewed as the average shear stress. 

The maximum shear stress max  on a given cross section occurs where Q=b is 

largest. If the width b is constant, then max  occurs at the neutral axis because that 

is where Q has its maximum value. If b is not constant, it is necessary to compute 

the shear stress at more than one point in order to determine its maximum value. 
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COMPLEMENTARY PROBLEMS 

 

For two given schemes of beams is required: 
• draw the diagrams of shear forces and bending moments; 
• on the basis of the strength condition by the normal stresses 
(𝝈𝒘 = 𝟏𝟔 kN кN/cm2), select the beam of the circular cross section for 
the scheme a, and the I-beam cross-section for the scheme b; 
• check the strength of the selected beams by shear stresses (𝝉𝒘 =
 kN/ cm2). 
Take the data from the following table. 
 
 

Scheme 

number 

l, 

m 

M, 

кN·m 

P, 

кN 

q, 

кН/m 

1 3 0,2 0,6 0,2 8 5 10 

2 4 0,3 0,5 0,3 7 6 11 

3 5 0,4 0,4 0,3 6 7 12 

4 6 0,5 0,3 0,2 5 8 13 

5 3 0,6 0,7 0,2 4 9 14 

6 4 0,7 0,5 0,3 8 10 9 

7 5 0,8 0,4 0,6 7 5 10 

8 6 0,2 0,6 0,3 6 6 11 

9 3 0,3 0,5 0,4 5 7 12 

0 4 0,4 0,4 0,2 4 8 8 

la1 la2
la3
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Sample Problem 1 
 

Given: 20q  кN/m, 50M  кN·m   16  кN/сm2,   8  кN/сm2, 

11 a  m; 22 a  m; 4l  m. 

 

Draw the shear force and bending moment diagrams. 
 

 
 

Determine the required cross-sectional diameter of the beam. 
 

The strength condition by the normal stresses has the form 
 

max
max

x

x

M
S

  
   , 

 

where - the section modulus in bending. For the circular cross-section 

beams it is 
3

30,1
32x
d

S d


  . 

The maximum absolute value of the bending moment occurs in the third 

section of the beam 80003max
 xx MM  кN·сm. 

Then the required beam diameter determined by the formula

3
3 3

8000
17,1

0,1 160,1
xM

d
  

  


 сm. 

 

1 2 3 4 6 

М=50 кN∙m q=20 кN/m 

a1=1 m a2=2 m 

l=4 m 

МА=70 кN∙m 

RА=40 кN 

40 

40 

80 

40 

70 30 

V    кN 

МX  кН∙м 

5 

А 
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Take 170d  mm.  
 
Then 
 

max
max 3

8000
16,6

17

32

x

x

M

S



  


 кN/сm2   16   кN/сm2.  

 

The overstrain is %5%75,3%100
16

166,16



, which is allowed. 

 

Check the strength of the beam by the maximum shear 
stresses. 

 
max

max

4

3
yV

A
  , 

where 2 4A d . 

 

The maximum absolute value of the shear force is 
1 5max 40y yV V


   кN.  

Therefore 
 

max
max 2

4 4 40
0,235

3 17
3

4

yV

A





  




 кN/сm2   8   кN/сm2. 

 
The strength condition by shear stress is satisfied. 
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Sample Problem 2  
 
Given: 20q  кN/m, 50P  кN, 60M  кN·m,   16  кN/сm2,   8  

кN/сm2, 6l  m. 

 
Draw the shear force and bending moment diagrams.  
 

 
Define the section modulus from the strength condition 

by the normal stresses. 
 

From the diagram we have 82503max
 xx MM  кN·сm. Whence 

 

max 8250 516
16

x
xS

M
 
 

    сm3. 

 

75 

МX  кN∙m 

VY   кN 

RA=37,5 кN RВ=132,5 кN 

Р=50 кN М=60 кN∙m 

q=20 кN/m 

A B 

1 2 3 4 5 6 

0,5l =3 m 

l =6 m a =6 m 

37,5 

82,5 

50 50 

82,5 

22,5 
35,16 

1,875 m 22,5 

7 
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By the properties of I-beam sections we select № 30а, having 518xS   m3.  

 

Check the strength of the beam by the maximum shear 
stresses. 

 
The maximum absolute value of the shear force for the I-beam is  
 

max
max

y x

x

V Q

I d
  . 

 
For the selected beam we determine the first moment of a half of the 

section about the neutral axis  292xS  сm3, 7780xI  сm4, and the wall 

thickness 65,0d  сm.  

 

From the diagram we have 
4max 82,5y yV V   кN.  

Whence 
 

max
max

82,5 292
4,76

7780 0,65

y x

x

V Q

I d
 

  


 кN/сm2   8   кN/сm2, 

 

i.e, the strength condition by shear stresses is satisfied. 
______________________ 
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