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Nikolai Mikhailovich Belyaev
(1890—1944)

Nikolai Mikhailovich Belyaev occupied a leading position among 
eminent Soviet scientists who worked on the technical application oT 
theory of elasticity and strength of materials and structures.

After graduating from the St. Petersburg Institute of Railway Engi
neering in 1916, Nikolai Mikhailovich Belyaev was invited to stay at 
the Strength of Materials Department, where he worked under S. P. Ti
moshenko.

Nikolai Mikhailovich Belyaev was associated with this institute 
(now the Leningrad Institute of Railway Engineering) throughout 
his life. At the institute he taught subjects like engineering structures, 
bridges, theoretical mechanics, strength of materials and theory of 
elasticity, and from 1924 to the end of his life was Head of the Strength 
of Materials Department.

All his life Nikolai Mikhailovich Belyaev was a leading engineer 
and research worker. He was the first to formulate and solve the prob
lem of stability of prismatic bars under variable axial loading—a 
problem interesting from the theoretical aspect and important from 
the point of view of applications. Simultaneously, Nikolai Mikhailo
vich Belyaev worked on the problem of local stresses in bodies in conlact 
under compression. Here he considerably developed the works of Hertz. 
The work first published by Nikolai Mikhailovich Belyaev in 1924 has 
completely retained its value to this day.

In the Soviet Union Belyaev was one of the first to undertake the 
study of the theory of plastic deformation, and he contributed a lot 
towards the development of this field.

Nikolai Mikhailovich Belyaev spent the last years of his life in 
fruitful research on problems of creep and relaxation of metals under 
high temperatures.

Nikolai Mikhailovich Belyaev was a rare talent who successfully 
combined theory with experimental research. In 1924 he took over as 
Head of the mechanical engineering laboratory of the Leningrad In
stitute of Railway Engineering, and in the course of 16 years of admi
nistration changed the laboratory into a leading scientific research 
centre.

New technical specifications ensuring long and reliable performance 
of rails were compiled as a result of the research conducted at the 
laboratory under the guidance and with direct participation of Niko
lai Mikhailovich Belyaev. These specifications with minor additions 
are in force to this day.

Research done by Nikolai Mikhailovich Belyaev in the field of 
technology of concrete won wide acclaim all over the Soviet Union.
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The pedagogical activity of Nikolai Mikhailovich Belyaev was not 
restricted to the Leningrad Institute of Railway Engineering. He 
worked at the Leningrad Technological Institute (1919-1926), Lening
rad Institute of Civil Aviation (193M934), and from 1934 onwards 

was Head of the Strength of Materials Department at the Leningrad 
Polytechnical Institute—the biggest institute in the country.

In 1939 Nikolai Mikhailovich Belyaev was elected Corresponding 
Member of the USSR Academy of Sciences, and from 1942 occupied 
the post of Deputy Director of the Institute of Mechanics of the Aca
demy of Sciences of the USSR.

His book Strength of Materials has won wide recognition in the



Preface
to the Fifteenth Russian Edition

The new edition of Strength of Materials by N. M. Belyaev has 
been published after II years. In 33 years that lapsed between the 
publication by N. M. Belyaev of the first edition in 1932 and the last 
fourteenth edition in 1965 a total of 675 000 copies of the book were 
sold, testifying to its wide popularity. During this period the book was 
periodically enlarged and revised by N. M. Belyaev and, after his 
death in 1944, by a group of four of his co-workers. This group, which 
prepared from the filth to the fourteenth editions for publication, did 
not consider it proper to make substantia] changes in the original 
work of N. M. Belyaev. Additions were done at one time or another 
only when they became absolutely necessary due to changes in stan
dards and technical specifications and in the light of recent research.

In the present edition, prepared by the same group, a number of 
topics have been dropped either owing to their irrelevance to strength 
of materials or because they are rarely taught in the main course. The 
topics that have been dropped include Contact Stresses, Riveted Beams, 
Reinforced Concrete Beams, Approximate Methods for Calculating 
Deflection of Beams, Beams on Elastic Foundation, Design of Thin- 
wailed Bars, all graphical methods, and a part of Complicated Prob
lems of Stability Analysis, the other part of the last topic being pre- 
sented in an abbreviated version. The reader may refer to the earlier 
editions of this book or special monographs in case information is 
required on these topics.

Considering the availability of a large number of problem books 
(see, for instance, Problems on Strength of Materials edited by V. K. Ka- 
churin) on the market, most of the examples have been dropped from 
the present edition. Only examples that are essential for the explana
tion of theoretical part have been retained.

For greater compactness the problem of design for safe loads has 
now been included in Chapter 26 For the first time the chapter inclu
des the principles of design for limiting states, which though beyond 
the limits of the basic course of strength of materials are important 
enough to require an exposition of the basic concepts even at this stage 
of teaching.

The problems of strength, which in the previous editions occupied 
two chapters, have been grouped into one. The part dealing with actual 
stresses has been transferred to Chapter 2, where it has been presented 
in a sufficiently detailed manner.

The tables containing data on materials have been dropped from the 
appendices. A part of the data on materials has been transferred to
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corresponding sections. The obsolete steel proliles grading has been 
replaced by new ones.

As in the previous editions it was our endeavour to preserve Belyaev’s 
style and method of presentation of material. Therefore the author's 
text has in general been preserved. If Nikolai Mikhailovich Belyaev 
were alive today he would possibly write many things in a different 
way. However, since the book won wide popularity as written by
N. M. Belyaev, we tried to preserve the original text as far as possible.

The work involved In preparing the fifteenth edition for publica
tion was distributed among the group as follows: Chapter 13, § 80 
of Chapter 14, Chapters 15-19, 24-25—L. A. Belyavskii; Chapters 6, 
8*12, 27-28-*-Ya. I. Kipnis; Chapters 1-5, 26 and appendices—N. Yu. 
Kushelev; Chapter 7, § 79 of Chapter 14, Chapters 20-23, 29-32— 
A- K. Sinitskii.

March 1976
A . /(. Sinitskii
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PART I
Introduction. 

Tension and Compression

CHAPTER 1

Introduction

§ 1. The Science of Strength of Materials

In designing structures and machines, an engineer has to select the 
material and the cross-sectional area of each element of the structure 
or machine so that it enables the element to have strength to resist 
external forces transmitted to it by adjacent elements of the structure 
without failure of strength or distortion of shape, i. e. the element 
should function properly. Strength of materials provides the engineer 
with fundamentals for a proper solution of this problem.

Strength of materials deals with the behaviour of various materials 
under the action of external forces and points out how to select the 
appropriate material and the cross-sectional area of each element of 
the structure so as to prpyide fully reliable functioning and the most 
economic design.

Sometimes, strength of materials has to deal with the problem in a 
modified form—to check the dimensions of a designed or existing 
structure.

The conditions for maximum economy in design and reliability of 
functioning are contradictory. The former demand minimum consump
tion of materials whereas the latter lead to increase in consumption. 
This contradiction forms the basis of the technique, which has facili
tated the development of strength of materials.

Often the existing methods of checking the strength and the availab
le materials are unable to meet the practical requirements for providing 
answers to new problems (for example, attaining high speeds in engi
neering in general and in aerostatics in particular, long-span structures', 
dynamic stability, etc.). This initiates a search for new materials 
and study of their properties, and inspires research for improving the 
existing methods of designing and devising the new ones. Strength of 
materials must keep pace with the general development of engineering 
and technology.
2-3310
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Sometimes, besides the chief requirements of maximum reliability 
and economy, an engineer has to ensure fulfilment of other conditions 
too, such as quick building (when restoring broken structures), mini
mum weight (in aircraft design), etc. These conditions influence the 
dimensions, the shape and the material of the various elements compris
ing the structure.

The emergence of strength of materials as a separate science dates 
back to 162® and is intimately connected with the works of Galileo 
Galilei, the great Italian scientist. Galileo was a professor of mathe
matics at Padua. Me lived in a period which saw the disintegration of 
the feudal system, the development of trade capital and international 
maritime transport,and thebirth of mining and metallurgical indus
tries.

The rapid economic developments of those times called for speedy 
solutions of new technological problems. Increase 'in international 
maritime trade perpetuated the need for bigger ships which in turn 
entailed changes in their design; at the same time it became necessary 
to reconstruct the existing and to build new internal waterways, in
cluding canals and sluices. These new technical problems could not be 
solved by simply copying the existing designs of ships; it became 
necessary to judge the strength of elements keeping in mind their size 
and the* forces acting upon them.

Galileo devoted a considerable part of his work to the study of the 
dependence between the dimensions of beams and bars and the loads 
they could withstand. He pointed out that the results of his experiments 
may prove very useful in building big ships, especially in strengthening 
the deck and covering because low weight is very important in struc
tures of this type. Galileo’s works have been published in his book 
Discorsi e Dimoslrazioni Maiematiche . . . (“Dialogue on Two New 
Sciences . . . ”) (1638, Leiden, Holland).

Further development of strength of materials went on in step with 
the progress of mechanical and civil engineering, and materialized 
owing to the research work done by a large number of eminent scien
tists, mathematicians, physicists and engineers. Russian and Soviet 
scientists occupy an important place amongst them. Brief informative 
sketches about the role played by individual scientists in the develop
ment of some problems of strength of materials are given in correspond
ing chapters of the book.

§ 2. Classification of Forces Acting on Elements 
of Structures

When in operation, the elements of structures and machines are 
subjected to external loads, which they transmit to one another. A dam 
bears its own weight and the pressure of water that it holds and trans
mits these forces to the foundation. The steel trusses of bridges take
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the weight of the train through the wheels and rails and transmit it to 
the stone supports, and the latter, in turn, communicate this load to 
the foundation. The steam pressure in the cylinder of a steam engine is 
transmitted to a piston rod. The pulling force of the locomotive is 
transmitted to the train through a coupler which connects the tender 
with the wagons. Hence, the elements of structures are subject to either 
volume forces acting on each element of the structure (dead weight) or 
forces of interaction* between the element under consideration anti 
adjoining elements or between the element and the surrounding medi
um (water, steam or air). In future, when we say that an external force 
is being applied to an element of the structure, this will imply the 
transmission of force of pressure (motion) to the element under consid
eration from adjoining elements of the structure or the surrounding 
medium.

The forces may be classified according to a number of criteria.
We distinguish between the concentrated and distributed forces.
A concentrated force is defined as the force of pressure transmitted to 

the element of structure through an area which is very small as compa
red to the size of the element, for example, the pressure of the wheels 
of a moving train on the Tails.

In practice the concentrated force is considered to be acting at a point 
owing fo the small area through which the pressure is transmitted. 
We must keep in mind that this is an approximation which has been 
introduced to simplify the calculations; actually, no pressure can be 
transmitted through a point. However, the error due to this approxi
mation is so small that it may be generally ignored.

A distributed force is defined as the force applied continually over a 
certain length or area of the structure. A layer of sand of uniform thick
ness spread over the sidewalk of a bridge represents a force which is 
uniformly distributed over a certain area; if the thickness of the sand 
layer is not uniform we shall obtain a non-unifornily distributed load. 
The dead weight of a beam in the ceiling represents a load distributed 
over its length.

The concentrated loads are measured in units of force (tons, kilog
rams, newtons **); the loads distributed over an area are measured in 
terms of force per unit area <tf/m*. kgf/cm*, N/m*, etc.); the loads 
distributed along the length of an element are expressed as force per 
unit length (kgf/m, N/m, etc.).

The loads may further be classified as permanent and temporary. 
The permanent loads act throughout the whole life of Ihe structure, 
e.g. dead weight. The temporary loads act on the structure only for a

* To be precise, the weight of a body is the force of interaction between the 
body and the earth.

** In the SI system, which is now preferred and recommended, the force is mea
sured In newtons (1 N«0.102 kgl).

2*
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certain period of time—the weight of the train moving along the bridge 
may be cited as an example.

According to the nature of action, the loads may be classified as 
static and dynamic.

Sialic loads act on the structure gradually, after being applied to the 
structure they either do not change at all or change insignificantly; 
the majority of loads acting in civil and hydraulic structures are of 
this nature. Under the influence of static loading all elements of the 
construction remain in equilibrium; accelerations in the elements of 
the structure are either totally absent or so small that they may be 
neglected.

If, however, the acceleration is considerable and the change in 
velocity of the machine or structure takes place in a short time, the 
load is known as dynamic.

The examples of dynamic loads are suddenly applied load, impact 
load and repeated variable load.

Suddenly applied loads are transmitted instantaneously in their 
total magnitude. An example of this type of loading is the force of 
pressure of the wheels of a locomotive when it enters a bridge.

Impact loads appear when there is a sharp change in the velocity of 
adjoining elements of a structure, for example the impact of drop 
hammer during pile driving.

The repeated variable loads act on the elements of structures for a 
considerable number of limes. For example, repeated steam pressure, 
alternately stretching and coinpressing the piston rod and the connect
ing rod of the steam engine. In a number of cases the load represents 
a combination of dynamic loads of different nature.

We shall first of all study the resistance of materials to static loads; 
the selection of material and cross-sectional area for each element of 
the structure does not present many difficulties in this case.

In Chapters 29-31 we shall discuss the action of dynamic loads in a 
number of instances which occur as often as static loads; they require 
careful study because their effect on the elements of structures differs 
from that of static loads, and the material also resists them in a differ
ent manner.

Concluding the classification of forces acting on the elements of 
structures, let us consider the action of parts which support these 
elements; the forces acting on these supports are known as the reaction 
forces—they are unknown quantities and are determined from the 
condition that each element of the structure must remain in equilib
rium under the action of all the external forces applied to il and the 
reaction forces.
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§ 3. Deformations and Stresses

In theoretical mechanics (statics) we study the equilibrium of a 
perfectly rigid body; this concept of material in statics is sufficient to 
determine the conditions in which the body will remain in equilibrium 
under the action of external forces applied to it. However, this rough 
and approximate concept of the properties of materials does not hold 
good in strength of materials; here we must take into account the fact 
that there does not exist a perfectly rigid body.

The elements of a structure, as well as the structure as a whole, 
change their dimensions and shape to some extent under the action of 
external forces and are I iable to complete failure in the end. This change 
in shape and size is called deformation.

The magnitude and nature of the deformation depend uponthestruc- 
ture of the material used. All materials may be divided into two 
groups: crystalline and amorphous.

Crystalline materials consist of a very large number of extremely smalt 
crystals. Each of these is a system of atoms arranged very close to each 
other in regular rows. These rows form the so-called crystalline lattice. 
In amorphous materials the atoms are not arranged in a particular 
order. Thev are held in equilibrium by the forces of interaction. The 
deformation of bodies takes place due to change in the location of 
atoms, i.e. due to their getting closer or farther.

Deformations are divided into elastic and plastic. Elastic deformation 
disappears when the force causing the deformation is removed; in 
this case, the body completely regains its initial shape and dimensions. 
This deformation occurs due to elastic distortion in the crystalline 
lattice. It has been experimentally observed that the elastic deforma
tion continues till the forces being applied do not exceed a certain limit.

If, however, the external force exceeds this particular limit, the 
body fails to regain completely its initial shape and size after the 
force is removed; the difference in size which thus remains is called 
the plastic (residual) deformation. In crystalline materials, this defor
mation is caused by the irreversible displacement of one layer of 
crystalline lattice with respect to the other. After the removal of exter
nal forces the displaced layers of atoms retain their position.

In deformation, the displacement of atoms under the action of exter
nal forces is accompanied by a change in the forces of interaction 
between the atoms, i.e. the forces of attraction and repulsion.

Additional internal forces accompanying the deformation appear in 
the elements of structures under the action of external forces. These 
internal forces resist the external forces and try to prevent them from 
breaking the element, changing its shape or separating one part from 
the other. They try to regain the initial shape and size of a deformed 
part of the structure. In order to assess the effect of the external forces 
on the deformed element, we must know how to measure and calculate
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the interatomic forces that appear as a result of the deformation caused 
by the action of external forces.

In strength of materials this is achieved by the method of sections, 
which we shall try to explain by the following example. Lei us imagine 
a bar (Fig. 1), which is subjected to the action of two equal and oppo
site forces, P, and let us imagine that the bar is cut in two parts /

/ m I
— -fei---------- -Ci- f

Fig. 1

and II  by a plane mn. Under the action of forces P both halves of the 
bar tend to go apart, but are held together owing to the forces of inte
raction between the atoms located on both sides of plane mn. The 
resultant of the forces of interaction is the internal force transmitted 
through mn from one half of the bar to the other, and vice versa. The 
internal force of interaction per unit area around any point of section 
mn is called the stress at the point of the given section. The stresses 
acting from part II on part I and from part I on part II  are equal 
in magnitude according to the law of action and reaction.

A number of planes dividing the bar in two parts in different ways 
can be drawn through a single point of the bar. The magnitude and 
direction of the stresses transmitted through the given point from one 
part of the bar to the other will depend upon how the plane cuts the 
bar.

Thus, it is wrong to speak of stresses without indicating the plane 
through which they are being transmitted. Therefore we speak about 
“the stress on a particular area in a particular plane”. Since stress is a 
force per unit area, it is measured in kgf.'cm*, kgf/mni*, tf/cma, tf/ms, 
N/m4, etc.

In future, we shall denote stress by letters p, a, and x; letter p is 
used for stresses applied to certain area in any plane inclined at an 
arbitrary angle, <j denotes stress at right angles lo the plane, i.e. normal 
stress, and t  denotes stress in the plane, i.e. shearing stress.

The stress at any point is the measure of internal forces which appear 
in the material owing to its deformation under the action of external 
forces. The force transmitted from part I of the bar to part II  (see 
Fig. 1) holds part II in equilibrium, i.e. counterbalances thesvstem of 
external forces acting on part II. This force may be expressed in terms 
of the stress to be determined: if we consider an elementary area dA 
in the plane of cutting, then the elementary force acting on this ele
mentary area will be p dA, where p is the stress at the point around 
which the elementary area is located. The sum of these elementary 
forces gives us the total force transmitted through the particular plane.
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Thus, to determine the stresses, it is necessary to imagine the ele- 
ment to be cut in two parts and write down the conditions of equilib
rium for the system of forces acting on one of the cutoff parts; this 
system includes the external forces applied to the part of the bar under 
consideration and also the force transmitted through the given plane 
and expressed in terms of stresses sought. This is the method of sec
tions, which we shall constantly apply in future.

Let us point out, that, in strength of materials, Ihe term "stress’* 
is verv often used instead of the expression “internal forces of interac
tion between parts of the bar”; therefore in future when we mention 
“uniform and non-uniforin distribution of stresses over the section” 
and “force as the sum of stresses”, we must bear in mind that these 
expressions are to a certain degree conventional. For example, to deter
mine the force one cannot sum up the stresses at various points; as 
mentioned above, it is necessary to find at each point of section the 
elementary force which is transmitted through an elementary area dA 
and then sum up ail these values. Recapitulating what has been writ
ten above, we come to the conclusion that when an external force is 
applied to an element of structure, the latter gets deformed and the 
deformation is accompanied by stresses in the element.

Strength of materials studies, on the one hand, the relation between 
the external forces and, on the other hand, the deformations and 
stresses due to them. This enables the engineer to solve the important 
problem of selecting a bar of proper dimensions and appropriate mate
rial to resist the external forces. In the next section we shall give an 
outline of the solution to this problem.

§ 4. Scheme of a Solution of the Fundamental Problem of Strength 
of Materials

While selecting the size and material for an element of the structure 
we must provide for a certain safety factor against its failure and plas
tic deformation. The element should be designed so that the maximum 
stresses that occur during its operation should always be less than the 
stresses at which the material fails or undergoes plastic deformation.

The stress at which the material fails is called the ultimate (tensile) 
strength; we shall denote it with the same letter as stress but with 
subscript u. The stress beyond which the material deforms insigni
ficantly and only up to a predetermined value is known as the elastic 
limit* -These quantities are known as the mechanical characteristics 
of resistance of materials to failure and plastic deformations. To ensure 
the smooth functioning of the structure without a risk of failure, we 
must see to it that the element is only subjected to stresses which are 
less than its ultimate strength.

* Ultimate strength and elastic limit will he more precisely explained in § 10-
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The permissible stress is denoted by the same letter but is put in 
square brackets; it is related to the ultimate strength pu by the fol
lowing expression:

[P] aa£5Ek

where & is t he safety factor wh ich shows how many times the permissible 
stress is less than the ultimate (tensile) strength. The value of this 
factor varies from 1.7-1.8 to 8-10 and depends upon the operating con
ditions of the structure. It will be discussed in greater detail in §§ 16 
and 17.

Denoting by pmax the maximum stress that appears in the designed 
element under the action of external forces, we may write the basic 
condition, which the size and material of the element must satisfy, as 
follows:

Pmax ^ [P ]  (1 • 1)

This is the strength condition, which states that the actual stress must 
be not greater than the permissible.

Now we may compile the plan for solving the problems of strength 
of materials as follows.

(1) Ascertain the magnitude and nature of all the external forces, 
including the reactions, acting on the element under consideration.

(2) Select an appropriate material that is most suitable in the 
working conditions of the element (structure) and the nature of loading; 
determine the permissible stress.

(3) Set the cross-sectional area of the element in numerical or algeb
raic form, and calculate the maximum actual stress pmax which deve
lops in it.

(4) Write down the strength condition pmax̂  fp] and with the help 
of it calculate the cross-sectional area of the element or check whether 
the set value is sufficient.

The plan of solution of problems in strength of materials is sometimes 
altered; in some structures Ihe safety factor for the whole structure 
is found to be greater than that for the material in the point of great
est stress. If the limiting lifting capacity of the material is exhausted 
at this point, this does not necessarily mean that the limiting lifting 
capacity of the whole structure has also been reached. In such cases, 
the strength condition p ^ ^ l p l  is replaced by the strength condition 
for the structure as a whole:

here P is the load on the structure, Ppcr is its permissible value, and 
P u is the limiting force which the structure can withstand without brea-
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king down. Thus, the design based on permissible stresses is replaced 
by the design based on permissible loads.

In this case, it is necessary to:
(1) ascertain the magnitude and nature of all the external forces, 

acting on the given element;
(2) select the appropriate material that is most suitable in the 

working conditions of the structure and also takes into considera
tion the nature of loading; determine the safety factor;

(3) set the cross-sectional area of the elements of structure in nume
rical or algebraic form, and calculate the maximum permissible 
load P ^r\

(4) write clown the strength condition P^Pper and with its help 
calculate the cross-sectional area of the elements of structure or 
check whether the set dimensions are sufficient.

In a number of cases, as we shall see later (§ 150), both methods give 
similar results.

In general, we shall be using the conventional method of design 
based on permissible stresses; however, along with this, the method 
of design based on permissible loads will be explained, especially in 
cases where the two methods give dissimilar results.

In the majority of cases the strength condition must be supplement
ed by stability and rigidity tests. The first test ensures that the 
elements of structure must not change their predetermined type of equil
ibrium, and the second test sets limits to the deformations of elements.

While solving problems on strength of materials, we have to take 
the help of theoretical mechanics and experimental techniques. The 
determination of external forces is based on equations of statics; in 
statically indeterminate structures, it is essential to determine the 
deformation of the material. This, as shown in § 18, is possible only 
if we have reliable experimental data on the relation between deforma
tions and forces or stresses.

To estimate the permissible stresses we must know the ultimate 
strength of the material and its other mechanical properties. This 
information can also be obtained by a study of the properties of mate
rial in special material testing laboratories. Finally, to determine actu
al stresses we seek the help of not only mathematical analysis and mech
anics but also the available experimental data. Thus strength of ma
terials consists of two methods of solving a problem: analytical, based 
on mathematics and mechanics, and experimental. Both these methods 
are closely interrelated.

Strength of materials should not be considered a branch of science 
which deals only with theoretical determination of stresses in some 
homogeneous elastic body. The problems studied in strength of mate
rials can be solved only if we have sufficient experimental data on the 
mechanical properties of real materials, keeping in mind their struc
ture, methods of fabrication and machining. Therefore, we have paid
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considerable attention to this aspect in our book. Experiments play 
an important role in the understanding of a subject and must be car
ried out by the students along with their theoretical studies. These 
experiments, worked out on the basis of facilities and equipment 
available in the strength testing laboratories, have been presented in a 
separate manual.*

Although at the very outset strength of materials was identified 
with the necessity for solving a number of purely practical problems, 
its further development was more on the theoretical side, resulting at 
times in discrepancies between the outcome of experimental investi-

P-*" ( q  ^ — *-P
la}

gat ions and their practical application. Laboratory research went along 
a special path, chiefly to set the acceptable standards for various types 
of materials. Now strength of materials studies real materials in 
accordance with their operation in structures accentuated by intensive 
experimental and theoretical investigations for solving developing 
day-to-day practical problems. These problems, for example, are those 
connected with the study of the strength of new materials, conditions 
pertaining to their failure, determination of stresses not only within 
the limits of elasticity but also beyond them, etc.

• N. M. Belyaev, Laboratory Experiments in Strength of Materials, Qostekhiz- 
dat, 1U51 (in Russian).
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§ 5. Types of Deformations

Having accepted a general method of solving problems of strength 
of materials, we may now go over to studying individual problems. 
These may be divided into a number of groups depending upon the 
type of deformations.

The common types of deformations (Fig. 2) are: (1) tension or com
pression, (o) and (/;), as in chains, ropes, cables, bars of trusses working 
under tension or compression, columns; (2) shearing (c)t as in bolts 
and rivets; (3) torsion (d), as in shafts; (4) bending (e), as in beams of 
all types. These four types of deformations are called simple deforma
tions.

The operation of elements in structures is generally more complex; 
they are subjected to two or more types of deformations simultaneously, 
for example, tension or compression and bending, bending and torsion, 
etc. These are cases of the so-called composite deformation. For each of 
the abovementioned types of deformations, we shall find out methods 
for determining the stresses, selecting the material and cross-section
al area of the elements and determining the magnitude of deformation.

To make it easy for the reader to understand, initially we shall 
consider only (hose elements of structures and machines which are in 
the form of prismatic bars with a straight axis. A body which has a uni
form cross-sectional area ail along its length may be considered a 
prismatic bar. The centres of gravity of all the sections of the body lie 
on one straight line, which is called the axis of the bar. Later on we 
shall also consider bars with a non-uniform cross-sectional aiea and 
curved axis.

CHAPTER 2

Stress and Strain in Tension 
and Compression Within the Elastic Limit.

Selection of Cross-sectional Area

§ 6. Determining the Stresses in Planes Perpendicular to the Axis 
of the Bar

We shall start the study of strength of materials with the simplest 
case of tension or compression of a prismatic bar.

Axial tension or compression of such a bar is its deformation under 
the action of two equal and opposite forces applied at the end faces of 
the bar along its axis. If these forces are directed outwards, the bar is
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said to be under tension (Fig. 3a); in the opposite case, under compres
sion (Fig. 3l>).

According to the general method of solving problems of strength of 
materials, we must first determine the magnitude of the external forces 
P  stretching (compressing) the bar. The value of force P  can usually 
be determined by considering the interaction of the bar with the other 
elements of the structure.

la) m
Fig. 3

As a simple example, consider a round steel coupler threaded at the 
ends and loaded by axial tensile forces P = 25 tf (Fig. 4). Our task is to 
select the cross-sectional area of the shaft which provides sufficient 
strength. It is required to find out the stresses due to forces F, deter-

--------- —

Fig. 4

mine the permissible stress and select the cross-sectional area in such a 
way that the actual stress does not exceed its maximum permissible 
value.

To determine the stresses, it is essential to select the planes by which 
the bar is to be cut into two parts. Strength should be checked in the 
critical section, i.e. in the section through which the maximum stress 
is transmitted. We shall first derive formulas for determining stresses 
in a plane perpendicular to the axis of the bar, and later on in inclined 
planes too; we will thus be in a position to find the critical section.

.7

Fig. 5 Fig. 6

Let us take a stretched bar and cut it in two parts by a plane nrn 
(Fig. 5), perpendicular to the axis of the bar. Let us discard the second 
part; lo retain the equilibrium of the first part, we must replace the 
discarded part by the forces transmitted through section mn (Fig. 6).
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The equivalent forces must balance force P. Therefore they must 
compose a resultant force N equal in magnitude to force P and directed 
along the axis in the opposite direction (Fig. 6). This resultant N 
is the force acting in the bar.

In future the resultant of internal elastic forces, transferred from 
one part to the other across the imaginary section, will be called normal 
or axial force. However, since the cutoff portion of the bar must remain 
in equilibrium under the action of the normal force and the external 
forces acting on it, the normal force may also be calculated through 
the external forces. It is numerically equal to the resultant of external 
forces applied to the part of the bar under consideration and acts 
in the opposite direction. If the normal force acts inwards into the 
part under consideration, the bar is said to be compressed; if it acts 
in the opposite direction, the bar is said to be in tension.

Thus, the conditions of equilibrium of the remaining portion of the 
bar only give us the magnitude of the resultant of the internal forces 
transmitted through section mn, its direction and point of application. 
They, however, do not give us any idea of how the stresses are distri
buted over the section, i.e. what forces are being transmitted through 
various unit areas of the section. Let us point out that to ascertain the 
maximum danger of failure of a material, it is essential to determine 
the maximum stress and also the unit area of the critical section 
through which it is transmitted.

Experiments on tensile loading of bars of various materials reveal 
that if the forces are directed along the axis sufficiently accurately, 
then the elongations of lines drawn on the surface of the’ bar parallel 
to the axis are equal. This gives rise to the hypothesis or uniform 
distribution of stresses over the section. Only at the faces of the bar, 
where force P is directly transmitted to it, the distribution of stresses 
over different parts of the section is not uniform. The portions to which 
force P is applied directly gel overloaded; but just a small distance 
aw'ay from the point of application of the force the material starts 
behaving more uniformly and stress distribution over the section 
perpendicular to the axis becomes uniform. These stresses are directed 
parallel to force P, i.e. perpendicular to the section; therefore they 
are called normal stresses and denoted by the letter o. Since they are 
distributed uniformly over the section, N=oA\ on the other hand, 
N —P. Hence

o —£
A (2. 1)

This formula enables us to determine stress cr if the tensile force and 
the cross-sectional area are known. On the other hand, if ure know the 
maximum permissible normal stress, this formula helps us to find the 
required cross-sectional area A.
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§ 7. Permissible Stresses.
Selecting the Cross-sectional Area

To ascertain the permissible stress limit for proper functioning 
of a bar of the given material, we must experimentally establish the 
relation between the strength of the bar and the stresses that appear 
in it. For this, it is essential to prepare a specimen (usually of a round 
or rectangular cross section) of the given material, clamp its ends in a 
machine for tensile loading and gradually increase the tensile force P. 
The specimen will stretch and ultimately break down.

Let Pu be the maximum load which the specimen can sustain before 
rupture. The normal stress due to this load is

and is called the ultimate (tensile) strength of the material under tension. 
It is usually expressed in the units kgf/mm* or kgf cm*.

As pointed out earlier in § 4, the maximum permissible normal 
stress l<rl is several times less than the ultimate strength ou; the per
missible stress is obtained by dividing the ultimate strength by the 
safety factor k. The value of k depends upon a number of factors, which 
shall be discussed in detail later on (§ 16). At any rate, the value of 
the safety factor must ensure not only the normal working of the ele
ment, i.e. working without failure, but also prevent the formation of 
plastic deformations which may afTect the working of the machine or 
structure. The safety factor depends upon the material of the element, 
nature of the forces acting on the element, economic conditions and a 
number of other factors.

In view of the importance of properly selecting the safety factor and 
the permissible stress, these quantities have been standardized Tor a 
large number of structures and machines, and must be strictly followed 
by the designers. Hence, the permissible stress |<xl may be considered 
in each case a known quantity. Therefore, to determine the cross- 
sectional area of a stretched bar one may, using formula (2.1), write 
down the strength condition', this condition states that under the action 
of a force P , the actuat stress in a stretched bar must not exceed the 
permissible stress lal:

(2-2)

From this condition the minimum cross-sectional area of the bar 
may be determined as

With the help of formula (2.3), one can select the cross-sectional area 
of the bar.
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Sometimes the cross-sectional area is preset. Then, from formula
(2.3) we can find the permissible load

P < A [ a ]  (2.4)
Returning to the design of the wagon coupler (§ 6, Fig. 4), it Is 

required to select the material and the permissible stress. The coupler 
is made of steel with an ultimate strength of about 50 kgf/mm*. The 
material is selected such that the coupler is not too heavy, this condi
tion being fulfilled only by using a high-strength material. At the same 
time, the material should have good resistance to shocks and impacts 
A steel of a very high ultimate strength cannot be used because it is 
brittle.

The coupler should not only withstand fracture but also resist any 
noticeable plastic deformation to prevent jamming of the coupler 
thread. The elastic limit for the selected steel is approximately 0.6 
times its ultimate strength cr«. We shall see later that the stress under 
sudden loading is nearly twice its value under static loading, i.e. its 
value as determined Under laboratory conditions. The permissible 
stress should therefore not exceed

0.5x0.6afl =  0.3(TB
Hence, the safely factor

Therefore, in this case we may take the permissible stress 

[oj =  Y' =  0.3a„ =  5 0 x 0 .3 =  15 kgf/mm* =  1500 kgf/cma

The required cross-sectional area at P=25 tf is
. ^  _P__ 25 000

H ^  [ o \ ~  1500 16.7 cras

The diameter of the coupler d is computed from the condition
nd*

4 A 5 s 16.7

wherefrom
Y -4 .55cm  * 4.5cm

The calculated diameter corresponds to Ihe base of the thread with 
the minimum cross-sectional area. When the cross-sectional area of 
the bar is decreased in a particular place, for example due to a bolt or a 
rivet hole, a circular cut or a groove (threading), it is essential to de
termine the minimum cross-sectional area, called net area and denoted
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by /4nct or An. The cross-sectional area without weakening is called the 
gross area and denoted by /lgt0„ or ARr Having computed the net 
area A„, we can obtain the gross area A„ from design considerations.

The formulas derived above are valid for tension. They can be used 
for compression as well without any changes. The difference will be 
in the direction of normal stresses and the magnitude of ^perm issible 
stress Iql. The compression of bars is more complex in that the bar may 
become unstable, i.e. it may suddenly bend. Designing for stability 
will be discussed in Part VIII.

Figure 7 shows normal distribution in a section perpendicular to the 
axis of the bar for tension and compression. For a number of materials 
(e.g. steel) the permissible stress value is the same in tension and com-

Tension

IS r
Compression

— r - $ er S

P

P

Fig. 7

pression (for short bars, i.e. bars in which the length does not exceed 
five times the diameter of cross section). In other materials (e.g. cast 
iron) the permissible stress is different in tension and compression, 
depending upon the ultimate strength for the recorded deformations.

In a number of cases, compressive stresses are transmitted from one 
element of construction to another through a comparatively small area 
of contact between them. This type of stress is generally called the 
bearing, or contact stress. Stress distribution around the area of contact 
is very complex and can be analyzed only by methods of the theory 
of elasticity. Usually, in simple designing, these stresses are considered 
as compressive stresses and a special permissible stress limit is fixed. 
Later on the question of selecting permissible stresses in special cases 
will be dealt with in greater details.

§ 8. Deformations Under Tension and Compression.
Hooke's Law

To have complete idea about the working of a stretched or compressed 
element, it is essential to know ways of calculating the change in its 
dimensions. The corresponding laws can be obtained only on the basis 
of experiments with a stretched or compressed specimen of the given 
material; these experiments also help to study the strength of the ma
terial and determine its ultimate strength and other characteristics 
(§ 10).
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These experiments are conducted in the laboratory on special ma
chines which deform the specimen till it breaks down and measure the 
force required for this purpose.

Simultaneously, the deformation of the specimen is measured* with 
the help of sufficiently accurate measuring instruments — strain 
gauges (tensometers). The testing machines are capable of applying a 
sufficiently large load on the specimen and accurately measure the 
same. Whole parts of structures (columns, portions of walls) can be 
tested for compression-on presses having a capacity of up to 5000 tf. 
Tension test can be conducted in- the laboratory on machines which are 
capable of exerting a tensile load of up to 1500 tf. However, in a ma
jority of the laboratories machines of considerably less capacity (from 
5 to 100 tf for tension test and 200 to 500 tf for compression test) are 
employed.

A detailed description of these machines and measuring instruments, 
particularly of the well-known Gagarin Press, is available in the book 
Laboratory Experiment in Strength of Materials, and also in special 
manuals, on mechanical testing of materials. With the help of these 
machines and measuring instruments one can establish how the mate
rial specimen will change its dimensions under tension or compression.

Experiments enable us to conclude that up to a certain limit of 
loading, the elongation is directly proportional to the tensile force P 
and length of the specimen I but inversely proportional to the cross- 
sectional area A. Denoting by M the elongation of the specimen due 
to force P, we may write down the following relation between these 
quantities:

A< =  £  (2.5)

where E is the proportionality factor which depends upon the material. 
Quantity Al is called the absolute elongation of the bar due to force P. 
Formula (2.5) is called Hooke's law after the scientist who founded 
the law of proportionality in 1660.

Relation (2.5) may be presented in a different form. Let us divide 
both sides of the relation by /, the initial length of the bar:

M p_ 
l ~  EA

The ratio 7  of the absolute elongation to the initial length I iscalled
the relative elongation (strain)-, it is denoted by the letter e.

Relative elongation is a dimensionless quantity, as it is the ratio 
between two lengths Al and / and is numerically equal to the elongation
pf a unit length of the bar. Replacing 7  by e and - j  by the normal
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stress a, we get another expression for Hooke’s law:

s = 4  (2 .6 )

or
o =  e£ (2.7)

Thus, the normal stress under tension or compression is directly 
proportional to the relative elongation or shortening of the bar.

Proportionality factor £ , which links the normal stress with the 
relative elongation, is called the modulus of elasticity of the material 
under tension (compression). The greater the modulus of elasticity of a 
material, the less the bar is stretched (compressed) provided all other 
conditions (length, cross-sectional area, force P) remain unchanged. 
Thus, in physical interpretation, the modulus of elasticity characteri
zes the resistance of a material to elastic deformation under tension 
(compression).

Since relative elongation e is dimensionless quantity, it follows from 
formula (2 .7) that the modulus of elasticity has the same units as stress 
a, i.e. it is expressed in units of force divided by area.

It should be noted that the modulus of elasticity £  does not remain 
constant even for one material, but varies slightly. In some materials 
the modulus of elasticity has the same value under tension and com
pression (steel, copper), in other materials it has different values for 
each of these deformations. In general this difference is ignored in de
signing, and for a vast majority of materials a single value of E  is 
accepted both for tension and compression.

It should be borne in mind that Hooke’s law has been represented by 
a formula which sums up the experimental data only approximately; 
it cannot therefore be considered an accurate relation.

In all materials the deformation under tension or compression more 
or less deviates from Hooke’s law. In some materials (most of the 
metals) this deviation is negligible and it may be assumed that there 
is exact proportionality between deformation and load; in other mate
rials (cast iron, stone, concrete) the deviation Is considerably greater.

However, for practical purposes we may ignore the small deviation 
from formulas (2 .5) and (2 .6) and use them as such in determining 
deformation of the bar.

The mean values of the modulus of elasticity E for a number of 
materials are given in Table I.

From formula (2.5) it is evident that the greater its denominator the 
less is the elongation (pliability) or, in other words, the greater is the 
rigidity of a bar. Therefore, the denominator of formula (2.5), the quan
tity EA, is called the rigidity of the bar under tension or compression. 
We see that the rigidity of a bar under tension or compression depends, 
on the one hand, upon the material (modulus of elasticity E) and, on
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Table 1

Modulus of Elasticity and Lateral Deformation Coefficient (Poisson’s Ratio)

Modulus of Coefficient of
Mnterln) elasticity £  lateral deforma-

(10* kgf.cm*) lion n

Iron grey, white
Carbon steel
Alloy steel
Rolled copper
Rolled phosphor bronze
Cold*dravt^i brass
Rolled naval brass
Rolled manganese bronze
Rolled aluminium
Rolled zinc
Lead
Glass
Granite, limestone, marble
Sandstone

(from granite 
Masonry: I from limestone 

(from brick
Concrete having ultimate 

strength'
Timber along the fibres 
Timber across the fibres

{100 kgf/cm 
150 kgf/cm 
200 kgf/cm

r - r c
Ice • at temperatures < —3BC

( ~̂5BC
and below

Rubber
Bakelite
Celluloid
Textoltte
Laminated Bakelite insulation 
Rigid polyvinyl chloride (PVC) 
Caprolan
High-pressure polyethylene 
Phenoplast 
Polycarbonate 
Plexiglas

1.15-1.60 0.23-0.27
2.0-2.1 0.24-0.28

2.1 0.25-0.30
1.1 0.31-0.34
115 0.32-0.35

0.91-0.99 0.32-0.42
1.0 0.36
i . l 0.35
0.69 0.32-0.36
0.84 0.27
0.17 0.42..
0.56 0.25

0.42-0 56 
0.18 

0.09-0.1 0.16-0.34
0.06 

0.027-0.030 
0.146-0.196 
0.164-0.214 )■ 0.16-0.18

0 .1-0.12 
0.005-0.01 

0.04 )
0.07 } rsO.36
0.10 j

0.00008 0.47
0.02-0.03

0.0174-0.0193 0.39
0.06-0.1
0.1-0.17

0.040 0.22-0.3
0.02-0.023 0.28-0.34

0.002-0.0025 0.40-0.46
0.15-0.20 0.22-0.27

0.022-0.024 0.24-0.28
0.028

* SN IP  1 1 -S 7 -7 5  (SN IP  sta n d s for C on stru ction  S p ecifica tio n s and  R e e u la tlo n s  [In the  
USSRJ).
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the other hand, upon its cross-sectional area A. Sometimes it is more
FAconvenient to use the term relative rigidity ---, i.e. the ratio of rigidity

to the length of the bar.
Formulas (2.5) and (2.6) enable us to determine the elongation or 

shortening in the bar of a structure under tension or compression. 
Conversely, knowing the elongation, dimensions and the material of 
the bar one may calculate the normal stresses acting in it. Thus, normal 
stress can be determined by two methods. If the tensile or compressive 
force P is known, a is calculated from the formula (2.1):

If the external force is not known but the elongation of the bar can be 
measured, a is determined from formula (2.7):

<j=e£

The relative elongation may be calculated according to the following 
formula if the total elongation A/ for a length I of the bar can be mea
sured:

We shall show later that the second method has to be employed very 
often to determine stresses in a number of cases.

§ 9. Lateral Deformation Coefficient. 
Poisson’s Ratio

Apart from longitudinal deformation, the bars working under ten- 
sick or compression are also subjected to lateral dcfcrmalion.

Experiments show that under tension (Fig. 8) the length of a bar 
increases by A/, whereas its width decreases by A6=(i>—h). The re
lative elongation

and the relative lateral deformation

«i
Ab 
b

In compression, the shortening of lh(! bar is its longitudinal deforma
tion ahd the increase in its cross-sectional area is the lateral deforma
tion. Ft has been experimentally proved that for a majority of the ma
terials £i is from 3 to 4 times less than e.



Ch. 2] Slress and Strain Within Clastic Limit 37

The modulus of the ratio of the relative lateral deformation e, to 
the relative longitudinal deformation e is called the coefficient of lateral 
deformation, or Poisson's ratio p:

ll K (2.8)

Like the modulus of elasticity £ , Poisson's ratio p is also characte
ristic of elastic properties of materials. For materials which have 
identical elastic properties in all directions, these properties can be 
completely characterized by constants £  and p. Such materials are 
called isotropic. With sufficient accu
racy as far as practical application 
is concerned, we may consider 
steel and other metals, most of the 
stones, concrete, rubber and non- 
laminate plastics as belonging to 
the group of isotropic materials.

In addition to the isotropic mate
rials, we also have anisotropic ma
terials, i.e. materials having dissi
milar properties in different direc
tions. To this group of materials 
belong wood, laminate plastics, 
some of the stones, cloth, etc. A 
single value of £  and p cannot char
acterize their elastic properties; it 
is essential to have a number of 
values of these constants in various directions.

For numerical determination of p, it is essential to measure simulta
neously the longitudinal and lateral deformation of a bar under tension 
or compression. Generally, these deformations are measured in stretch
ing a specimen in the form of a long and wide plate (metals), or 
for a prismatic specimen (stone) under compression.

The values of the coefficient of lateral deformation of various ma
terials are given in Table 1 for deformations within the clastic limits.

Knowing the value of p, we can calculate the change in the volume 
of the specimen under tension or compression. The length of the de
formed specimen is / ( I +&). The cross-sectional area of the deformed 
specimen is A (1—ep)2. The volume of the deformed specimen is

Vt =  Al (1 +  e) ( I —pe)a -  V (1 +  e) (1 — pe)*

Fig. 8

where V is the initial volume.
Since e is a negligibly small quantity up to the limit of proportiona

lity, we may ignore its square. Then volume V\ becomes
V , - V [ l + » ( 1- 2|»)]
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The relative increase in volume (volume strain) is

~ ^  =  e(l — 2^)

If Poisson’s ratio p=0.5, there is no change in the volume due to 
deformation. However, since p<0.5 for a majority of the materials, 
tension is accompanied by an increase and compression by a decrease 
in the volume. For rubber p«0.5, therefore there is almost no change 
in Its volume when it is stretched.

The lateral deformation that accompanies the longitudinal deforma
tion has great practical significance. More light will be thrown on this 
aspect in the succeeding discussion.

Let us consider the following example of applying the methods and 
formulas derived above.

Example. A load of Q=4 tf is suspended from bracket ABC, consist
ing of a wooden rod AC and an iron pull rod AB (Fig. 9). Pull rod AB

has a round section and rod AC a square section. Find diameter d of 
rod AB and sides a of the square section of rod AC if the permissible 
stress for wood is le . 1=25 kgf/cm2, for steel l<r+l=900 kgf/cm* ([a_] 
is the permissible stress under compression, Io+l is the permissible 
stress under tension); determine the vertical and horizontal displace
ments of point A. The length of rod AC is U=l m.

Forces A\ and AT* in rods AB and AC can be determined from the 
equilibrium condition of hinge A, at which the given force Q and the 
unknown forces N, and are applied.

By plotting the equilibrium triangle for these forces (Fig. 10), we get

AT,= =  2 Q = 8  tf

A = Q cot 30* =  Q1/3 =  6.93 tf
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The required cross-sectional areas of rods AB  and AC are
.  _  A', 8000__o oQ nrnz

^ ■ [ o f +] == 900 — 8 ^ 9  cm

a — 6930 077 a> - ^ 2 7 7 cm*

Diameter of rod AB is

d=  *(/ ^ | ^  =  3.34 cm « 3 . 4 cm

Side of the square section of rod AC is
a=V~Ai = Y  277 — 16.6cm «  17 cm

Both the values have been rounded—for the steel rod to the nearest 
mm, and for the wooden rod to the nearest cm.

To determine the displacement /  of point A, we disconnect the rods 
and represent them by their new lengths BAt and CAit Increasing and

decreasing their initial lengths by b li—AAi and &l2= A A s, respective
ly, without changing their direction (Fig. 11(a)). The new position of 
point A can be located by bringing together the deformed rods by rotat
ing them about points B and C. Points A t and A 2 will move along 
arcs A tAa and A 2A3t which due to their small length may be conside
red as straight lines, perpendicular to BAi and CA2. The horizontal 
displacement of point A will be

/a s  AAt =  A/j
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and the vertical displacement (Fig. 11 (&))
f  | =  AsA a =  "1" ̂ 4^3

The segment
AtAA — AAz — AfjSina

and

But

Therefore
AxA4 = A^Aj -f AtAt =  A/t cos a - f  A/a

1 A/ 1 cosa a —&lt cos «
sin aA^A 3 =  (A/, cos a  +  A./4) t#? -  

Consequently,
/, -  /!,/!. +  ̂ / l ,  -  A/,sin a + ^ c°s‘° + 41»eosct- *'■+*'! M»« '* * ■ * ' « *  1 sin a  sin a

Deformation of the rods is determined by the formulas 
a / Ajlj 0930X 100 <i 4 i rt_i _
A,> = s 3 ; = T w r 7 r = 2 -4 x 1 0  cm

A' i = r r1 t-iAi
mox  ioox2

2x!0«vH 4 ^ X ^ T
=  5.07x I0 ’ a cm

Hence the horizontal displacement of poipt A is /a= 0.24 mm, and the 
vertical displacement is

. • i . i 0 .507 rf-0 .24X ^s—r __ a\/i + A /s Cos a  ^  2 , ___
' I --------ilTTa------- --------- O ---------=5 .43 mm

Total displacement AAa is
f - V T \W i  =  1 1.43* +  0.24* =  1.45 mm

CHAPTER 3
Experimental Study of Tension and Compression 

in Various Materials and the Basis 
of Selecting the Permissible Stresses

§ 10. Tension Test Diagram.
Mechanical Properties of Materials

In the previous chapter, while determining the cross-sectional area 
and deformation, we came across a number of quantities which chara
cterize a material not only within the limit of proportionality (modulus
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of elasticity, limit of proportionality) but also beyond it up to its 
complete breakdown (ultimate strength). To have a good idea about 
the mechanical properties of materials under tension or compression, it 
is essential to study ex peri mentally the phenomena that accompany 
these processes.

By the difference in their mechanical properties under simple tension 
or compression at room temperature, the materials may be classified 
as brittle and ductile. The brittle materials break down under a very 
small residual deformation. The failure in case of ductile materials 
occurs after a considerable residual deformation. Cast iron, stone and 
concrete, are examples of brittle materials. The low-carbon steels and 
copper belong to the group of ductile materials.

Let us examine the behaviour of both types of material when subject
ed to tension till failure. A prismatic specimen of round or rectangular 
section is prepared, th e  working portion of the specimen is calibrated 
in centimetres ch* fractions of centimetre , to be able to ascertain 
the change in its length after the experiment. The specimen is placed 
on the testing machine and its ends are.clamped. By straining the spe
cimen axially it is stretched with a load, which increases gradually 
without shocks or impacts. A number of successive load values are 
applied, and the. corresponding increases in the length / marked on 
the specimen are measured.

The experimental results can best be represented in the form of a 
tension test diagram; a majority of thetesling machines have an attach
ment which automatically plots this diagram when the specimen is 
stretched. In this diagram, load P is plotted along the vertical axis and 
elongation A/ along the horizontal axis.

The tension test diagram for a specimen from ductile material, e.g 
low-carbon steel, is of the pattern shown in Fig. 12. The first part of the 
diagram up to the point A corresponding to the limit of proportionali
ty is a straight line. Ordinate OAi is the value of the tensile force that 
corresponds to the limit of proportionality i.e. the maximum stress 
which, if exceeded, results in deviation from Hooke’s law; for low- 
carbon steel op is approximately equal to 2000 kgf'cm*. This stress is 
determined from formula (2 .1) in which the original value -of the cross- 
sectional area A is used. This stress is known as conditional stress. 
In future, no special mention will be made when the original cross- 
sectional area is used. The word conditional will also be dropped.

When the tensile force is increased beyond ordinate O A the defor
mation starts increasing more rapidly than the force—the diagram takes 
a curved shape bulging outwards. Then we notice a sharp change in the 
behaviour of the material; at a certain value of the tensile force OCt 
the material begins to “flow”. Almost no force is required to further 
deform the body. A horizontal (or almost horizontal) plateau is ob
tained on the diagram. The stress at Which the material starts to flow,
i.e. at which the deformation increases at an almost constant load) is
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called the yield stress ov. For the material under consideration a„ is 
approximately equal to 2400 kgf/cm9.

During the flow of metal the Luder's flow lines appear on the surface 
of the material more or less distinctly (Fig. 13). These lines are caused 
by relative displacement of the material particles when considerable 
plastic deformation of the specimen takes place.

After the yielding zone the material again starts resisting further 
tensile strain and to elongate it by a length A/ the force should be 
increased. Point D of the diagram corresponds to the maximum load.

At this instant there is again a sharp change in the behaviour or 
the material. Up to this point, the whole bar was being deformed; 
each unit length of the specimen elongated almost equally. Similarly 
there was a uniform decrease in the cross-sectional area of the specimen.

From the instant the load achieves the value ODu the. deformation 
gets concentrated in a certain part of the specimen. A small portion of 
the specimen around this spot is from now on subjected to the maximum 
stress. This results in a localized reduction of the cross section, and a 
"neck” is formed (Fig. 14).

As a result of the decrease in the cross-sectional area of the deformed 
portion, a continuously decreasing load is required to further elongate 
the specimen. Finally at a load OKi the specimen breaks down.

If we stop the experiment at a load less than OAx and unload the 
specimen, then the relation between the force and deformation will be 
represented by the same straight line as during loading up to OA. 
The deformation disappears when the force is removed, implying there
by that the deformation was elastic.

If jye start unloading the specimen from a point Z on the diagram*

Fig 12 Fig 13
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lying between points C and £>, then unloading will take place along 
line ZOi, which is almost parallel to the line OA. The specimen in 
this case will not regain its initial dimensions, segment 0%0t will 
represent the elastic deformation, which, as in the previous case, chan
ges in direct proportion with the load at constant modulus of elasticity. 
Segment 0 0 x will represent the residual deformation and segment OOa 
the total deformation at a load OZ\. We may find a load OBx below 
which only elastic deformations occur. The corresponding point B 
on the diagram usually lies a little above but very close to point A, 
which represents the limit of proportionality. The stress which if 
exceeded results in very small (of 
the order of 0.001-0.03%) residual 
deformations is called the elastic li
mit <v On the tension lest diagram 
(Fig. 12) the load causing this stress 
is represented by the ordinate OB,.

Points A and B are so close to each 
other that generally the limit of pro
portionality and the elastic limit 
are considered to be the same. There
fore although it is commonly said 
that a material follows Hooke’s law 
lill it reaches the elastic limit, it 
would be more precise to say till it 
reaches the limit of proportionality.

The maximum tensile force stretch
ing the specimen is represented
by the ordinate OD,; it is commonly referred to as the crushing load, 
because it is essential to apply this load for rupture to begin; the 
ultimate breakdown occurs at a load represented on the diagram by the 
ordinate of point K. The stress caused by the maximum load is called 
the ultimate strength or ultimate resistance o„. The ultimate strength, 
obtained as a ratio of the maximum load to the initial cross-sectional 
area of the specimen, characterizes the force required to crush the spe
cimen of the given material under tension; for low-carbon steel it 
reaches 4000 kgf'cm3.

While studying the tension test diagram, we marked on it a number 
of ordinates representing loads connected with various mechanical 
properties of the material. Table 2 contains a summary of these loads 
and their corresponding characteristics (stresses) with*lhelr notations. 
Any of the required stress can be obtained by dividingthecorresponding 
load by the initial cross-sectional area of the specimen.

All the mechanical properties (limit of proportionality and elastic 
limit, yield stress, and ultimate strength) characterize the ability of 
a material to resist the tensile forces tending to deform and crush a 
specimen .made from it.

Fig. 14
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Table 2

Mechanical Properties of Materials

Load
C orresponding stress and  

it s  n o ta tio n

Load corresponding to the end of straight line 
OAi

Limit of proportionality <Jp

Load corresponding to the beginning of residual 
deformations OBi

Elastic limit at

Load corresponding to the flow of the material 
(increase in deformation at constant load OCj)

Yield stress oJt

Maximum toad ODt Ultimate strength or ultimate 
resistance au

The jc-coord mates of the diagram characterize another property of 
the material, namely, the ability to deform to a certain degree before 
breaking down.

Segment 0sOi (Fig. 12) gives the value of elastic deformation at the 
time of breakdown, which disappears as soon as the breakdown occurs. 
Its length O0n=A/, is the residual deformation of the specimen of 
length I after its breakdown. The greater the measured length of the 
specimen and the greater the pliability of the material, tne greater 
will be this residual deformation.

The ratio of elongation A/ 0 to the initial length I is a measure of the 
plasticity of the material, i.e. its ability to undergo considerable 
deformations before breaking down.

This ratio expressed in per cents is denoted by 6 and is called the 
residual relative elongation of the specimen after breakdown and for the 
commonly used grades of steel varies from 8 to 28%. Thus,

8 = ^ 1 x 100

It must be noted that the residual relative elongation of the specimen 
depends to a large extent upon its shape and chiefly upon the ratio of 
its length to its cross-sectional area. Therefore, in’laboratory experi
ments the residual elongation after breakdown is not measured over 
the full length of the specimen, but only over its certain part called the 
reduced length. In round specimens the reduced length is generally taken 
equal to 1(5/; sometimes it is taken as 5d. In rectangular specimens the 
reduced length is selected in such a way that the ratio of length and 
cross-sectional area of a round specimen having the same cross-sectional 
area A as the rectangular specimen remains the same. For example, 
the reduced length of a rectangular sped men corresponding to the length 
lOd of a round specimen should be 11.3^ A. The specimens ar^prepared
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such that the length between the heads somewhat exceeds the estima
ted length.

The pliability of a material under tension or compression can also be 
ascertained by another quantity called the permanent relative reduction 
(of area). After the maximum load is reached, a “neck” starts forming 
in a particular section of the bar, and 
at the place of failure the cross-sec
tional area of the specimen is gene
rally less than its initial value (Fig.
14). Let us denote the initial cross- 
sectional area by A0t and the area of 
the section at which the specimen 
breaks down by Ail the quantity

y^A<rpAlx  100

(in per cents) is called the relative 
reduction after breakdown. The 
greater is this quantity, the more 
pliable is the material.

Finally, the tension test diag
ram shown in Fig. 12 enables us to 
study one more mechanical property of materials related to their re
sistance to impact loading.* The greater is the amount of work required 
to break the specimen, the higher is its resistance to impact load
ing. Therefore, the amount of work done in stretching the specimen 
up to the elastic limit or crushing point may be taken as a characteris
tic of the resistance of material to suddenly applied loads. This work 
is represented by the area of the tension test diagram (Fig. 12).

Let us consider the part of the diagram which is within the limits of 
applicability of Hooke’s law' (Fig. 15). When the specimen fixed atone 
end is stretched by applying a gradually increasing force P at the other 
end, the displacement of this end is equal to the gradually increasing
elongation A /= |^ ; this relation is expressed by the straight line OB.

An elongation A/ (segment 0Bt in Fig. 15) corresponds to a particu
lar value of the force P (segment BtBJ. If we increase the force by dP, 
the elongation increases by dA/ and the tensile force having an average
value of P+ ifdP  will perform the w'ork

d-W =  (/> + j d P  JdAi =  P d A /+ y  dP dM

0 For greater details see § 179.
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Neglecting the second-order term -^dPd^l ,  we get

dW = P d \l

Graphically work dW is expressed by the area of the shaded rectangle 
of height P and base dA/.

Considering the gradual increase of force P as a number of successive 
elementary additions of loads dP, we find that the work done by the 
external forces in gradually stretching the specimen is the sum of the 
areas of the elementary rectangles (Fig. 15). When the load P is in
creased continuously, i.e. dP and dA/ are infinitesimal quantities, for 
particular values of P and A/, thissum may be obtained as the area 
of triangle OBtB* equal to

^ B & O B . ^ ^ P M

Thus, the work performed in elastic deformation of a bar by AI 
may be expressed by the formula

W = - ? P M  (3.1)

and graphically represented by the corresponding part of the tension 
test diagram.

The same argument holds good for the whole of the tension test diag
ram (Fig. 12). The area of the digram represents the total work W, 
expended in breaking a specimen of length I and cross-sectional area A.

To obtain the quantity which is a characteristic of a material and 
not the specimen, we divide work W by the volume of the specimen.
The ratio is called the specific work of elastic deformation under
tension.

Similarly, we may determine the total specific work thisrifi
is the work, required to break the specimen. The greater this quantity, 
the more reliably the material withstands shock and suddenly applied 
loads.

We have seen above that the specimen material continues to experi
ence elastic deformation in accordance with Hooke’s law even after the 
yield stress has been passed; in this case are added residual deforma
tions. This is observed while unloading the specimen after loading it 
beyond the yield stress (point Z on the tension test diagram in Fig. 12).

If we now start stretching the specimen after unloading it, the 
loading diagram will be represented by almost the same unloading line 
0\Z parallel to OA, and beyond point Z, by the same curve ZDK as 
prior to unloading. Hence, if we compare tension test diagram OCZDK 
of a specimen not experiencing unloading with diagram 0%ZDK of a
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specimen of the same material, which has been preliminarily loaded up 
to point Z and ihen loaded back to point 0 U we see that the limit of 
proportionality increases lo reach the stress up to which the specimen 
has been preliminarily loaded, whereas the plastic deformation decrea
ses by 0 0 ], i.e. by the residual deformation incurred during prelimi
nary loading.

This increase in the limit of proportionality and decrease in plastic 
deformation due to preliminary loading beyond yield stress and sub
sequent unloading is called cold hardening. Under cold hardening, cor
responding portion of the tension test diagram is, so to say, cut off, 
resulting in a decrease in the total specific work wt. In facl, cold har
dening is much more complex than the simple process by which it has 
been explained here. In particular, if the specimen is allowed to “rest” 
and reloaded only one-two hours after unloading, the corresponding 
part ZDK of the tension test diagram passes a little higher than with 
the absence of “rest".

§ 11. Stress-strain Diagram
The tension test diagram shown in Fig. 12 illustrates the behaviour 

of a material for a specimen of the given dimensions; therefore, to get 
a curve characteristic of the behaviour of the material irrespeciive of 
the dimensions of the specimen, the tension test diagram is slightly 
modified.

The ordinates of the curve in Fig. 12 depicting loads are divided by 
the initial (before the start of experiment) cross-sectional area of the 
specimen /lo, and the abscissas A/ are divided by the estimated length /. 
Then in the new diagram we plot along the vertical axis

and along the horizontal axis

Such a diagram, shown in Fig. 16, is called the stress-strain diagram 
for the given material under tension. It is similar to the tension test 
diagram in Fig. 12. In this diagram all the stresses that characterize 
the mechanical properties of the material are marked: limit of propor
tionality o;j, yield stress o,„ and ultimate strength o„.

If we consider a portion of the diagram OA, up to the limit of pro
portionality, then for a certain stress or and its corresponding relative
elongation e, the area of triangle OAB (Fig. 17) equal to will repre
sent the specific work in stretching the material to stress a. We knosv
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that
at _  PM  
~ 5 ~ 2 A l W

Knowing that e=-^, one may write down the expression for specific 
work of deformation within the elastic limits as follows:

(3 .2 )- ir 
es
T

tfl 
2 E

By analogy, the total area of the diagram show  in Fig. 16 represents 
the total specific work wt at the moment of breakdown of a specimen of 
the given material. This quantity may be expressed as the product of

Fig. 16 Fig. 17

the length 6 by the maximum ordinate au and a coefficient n which 
represents the ratio of the area of the diagram to that of a rectangle 
having sides 6 and ou:

te>f=»iorB8 (3 .3 )

Thus, the total specific work at rupture depends to a certain degree 
upon the product of the ultimate strength and the strain after the 
rupture. Therefore, very often, the ability of a material to Withstand 
shocks is judged by the product <ju6 .

From the diagram in Fig. 17, it is evident that

ta n a = — =  £
8

Hence, graphically the modulus of elasticity £  is represented by the 
slope of the straight portion of the diagram.

§ 12. True Stress-strain Diagram
The stress-strain diagram for tension shown in Fig. 16 may be 

considered as characterizing the properties of the given material under 
tension.
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However, this diagram is only a conditional characteristic of the 
mechanical properties of the material. In the initial stages of the test, 
the cross-sectional area of the specimen almost remains constant, but 
beginning from the yield stress a noticeable reduction takes place, 
which is initially uniform over the entire length of the specimen, and 
after crossing the ultimate strength it becomes localized. Therefore, 
bevond the ultimate strength the ordinates of thecurve shown in Fig. 16 
represent conditional stresses calculated for the initial cross-sectional 
area and not the real one.

Similarly, until the ultimate strength is reached the abscissas in 
Fig. 16 depend only upon the ability of material to elongate. However, 
once the neck is formed, the relative elongation also becomes dependent 
upon the dimensions of the specimen (its length and diameter) and 
thus is no more a characteristic of the material only. Therefore, to 
obtain a more precise diagram characterizing the properties of the ma
terial, the true stress-strain diagram is plotted. It illustrates the rela
tion between stress and strain in the section of rupture.

To plot the true stress-strain diagram it is essential to register the 
tensile force at various moments and at the same lime measure the 
cross-sectional area of the specimen in the narrowest place.

Let the true stress be denoted by a and the true cross-sectional area 
in the narrowest section by A, then

When deformation is large, the original length of the specimen also 
changes considerably. Consequently, the true elongation e must be 
related to the actual length of the bar at the given instant of test and 
may be calculated by the formula

where U is the original length of the specimen, and h  its length at 
the time of measurement. When true elongation is large in magnitude,
it is denoted by e instead of e.

Let us establish the relationship between true and conditional strains 
and true and conditional stresses.

When the specimen deforms uniformly along its length

a JP
A

(3.4)

(3.5)

Finelly
e«=ln(l + e ) (3.6)

3—3810
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where
e At

to

is the conditional strain.
Formula (3.6) cannot be used in case of non-uniform deformation 

because it is difficult to measure A/ for computing e.
It is known that the specimen volume does not change under non- 

uniform deformation beginning from the moment of neck formation. 
This is known as the law of constancy of volume and may be expressed as

AJ0=Xl

where Ao is the original cross-sectional area. It ensues that
A>*. =  ( 4 , - A / l ) ( / 0 +  A/) 

after dividing by AM
i A0~—AA

Ao T T
or

(1 — ̂ >)(1 +  e ) « l ,  where '• iI
wherefrom

Upon substituting the last expression in formula (3.6), we finally ob
tain

« = ln r= «  (3.7)

It should be noted that ij? is determined in the narrowest part of the 
neck.

In order to obtain the relationship between true and conditional 
stresses it should be recalled that

P = cA0 = aA

where cr is conditional stress, i.e. stress related to the original cross- 
sectional area. Further,

and
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Considering the relationship between e and t|\ earlier obtained for 
conditions of uniform deformation, we obtain

a =  c ( l+ e )  (3.8)

Under conditions of non-uniform deformation, beginning from the 
moment of neck formation, true stress a is found directly from formula
(3 .4) as it is meaningless to determine conditional stresses in this state 
of the specimen because of the large difference between A and A o.

The true stress-strain diagram is shown in Fig. 18. However, for 
practical use this diagram is somewhat simplified. It is considered that 
Oyf&Oy and a small portion of the curve just preceding rupture is 
ignored. The diagram is then plotted as shown in Fig. 19.

p 9 _
Yield stress 0 ^= -^ . The true ultimate strength au is calculated from

the formula (3.8).
The true rupture stress is found from formula (3.4), i.e.

The true uniform elongation is determined from formula (3.6) i.e. 
eu= ln (l+ e ), where e is the conditional strain at the moment when the 
neck begins to form.

Finally, the toted true rupture strain is found from formula (3.7), 
where t|> is computed for the cross section of rupture:

e tu  p =  i

It is evident from the diagram of Figs. 18 and 19 that the stress o 
increases right up to the moment of rupture, rapidly at first but com
paratively slowly after the maximum (stress oB) is reached. At the
3*
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moment of rupture the stress corresponding to the actual cross-sec
tional area is more than the ultimate strength obtained by theconven- 
tional method.

However, it would be erroneous to use the latter value for calculat
ing the maximum load which the bar can withstand before breaking 
down, which is very important from the practical point of view. This 
is clear from the tension test diagram in Fig. 12. The maximum load 
that the specimen withstands corresponds not to the moment of break
down but to an earlier moment—the magnitude of this load is charac
terized by the ultimate strength for the specimen of a given cross- 
sectional area. The actual stress increase in this case is due to the 
sharp reduction in the working cross-sectionai area of the specimen,
i.e. due to its rupture.

We may set a number of mechanical properties using the true stress- 
strain diagram. They were enumerated (marked by italics) when the 
plotting of true stress-strain tension test diagram was explained.

The ordinates of the true stress-strain diagram show the ability of 
material to resist plastic deformation.

To increase the plastic (residual) deformation, wc must subject the 
material to a continuously increasing stress; the greater the plastic 
deformation of the material, the greater is its resistance to such a tie- 
formation. This is known as strengthening. The ability of a material 
to strengthening is judged by the steepness of the true stress-strain dia
gram, i.e. by tan a.

The difference of true total and uniform elongation is characteristic 
of the ability of material to deform locally (at the neck) and is known 
as local elongation.

§ 13. Stress-strain Diagram for Ductile and Brittle Materials
In the preceding sections, we have discussed the physical aspect of 

the process in which a specimen of ductile material, such as low- 
carbon steel, is subjected to tension. Stress-strain diagrams similar 
to the one shown in Fig. 16 are obtained for other ductile materials 
capable of plastic deformation.

Some (special) grades of steel, copper and bronze do not have Ihe 
yielding zone. There is a smooth transition of the straight-line portion 
of the diagram into the curved portion. As an example, the stress-strain 
diagrams for cast steel (a), bronze (b), nickel sleel (c), and manganese 
steel (d) are shown in Fig. 20.

For the materials which do not have a yielding zone, the yield stress 
is conditionally taken as the stress for which the residual deformation 
is the same as with a yielding zone. The residual relative elongation in 
this case is usually taken as 0 .2 %.

Brittle materials are characterized by the breakdown even at small 
deformations. When a specimen from a typical brittle material, such
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as cast iron, is stretched, inconsiderable deformation is observed right 
up to the moment of rupture. The specimen breaks down suddenly. 
The relative elongation and relative reduction in area are found to be

very small. The stress-strain diagram of cast iron under tension is 
given in Fig. 21. It should be noted that in Fig. 21 the horizontal 
scale of the diagram is approximately 40 times more, and the vertical 
scale is approximately 6  times more 
than the corresponding scales in 
Fig. 20.

As a rule, brittle materials have 
poor resistance to tension; their ul
timate strength is less than that of 
the ductile materials.

The relation between stress and 
strain when stretching brittle ma
terials does not concur well with 
Hooke’s law; even at low stresses 
we get a slightly curved line instead 
of the straight line on the diag
ram, i.e. a strictly linear propor
tionality between the force or stress 
and the corresponding deformation 
is absent.

Therefore, the modulus of elasticity £ , which is equal to the 
slope of the diagram (see § 11) cannot be considered a constant quan
tity for brittle materials; it changes depending upon the stress for
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which the deformation is to be calculated. As the stress increases, the 
modulus oi elasticity increases or decreases depending upon the direc
tion in which the curve is bulging—upwards or downwards.

However, the deviation from Hooke’s law is insignificant for the 
stress range in which the materials generally function in structures. 
Therefore, in practice, the curved portion of the diagram (Fig. 22) is 
replaced by the corresponding chord, and the modulus of elasticity £  
is considered constant. This is permissible, the more so because for 
different specimens the mechanical properties of brittle materials 
change in a greater range than those of ductile materials; hence, there 
is no sense in using a very accurate expression for the relation between 
stress and strain.

§ 14. Rupture In Compression of Ductile and Brittle Materials.
Compression Test Diagram

Specimens in the shape of a cube or a cylinder whose height is just a 
little more than its diameter are used in studying the strength of ma
terials under compression. In longer specimens it is difficult to avoid 
bending.

The size of the specimens varies for different materials and fluctuates 
(for the cube edge) from 2 cm (wood) to 20-30 cm (concrete).

Under compression at stresses below the limit of proportionality or
yield stress, a specimen from ductile 
material behaves as under tension. 
The limit of proportionality (as also 
the yield stress for steel) and the 
modulus of elasticity are almost 
equal under tension and compression 
for ductile materials.

After passing the limit of pro
portionality, noticeable residual de
formations appear resulting in a 
shortening of the specimen and an 
increase in its diameter. The lateral 
deformations of the specimen at the 
ends are hindered due to friction be
tween the faces of the specimen and 
the bearing plates of the press; the 
specimen acquires the shape of a 
barrel (Fig. 23).

As the cross-sectional area of Ihe specimen increases, it requires a 
greater force for further deformation: the specimen continues to com
press and ultimately becomes oblate. The stress which may be said to 
be analogous to ultimate strength in tension is not observed.

Fig. 23
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A typical stress-strain compression diagram for a ductile material 
(low-carbon steel) is shown in Fig. 24. As under tension, cold harden
ing takes place under compression too.

As under tension, the brittle materials, such as stone, cast iron, 
and concrete, fail after a small deformation under compression. Figure 
25 shows the stress-strain diagram of a stone specimen under compres
sion (a granite cube I0 X 10X 10 cm). Figure 26 shows the stress-strain 
diagram for a cast iron specimen under compression. Here also it

Fig. 27 Fig. 28

should be noted that the scales of diagrams in Figs. 25 and 26, especial
ly the horizontal ones, are much larger than the scale of the diagram 
in Fig. 24.
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The nature of rupture in a stone specimen is shown in Fig. 27; the 
crushed specimen represents truncated pyramids joined by their 
smaller bases. This form of rupture is due to the friction force between 
the specimen and the bearing plates of the press. If we remove this 
friction, for example, by greasing the specimen faces with paraffin, 
the nature of rupture will be different: the stone will break into parts 
with cracks running parallel to the direction of the compressive force 
(Fig. 28). The crushing load for such a cube will be less than for a cube 
tested by the common method, without greasing. Therefore, the ulti
mate strength in compression is to a considerable extent a conditional

characteristic of the strength of material. This must be taken into 
consideration when fixing the safety factor.

It has been observed that when a prismatic specimen made of stone 
or concrete is compressed slowly, the rupture starts with the appearance 
of lengthwise cracks parallel to the direction of the force. Therefore, 
we may say that the material of the specimen under compression rup
tures apparently due to the failure of certain portions.

The nature of rupture for cast iron is close to that observed in case of 
stone. Figure 29 shows a cylindrical cast-iron specimen crushed by 
axial compression. I t must be noted that the resistance of brittle ma
terials to compression is much greater than their resistance to tension.

Compression of a timber specimen gives sharply differing results 
depending upon the direction of compression with respect to the fibres; 
timber is an anisotropic material, i.e. it has different properties in 
different directions. The ultimate strength of timber compressed along 
the fibres is about 10 times more than when it is compressed across the 
fibres, whereas the deformation is much less. Figure 30 shows the com
pression test diagramfor a timber cube tested along and across the fibres. 
Table 3 contains data on ultimate strength under tension and compres
sion for most important materials.

Fig. 29 Fig. 30
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In statically indeterminate beams the formation of one ductile hin.ee 
is not enough for full utilization of their bending capacity; it is essen
tial that at least one more ductile hinge be formed. We shall explain 
tins with the help of an example.

7—h,
.tiu

Let ns consider a two-span continuous beam of uniform section 
(F:g. 'i77(u)). Its bending moment diagram for work within the elastic 
limits (Fig. .377(/>)) is the difference of the bending moment diagrams
loi lorce P ; md support moment M , - Graphic subtr.aetion ol
the dmgrams is shown In dotted lines. The resultant bending moment 
diagram is hatched. The maximum stressed sections are the section ol
application of the load with a moment •>n

I.:
(TTPL When the loadthe middle support with moment .VI, — PI

is increased, stresses in the beam become equal to the \ ield stress n,, 
first of all in the top and bottom Livers of the section under load I\, 
and limy be expressed b\ the relation

l /y
a I i f

(T wherefrom I
m ill, , . ,



58 Introduction. Tension and Compression [Part /

The amount of work required to crush ductile materials is greater 
than that required for brittle materials. Therefore, ductile mate
rials are more suitable for structures designed to absorb the maximum 
possible kinetic energy of impact without failure.

The brittle materials fail easily under impacts just because their 
specific work of deformation is very small. Due to their small deforma
tion up to stresses close to the ultimate strength, the same brittle mate
rials are sometimes capable of bearing far greater stresses than the duc
tile materials provided deformation is under the action of a placid, 
gradually increasing compressive force.

The second distinguishing feature between these materials is that 
in the initial stages of deformation, the ductile materials may be consi
dered to behave identically under tension and compression. The re
sistance of an overwhelming majority of the brittle materials to tension 
is considerably lower than their resistance to compression. This restricts 
the field of application of brittle materials or requires that special mea
sures be taken to ensure their safe working under tension as, for exam
ple, in reinforcement of concrete elements, working under tension, 
with steel.

A sharp difference is observed in the behaviour of ductile and brittle 
materials with respect to the so-called local stresses, which are distribut
ed over a comparatively small portion of the cross section of the ele
ment but the magnitude of which exceeds the average or nominal 
value, calculated from common formulas. Local stresses will be discus
sed in detail in § 186.

Since we do not observe any considerable deformation in brittle 
materials almost up to the moment of failure, the non-uniform stress 
distribution shown above remains unchanged under tension as well as 
compression right until the ultimate strength is reached. Due to this, a 
weakened bar of brittle materia! with local stresses will fail or crack

p
at a much lower value of the average normal stress o=-^- as compared
to a similar bar without local stresses. Thus, we may say that local 
stresses greatly reduce the strength cf brittle materials.

The ductile materials are affected by local stresses to a much lower 
degree. The role of ductility as regards local stresses is to level them 
to some extent. The mechanism behind this levelling will be discussed 
in Chapter 31.

We have given a very simplified picture of the working of a bar wilh 
a non-uniform distribution of stresses. Actually, levelling out of stres
ses is hindered not only by strain hardening, but also by the change in 
the stressed state at the location of stress concentration, its transition 
from a linear stressed state to a three-dimensional stressed state. This 
compound stressed state will be discussed later in Chapter 6 .

There is one more factor which stipulates the selection of one or the 
other type of material for practical purposes. Often, while assembling a
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structure, it is necessary to bend or to straighten a bent element. 
Since the brittle materials are capable of withstanding only very small 
deformations, such operations on them usually give rise to cracks. The 
ductile materials, capable of taking considerable deformations without 
rupture, can be bent and straightened without any dufficulty.

Thus, brittle materials have poor resistance to tension and impacts, 
are very sensitive to local stresses and cannot bear change in the 
shape of elements made from them.

The ductile materials are free from these drawbacks; therefore ducti
lity is one of the most important and desirable property in materials.

The points in favour of brittle materials are that they are usually 
cheaper and often have a high ultimate strength under compression; 
this property may be utilized for work under placid loading.

Thus, we "see that ductile and brittle materials have exceedingly 
different and contrasting properties as far as their strength undo* 
tension and compression is concerned. However, this difference in pro
perties is only relative. A brittle material may acquire the properties 
of a ductile material, and vice versa. Both brittleness and ductility 
depend upon the treatment of the material, stressed state and tempera
ture. Stone, which is conventionally a brittle material under compres
sion, may be made to deform like a ductile material; in some experi
ments this was achieved by pressing a cylindrical specimen not only at 
its faces but also on its side surface. On the other hand, mild steel, 
conventionally a ductile material, may under certain conditions, 
e.g. low temperature, behave exactly like a brittle material.

Hence the properties “brittleness" and “ductility", which we assign 
to a material on the basis of compression and tension tests, are related 
to the materials behaviour only at ordinary temperatures and for the 
given kinds of deformation. In general, a brittle material may change 
into a ductile material, and vice versa. Hence it would be more precise 
to speak not of “brittle” and “ductile” materials but of brittle and pla
stic states of materials.

It must be noted that a comparatively small increase in the ductility 
of a brittle material (even up to 2% relative elongation before break
down) enables its use in a number of cases which are otherwise preclud
ed for brittle materials (in machine parts). Therefore, research work 
on improving the ductility of brittle materials such as concrete and 
cast iron demands the maximum possible attention.

§ 16. Considerations .in Selection of Safety Factor
A. In the preceding sections, we discussed the methods of computing 
stresses, determining the mechanical properties of materials under ten
sion and compression, and gave recommendations for selecting one or 
the other type of materials (ductile or brittle) depending upon the work
ing conditions.
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However, the information given till now is not sufficient to find out 
the permissible stresses suitable for different types of loading. The va
lues of all the mechanical properties of materials (ultimate strength, 
relative elongation, limit of proportionality, etc.) are obtained from 
laboratory experiments under static loading, i.e. when the load increa
ses gradually without impacts, shocks and change of sign. Similarly, 
the formulas correlating normal stress a with the tensile or compressive 
force P have been derived for static loading. It was assumed that the 
external forces and stresses acting on the cut-off portion of the bar 
balance each other. In practice, however, we often come across dynamic 
and systematically changing loads.

As compared to the static load, the suddenly applied load has a two
fold effect; on the one hand, the brittle and ductile materials react 
differently to the dynamic action of the load and, on the other hand, the 
stresses are also different. This problem will be discussed in greater 
details in the chapters on dynamic loading. Here we shall pay atten
tion only to the fact that stresses are generally higher under a dynamic 
load than under a static load of the same magnitude. This statement is 
confirmed by experimental results and may also be proved theoreti
cally, as has been done in Part IX.

The ratio of stress <r«j due to dynamic action of the load to stress a 
due to static action of the same load is called the coefficient of dynamic 
response and denoted by Ka-

The coefficient of dynamic response depends upon the type of dyna
mic loading and has a very large value in a number of cases.
B. The strength of materials under loads systematically changing their 
magnitude or magnitude and sign is much different from their strength 
under static and impact loads.

If, for example, we alternately subject a steel bar to a large number of 
tensions and compressions, we shall observe that after a definite number 
of such changes in stresses, the bar in some cases cracks and then rup
tures at a stress considerably lower than its ultimate strength. Even for 
plastic materials the plastic deformation of the specimen before break
down under similar loading is very small: a brittle fracture takes 
place.

The failure of materials under a variable load at stresses lower than 
the ultimate strength is called fatigue. This name does not reflect the 
physical nature of the phenomenon, but it has become such a customary 
term that it is used to this day.

Experiments show that under alternative tension or compression a 
decrease in the acting force results in an increase in the number of 
alterations of this force required to break the specimen. Each material 
has a maximum normal stress cr at which the specimen can withstand
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practically an unlimited number of alterations of the force without 
breaking down. This stress in denoted by orc and is called the endurance 
limit or the fatisuc limit. The element will not fait until stresses in it 
do not exceed Inis limit, irrespective of the number of alterations of 
the stresses.

Thus, in systematically varying loads, it is essential to specify 
another mechanical property of the material, namely, endurance 
limit; it determines the resistance of the material to alternating stres
ses. The fatigue of materials for various types of loads will be studied 
in greater detail in Chapter 31.

All that has been stated above must be taken into account when 
selecting the permissible stresses in tension or compression or, which is 
the same, when determining the safety factor k from the formula 
(see §§ 4 and 7)

[«] (39)

The safety factor should be. so selected that the normal stresses acting 
on the whole section do not exceed the elastic limit (or yield stress) 
of the material, otherwise the bar will get plastically deformed; under 
a varying load the normal stresses should not exceed the endurance li
mit, which is usually lower than the yield stress.

It should be taken into consideration that the stresses are generally 
higher under impact loading. Since the stresses in this case are also 
usually determined by assuming the load to be static, the dynamic 
action of the load must be accounted for by a corresponding increase in 
the safety factor.
C. As far as Ihe local stresses are concerned (see § 15), it is possible to 
reconcile to their exceeding the elastic limit or yield stress in the case 
of ductile materials provided the alternating load is absent. In this 
case plastic deformation occurs over an extremely small portion of the 
section and does not affect the working of the construction. Due to 
plastic deformations the local stresses stop increasing and partially 
approach the normal stressses in the remaining portion of the section. 
The brittle materials do not have this property (see § 15): in their case 
a higher safety factor has to be taken, the more so because their strength 
under impact loading is lower than that of ductile materials.

Under an alternating load, when we have to reckon with the possibili
ty of developing cracks due to fatigue, it is very essential to lake into 
consideration the local stresses, which seriously affect the selection of 
safety factor of ductile materials. For the crack due to fatigue to appear, 
the actual stresses in a particular section must exceed the endurance 
limit. Since the local stresses are greater than the stresses elsewhere 
(acting over a larger portion of the section), the chances of the crack 
appearing are due to namely the local stresses exceeding the endurance 
limit. As the dimensions of the section are computed from considera-
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tions of the maximum general stresses from the formula

< w = ! < M = T
the safety factor selected for the general permissible stresses should 
ensure that the local stresses do not exceed the endurance limit. This 
requires considerable increase of the safety factor k  as compared to 
its value under static loading.

In the case of ductile materials, when the endurance limit exceeds 
the yield stress, the local stresses may be ignored as yielding reduces 
the possibility of their spreading, playing the role of a buffer.

For brittle materials, which do not have a yield plateau, the danger 
of fatigue cracks appearing under variable loading is more pronounced, 
and this requires that the corresponding safety must be increased in 
comparison with that under static loading.

Thus, since the choice of the safety factor depends upon the proper
ties of the material and the method of applying the external forces, its 
value is generally greater for brittle materials than for ductile ones; 
similarly, a higher value of the safety factor has to be taken for dynamic 
and varying loads as compared to static loads.
D. A number of other factors have to be taken into account when 
selecting the permissible stresses. The magnitudes of forces required 
for computations are not known exactly; the mechanical properties of 
materials frequently deviate considerably from their known values; 
the methods of computation and our knowledge of the interaction be
tween different parts of structures are usually simplified and approxi
mate. The safety factor must cover all these unavoidable inaccuracies 
of computation and design.

The less the homogeneity of material, the poorer is our knowledge of 
the forces acting on it, the more simplified is our presentation of the 
interaction between various elements of the structure, and the greater 
has to be the safety factor. In operation, machine parts wear out; there
fore, in a number of cases a “wear factor” has to be provided for. 
Similarly corrosion and rotting have to be taken into account in the 
design of metal and wooden structures.

On the other hand, in certain machines (aeroplanes), the safety factor 
has to be reduced to the lower possible value to ensure minimum weight.

Hence, proper selection of the permissible stresses is a highly compli
cated problem, connected with the method of computation, investiga
tion of properties of the material and a large number of other conside
rations including economic ones. A particular value of the permissible 
stress determines the consumption of the given material and ways of 
its use in the structure; this value determines the life of the structure 
and the field of application of the various materials.

In a large number of structures the standard values of permissible 
stresses are defined by the standards, and the engineer should only be
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able to properly apply them. However, In exceptional cases, say, for 
example, during war time, the engineer has to abandon the standard 
values; he may then follow the general considerations, laid down in 
this section and in Chapter 31.
E. Summing up all that has been stated above, we may formulate the 
following main points.

The safety factor should be selected in a way so as to provide a 
definite reserve against the appearance of the so-called critical stale 
of the material, which may endanger the working of the machine.

Under static or impact dynamic loading, this slate is characterized 
in ductile materials by the appearance of large plastic deformations 
(yielding), and in brittle materials by the appearance of cracks pre
ceding ultimate failure. Under repeatedly varying loads the critical 
state of material is characterized by the appearance and development 
of fatigue cracks. We shall denote the stress corresponding to the 
start of critical state by ou. This stress is

cf„ (yield stress) when the ductile material 
begins to yield 

o _  <*/i (ultimate strength) when the brittle
0 ~  material ruptures (cracks)

ae (endurance limit) when the fatigue
crack appears

Hence, formula (3.9) may now be written more precisely and replaced 
by the three formulas depending upon the nature of critical state:

where k y, ku and ke are the corresponding safety factors. The three 
formulas may be generalised in the form

w-%
Here o° implies either av, or cru, or ae, and k implies either k,Jt or kut 
or ke.

However, formula (3 9) still retains its practical importance. As 
the yield stress and endurance limit are to a certain extent related to 
the iiltimate strength, the safety factor for all the critical states may 
be expressed in terms of the ultimate strength.

These in general are the basis considerations essential for properly 
evaluating the permissible stresses.
F. Passing over to the considerations in assigning the value of the sa
fety factor, we shall give some very brief instructions. The non-homo
geneity of the material, inaccuracy in force determination, error of 
computation, i.e. the common factors are accounted for by the main
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safety factor ka. For ductile materials (steel) it is taken as k,,—k0=* 
=  1.4-1.6 , for brittle materials and wood ku= k 9 —2.5-3. Other factors, 
such as the dynamic nature of the forces, alteration of their action 
and the effect of local stresses are taken accounted for by additional 
coefficients, by which the main safety factor is multiplied.

It should be borne in mind that the permissible stress lol obtained 
according to formula (3 .9) should be compared to the actual stresses in 
the part of the structure without considering the dynamic action of 
the force and other additional factors.

If only the general points are considered while assigning the safety 
factor, i.e. the overall safety factor is taken equal to the main safety 
factor, the dynamic action of forces and the local stresses are taken 
account of, as far as possible, in the value of the actual stress, multip
lying the main stress under static loading by the coefficients of dvnamic 
loading and stress concentrations. It is not difficult to see tnat the 
results in both the cases will be identical.

Table 4 contains approximate values of the overall safety factor 
with respect to the ultimate strength for various types of materials 
and loads including the factors accounting for the dynamic nature 
of loading and local stresses.

Table 4
Safety Factors

Load ini; Type of material

Static toad /Ductile 2.4-2.6
\  Brit tie 3.0-9.0

Impact load Ductile 2.8-5.0
Varying load (tension and compression of 

equal magnitude)
Ductile (steel) 5.0-15.0

The table is only of a tentative nature; it gives an idea about the 
change in the safety factor depending upon circumstances. Numerous 
aspects affecting the safety factor under impact and alternating loads 
will be discussed in greater details in Chapters 30 and 31.

§ 17. Permissible Stresses Under Tension 
and Compression for Various Materials

In the preceding section we tried to elucidate the numerous factors 
which affect the safety factor and consequently the value of permissible 
stress. Tn Table 5 are given the tentative values of permissible stresses 
under tension and compression for some important materials used in 
engineering and machine building. The table has been compiled on the 
basis of present Soviet standards.
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Table 5
Tentative Values of the Permissible Stresses for Some Commonly Used 
Materials

Material

Permissible stress 
(kgf/cm1)

. . .  . Under com- Under tension presslon

Gray cast iron 280-800 1200-1500
Low-carbon steel IGOO-2000 —
Structural carbon steel used in machine building 600-2500
Structural alloy steel used in machine building'' 1000*4000 and higher
Copper 300-1200
Brass 700-1400
Bronze 600-1200
Aluminium 300-800
Aluminium bronze 800-1200
Duraluminium 800-1500
Textolite 300-400
Laminated Bakelite insulation 500-700
Bake!ite impregnated veneer 400-500
Pine along the fibres 70-100 100-120
Pine across the fibres — 15-20
Oak along the fibres 90-130 130-150
Oak across the fibres — 20-35
Stonework up to 3 4-40
Brickwork up to 2 6-25
Concrete 1-7 10-90

The materials enumerated in the Table 5 must satisfy the require
ments and norms (of strength, ductility, production process, chemical 
composition, etc.) of the corresponding standars. It does not cover all 
materials, nor the diverse conditions in which they work. In each de
sign problem the permissible stresses should be specified in accordance 
with the official technical specifications and design standars for the 
given structure, and, in their absence, on the basis of factors discussed 
in the preceding section.



PART II
Complicated Cases 

of Tension and Compression

CHAPTER 4

Design of Statically Indeterminate Systems
for Permissible Stresses

§ 18. Statically Indeterminate Systems

Our ability to calculate the deformation of bars under tension and 
compression enables us to determine the changes in the shape and size 
of parts of structures under the action of external forces. Usually these 
deformations are so small that they seem devoid of any practical im
portance.

However, in a number of structures, it is impossible to check the 
strength and determine the cross-sectional area of the various elements 
without the knowledge of deformation; these structures are known as 
statically indeterminate systems', finding the forces acting in the ele
ments of these structures in a statically indeterminate problem.

In all the examples which we have considered till now, the tensile 
or compressive forces acting on the bar were determined from static 
conditions of a solid body.

In case of weight Q suspended from two bars (Fig. 31), AB and AC, 
we find tensile forces Ni and N* stretching the bars from the equilib
rium conditions of point A . Three forcesappl ied to point A must satisfy 
two equations of equilibrium: the sum of the projections of these 
forces on the two coordinate axes must be zero. Thus, we see that the 
number of unknown quantities (two) is equal to the number of 
equations (two), therefore forces Mi and Ms may be determined 
from these equations. This is statically determinate problem.

The conditions will be different if weight Q is suspended from three 
bars (Fig. 32). In this case point A is in equilibrium under the action 
of four forces: Q, M3 , Mi, and M3 , three of the forces being unknown. 
The number of equations remains the same, i.e. two. Hence, the num
ber of unknown quantities exceeds by one the number of equations, 
the structure is one degree indeterminate, and the problem cannot 
be solved with the help of static equations only.
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The additional equation required for the solution of the problem 
can be compiled using the ideas gained in passing over from the theo
retical mechanics to the strength of materials. We must take account 
for the ddorinability of material. One more equation can be found 
in studying the deformations of the structure. It turns out that it is 
always possible to find as many additional equations as is required 
to complete the number of static equations so that the number of 
equations be equal to the number of unknown quantities.

Fig. 31

The extra equations are formed on the basis of the common principle; 
they should express the coruiilions of joint deformations of the system.

Any structure deforms in such a way that there are no ruptures 
of the bars, their disconnection or any unforeseen relative displacement 
of one part of the structure with respect to the other. This in brief 
is the principle of joint deformation of the elements of a system.

The general method of solving statically indeterminate systems is 
as follows. First of all we must decide what are the forces to be deter
mined, then write down all the static equations of a solid body, and 
finally derive the required number of extra equations to find the un
known forces.

A course of the solution of the problem is shown for the particular 
example (Fig. 32). Suppose the side bars of equal cross-sectional areas 
are made of steel, whereas the middle bar is made of copper. The length 
of the middle bar is /s and that of the side bars, /*. Suppose the per
missible stress for steel is la,l and for copper l<jfl. It is required to 
determine the safe dimensions of the cross sections of these bars under 
the action of suspended weight Q.

First of all we shall determine the forces acting on each of the three 
bars. Since there are hinges at points A , B, C and D, all the three bars 
can be subjected to only axial forces. Let us consider these forces to 
be tensile. In order to determine these forces, we must consider the 
equilibrium of point A to which the only known force Q is applied. 
A scheme of the forces acting on point A and the location of coordinate
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axes are given in Fig. 33. Let us equate to zero the sum of projections 
of the forces acting on point A on the coordinate axes:

ALsina—Af,sma — 0 
Q — N3—Aft cos a —A/4co sa= 0

From the first equation we gel Aft=A/a; replacing Ar2 by M in the se
cond equation, we obtain

N :i-\-2 N i cosa=Q  (4-1)

Now we have one equation with two unknowns.
To obtain the extra equation we must study the deformation of the 

structure. All the three bars will elongate under the action of force 
Q, and point A will descend. Since Nx and N a are equal and bars / and 2

are of the same material, elongations A/( and A/* will be equal if the 
bars are of equal length, point A will descend vertically downwards. 
Let us denote the elongation of the third bar by A/s.

The elongation of all the three bars is joined, i.e. the bars remain 
hinged at point A after deformation. To find the new position of this 
point, we assume the bars to be disconnected and plot on the diagram 
(Fig. 34) the new lengths of the side bars CCa and BB* by increasing 
their initial lengths by At,—AB* and M S=AC*. The new position of 
point A is obtained bv rotating the elongated bars CCt and BBa about 
points D and C. Points B3 and Ct will coincide at point A ,, moving 
along the arcs C*At and B*Ai which due to the small deformation 
may be considered as straight lines perpendicular to CC2 and BBS, 
respectively.

The new position of the side bars BAi and CA i is shown by dotted 
lines. Since the end of the middle bar is also fastened to the hinge, 
it will also come to point Ai, and elongation At3 will be equal to AAt.

According to Hooke’s law, the elongations Alt, A/a, and A/a of all 
the three bars will be directly proportional to the tensile forces slret-
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chirtg them. After finding the relation between these elongations from 
the figure, we shall obtain the extra equation correlating the unknown 
forces in the bars. From triangle AiABs, we have

ABi -=AAl cosa or A/, =  Afa cosa (4.2)

Let us express &U and A/3 in terms of the forces A'i and Na. This 
is possible only if we know the cross*sectional area of the bars. Here 
we must state a very important feature of the statically indeterminate 
systems: to determine the forces acting in bars we must know before
hand either the cross-sectional area of these bars or their ratio.

Let Ai and A 9  be the cross-sectional areas of the bars; let us denote 
the modulus of elasticity of steel by E g and that of copper by £ c. 
Then

Ali Nili . 
EsAt ’

A/ , = EcAsi (4.3)

Putting these values of Alt and Al9  in equation (4.2), we get
Nxh N3 I3 cosa

It is evident from triangle ABD (Fig. 34) that
lt =  /j cos a

Therefore,
A \=  N , ^ c o s ' a  (4.4)

Thus, by examining the joint deformation of the system, we have 
obtained an extra equation correlating Arf and Nu.

Joint deformation takes place in statically determinate structures 
too, but there it does not impose any constraints on force distribution. 
Only one system of forces satisfying the. equilibrium conditions is 
possible in this case. Since the number of unknowns is equal to the 
number of static equations in such structures, the deformation is 
compatible with the conditions of joint deformation. For example, 
the forces acting in the bars can be fully determined from the equilib
rium conditions of point A. Both the bars may elongate under the ac
tion of these forces without getting disconnected, and the condition 
of joint deformation is automatically fulfilled.

On the contrary, in statically indeterminate structures, there can 
be any number of force systems satisfying the equilibrium conditions, 
because the number of unknowns is greater than the number of equa
tions. From all the possible combinations of forces, the combination 
which actually occurs is the one that corresponds to the condition of 
joint deformation.
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In the statically indeterminate system (Fig. 32), the location of 
point A after deformation combines the elongations of all the three 
bars. For the condition of joint deformation to be satisfied it is essen* 
tial that the elongations should be in a definite ratio. This condition 
gives us the extra equation (4.4) required for determining the unknown 
force.

Continuing the solution of the problem we put the value of Ni 
from (4.4) into Eq. (4.1) and obtain

W,+ 2^ , 1^ 'os’ a  =  Q

whencefrcm

and from (4.4)

N a
l +  2-^rCOS3aEcA3

N,=-
Q jrircos*a______

1 + 2 cos3 a
AT,

(4.5)

(4.6)

It is evident from the formulas obtained that the value of N depends 
not upon the absolute values of the cross-sectional areas A and moduli 
of elasticity E , but upon their ratio. By setting different values of
the ratio n— 4 l we obtain various combinations of the forces Mlt
Nt, and Ns.

Knowing the forces and the permissible stress we can find Ai and 
A% from the conditions

Calculating Ai from the first condition and knowing the selected 
ratio n = 4 i» we can find This value can be checked upAt n
by seeing whether it satisfies the second condition of (4.7); if not, 
the value of At is found from this condition, and A t is determined by 
the formula

A l = rtA3  (4.8)

Thus, in a statically indeterminate structure with a given load we 
may obtain a number of different modifications of force distribution 
between the bars by changing the ratio of their cross-sectional areas. 
Let us take a numerical example for greater clarification.

Let Q=4 tf; a =30°; [aj=1000 kgf/cm* £,=2X10® kgf/cm\ 
[acl=600 kgf/cm*; Ee— 1 X10* kgf/cms.



Ch. 41 Design of Statically Indeterminate Systems 71

For preliminary calculation let us assume an arbitrary value of

Then

N

4 xf p F cosi3°a

1+ 2x r | w cos330<>
1.67 tf

1 +  2X?¥4?=8co85 30<»
l . U  t f

fxKii

From strength condition we obtain
„ N t 1670 

1 —  “  1000“
1.67 cm*

As we have assumed Ai=Aa, then Aa=1.67 cm8 
Let us check whether these dimensions will satisfy the strength 

condition for the middle bar:

^ 11^  =  667 kgf/cma>  600kgf/cm*

The assumed value of A a is not enough; it should be
noo
600 =  1.85 cm*

To maintain the condition A i= A 3  which formed the basis of our 
calculation, we must lake A1=A 3=1.85 cm* instead of the required 
value of 1.67 cm2 obtained from the first condition. In this way we 
shall have an additional reserve in the side bars.

If we wish to avoid this extra reserve and take
A, =  Aa=  1.67 cm8, As=1.83 cm* (4.9)

then forces Ni, Afa, and N3 will change immediately; the ratio A tfAt 
will no longer equal 1, as assumed earlier, but will be0.9. In formula
(4.5) the denominator becomes less and Na increases; in formula (4.6) 
the decrease in the value of the denominator will be less as compared 
to the numerator, therefore ATi and jV2 will decrease.

By decreasing the cross-sectional area of the side bars as compared 
to that of the middle bar, we reduce the forces acting on the side bars 
and increase the forces acting on the middle bar.

This reflects the general law which governs the force distribution 
between the elements of all statically indeterminate systems: the 
forces are distributed in accordance with the rigidity of the bars; the



7 2  Complicated Cases of Tension and Compression [Part f t

greater the cross*secttonal area of a given bar, the greater is the share 
of total force that it takes, and vice versa.

If we approximate the areas At and A , to zero, then forces Mi and 
Mi will tend to zero and M* to Q. If, on the other hand, we decrease 
A,, then Na will decrease, whereas Mi and M2  will increase.

For a value of n=0.9 [formula (4.8)1, Afi=N2=1.60 tf, Af3=1.20 tf. 
This requires >4a=2.0 cm* and ^ = 1 .8  cm* instead of 1.6 cm* as found 
from the strength condition for steel bars.

Had we assumed 4̂ »=1.6 cm* for the side bars, the ratio n would 
have been reduced again, and the middle bar would have again got 
overloaded. Thus we should again be reconciled with the reserve in 
side bars. From formula (4.4) it follows that a particular ratio, //=A
= tJ ,  which ensures that the stresses in all the bars are equal to the 
permissible stresses, is possible only for a definite value of the angle a. 
Indeed, had we determined the areas A exactly in accordance with 
the permissible stresses, we would have got the relations

(4.10)

Putting these values in (4.4), we get

A ilos] ~ A §\o€j § ^ W a (4.11)

wherefrom we have

cos* a  — 4 s- [ocJ £7 (4.12)

i.e. in order to select the cross-sectional area without excessive reserve 
for any value of the ratio n i t  is essential that cos a  should satisfy con
dition (4.12).

Table 6

Results ot Calculations for Various Values of ft

-  A< N,=Nt
<«> « 6

At*At

required

(cm*)

assumed (cm*)

0 .8 1 .5 6 1 .3 0 1 .5 6 1 .7 4 2 .1 7
0 .9 1.0)0 1 .2 0 1 .6 0 1 .8 0 2 .0 0
1 .0 1 .6 7 1 . I t 1 .6 7 1 .8 5 1 .8 5
1 .2 1 .7 5 0 .9 7 1 .7 5 1 .9 4 1 .6 2
1 .5 1 .8 3 0 .8 2 1 .8 3 2 .0 6 1 .3 7
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In our numerical example we obtain
lpooxiyto8
GOOX2XIO* ’ hence a = 24°

Since in the given structure a=30°, then for an arbitrary n we shall 
either have to give excess reserve in one group of bars, or overload the 
other group. The value of n itself should be selected from economic con
siderations. Table 6 contains the values of different quantities for 
various values of a. Knowing the cross-sectional areas, lengths and 
materials of the bars, we can select a combination which is economi
cally most effective as far as the cost of material is concerned.

§ 19. The Effect of Manufacturing Inaccuracies
on the Forces Acting in the Elements of Statically Indeterminate 
Structures

In the preceding sections we established the main features of the 
working and design of statically indeterminate systems.

1. The extra equations required to calculate the forces may be ob
tained only from the condition of joint deformation of the system.

2. The force distribution between the elements of statically inde
terminate structures depends upon the ratio of their cross-sectional 
areas, moduli of elasticity and 
lengths.

3. The more rigid an element, 
i.e. the smaller its length and the 
greater its cross-sectional area and 
modulus of elasticity, the greater 
will be the share of force that it 
will take.

In this section we shall study 
another property of statically inde
terminate structures which is of 
great practical importance.

It is impessibie to manufacture 
parts of structures with absolute 
accuracy; small manufacturing er- FlS- 33
rors and inaccuracies must always 
be taken into account. In a stati
cally determinate structure, these
inaccuracies cannot give rise to stresses in the system. Thus, for exam
ple, if bar AB (Fig. 31) is made a little shorter than it should be accord
ing to the drawing, all that will happen is a slight distortion of tri
angle CAB. In the absence of force Q the forces in bars AB and AC 
will be equal to zero irrespective of the manufacturing accuracy of 
the bar length.
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The statically indeterminate structure shown in Fig. 32 will behave 
in an entirely different manner. Let the manufactured length of the 
bar be less than the required by AA0=& (Fig. 35). To join the end of 
the middle bar A 0  with the ends A of the side bars somewhere at point 
A lt it is necessary to stretch the middle bar by M a=AoAi, and to 
compress the side bars by k l 1= :A B a= A C 1. Drawing through points 
C* and B t  perpendiculars to the initial positions of the side bars as 
explained in § 18, we get the point of junction Ax of the ends of all 
the three bars. From the figure we may write down the condition of 
joint deformation:

AnA = A 6 Al -\-A1A
or

6 =  A/3 + cos a (4.13)

Since there are no external forces and Nx is a compressive force 
whereas N9  is tensile, the equilibrium condition (4.1) takes the form

N9 —2A/’1c o sa= 0  (4.14)

Replacing in (4.13) Ah  and A/s by their values

A/j = Nik and a t N9k  Nsk  cos a
A/’ = fp r3—

and solving equations (4.13) and (4.14), we have
f)£cAg mr _

EeAs f >  '  1 2 cos a
2EsAx cos3 a j

(4.15)

The plus sign before the values of Ni and Na signi lies that our assump
tions about the directions of these forces are correct.

It should be pointed out that in formula (4.3) the length of the middle 
bar can be replaced by I* and not by l9  —6 , because 6 is an infinitesimal 
as compared to /3. This simplification can always be applied when the 
manufacturing inaccuracies are being considered.

The above computations reveal that the manufacturing inaccuracies 
will give rise to stresses in the bars even if there are no external forces 
acting on the structure. Hence, the possibility of the so-called initial 
stresses is also an important property of the statically indeterminate 
structures.

If all the three bars are of the same material and have the same cross- 
sectional area, then under weight Q (Fig. 32) the tensile force in the 
middle bar wilt be greater than in the side bars (4.4). The manufactur
ing inaccuracy gives rise to an additional tensile force in the middle 
bar and to compressive forces in thesidebars. In this particular example
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the initial stresses increase the non-uniformity in the working of 
the bars and are therefore harmful.

Had the middle bar been longer by 6 , the initial stresses would have 
had opposite signs and would have levelled off to some extent the non- 
uniformity in force distribution between the middle and the side bars

(a)

under the action of weight Q. In this case, the particular property of 
the statically indeterminate systems discussed above would have 
helped in- better working of the structure.

Another example of the expedient use of initial stresses is putting 
on the tyre on the wheels of a rolling stock. The wheel consists of 
two parts: the central cast portion and the steel tyre which is put on

6

It (Fig. 36 (a) and (&)). The tyre is fastened to the central portion by 
means of special fixtures; besides, its internal diameter d3 is made a
little less than dt. Usually this difference is of the order of — dt—

1 n approximately §555 di- Before slipping the tyre on the central portion,
it is heated so that its internal diameter becomes greater than the dia
meter of the central portion; the fitted tyre contracts upon cooling 
land presses the central portion. A tensile force At appears in the tvre, 
and a reaction p, between the tyre and the central portion (Fig. 36 (b)).
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If we cut the tyre across the diameter (Fig. 37), the two Forces 
N must balance the total pressure on the internal surface of the 
cutoff portion of the tyre. Let us write down the equilibrium 
condition by projecting all the forces on the /pax is (Fig. 37). A pres
sure p ds acts upon the element of length ds of the lyre; its projection
on the //-axis is equal to —pds sin a= —p-y sin a da, because ds=*

=  4  da. The equilibrium condition takes the form *0
n

2N — C p y s in a d a  =  0, or 2N— p -y fsina< 2a= 0  
ahc  o

whencefrom

2N—pd= 0  and /V =  y  , or p =  ̂

Thus we have one static equation for two unknowns N and p; this 
is a statically indeterminate problem. The unknown forces can be 
determined only by considering the joint deformation of the structure.

The tension in the lyre and the compression in the central portion 
should be such that they level the difference between Ihe diameters 
di and d2. Neglecting the deformation of the central portion due to 
its much greater mass as compared to that of the tyre, we find that 
the levelling of the difference in diameters takes place chiefly due to
elongation of the tyre. If this difference is y  of the lyre diameter,
then the relative elongation &R of the diameter and, consequently,
of the whole tyre will also be

The relative elongation of the tyre under force N is e4v=j% , where
A is the cross-sectional area of the tyre. Equating the values ert=» 
=e.v, we obtain an extra equation

JV = 1
EA n ’ ti

whence

P =
2EA
n r (4.16)

N EThe stress in the tyre is cr— .
In formula (4.16) d may be replaced (instead of the original diameter 

d2) by dt, because the difference in the diameters is infinitely small. 
Let us consider a numerical example (the tyre of a freight wagon

13 cm broad and 7.5 cm thick). Let d=r/|=900 mm; E—
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**2xl0‘ kgf/cm*; A =7 .5x  13=97.5 cm*. Then we have
2X10*

1000 =  2000 kgf/cm4

N =  2X 5 =  195 000 kgf =  195 tf

P
2X2X I0*X97.5 

90Xl(Kk) =  4330 kgf/cm

§ 20. Tension and Compression in Bars Made 
of Heterogeneous Materials

This type of bars belongs to the group of statically indeterminate. 
As an example, we shall discuss how to determine the dimensions of a 
composite column (Fig. 38) under the action of compressive forces
P. The column consists of a round steel bar of diameter d* and is

Fig. 38

located inside a bronze jacket of external diameter db and wall thick
ness I.

Let us introduce the following notations:
Ao— cross-sectional area of the bronze pipe;
A s— cross-sectional area of the steel bar;

lo«l> £*— permissible stresses and moduli of elasticity of 
bronze and steel, respectively.

The required dimensions of the bar should be such that enable 
it to withstand load P.

Let us find stresses Oj, and <r„due to load P over areas Ai and A„ 
respectively, and write down the strength condition.

The bar is axially compressed by forces P applied at the centre of 
gravity of the section through rigid slabs 5 whose deformations are 
considered negligible (Fig. 38). The part Pi of the compressive forces 
is transmitted through the bronze jacket, and part P a, through the 
central steel bar (Fig. 39). We have only one equation of statics to 
determine these two forces which give rise to stresses in the steel bar 
and bronze jacket:

P ,+ P „  =  P (4.17)
Thik is a statically indeterminate problem. The second equation 

is obtained from the condition of joint deformation according to
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which both the bronze jacket and steel bar of the column (Fig. 39) 
must shorten by the same length A/, since the top and the bottom 
planes of both coincide. From Hooke’s law we have

Af = Pbi P J
Eb EsAs

(4.18)

This is the second equation correlating Pb and P3. From (4.18) we 
find

P, AbEb

Substituting this value of Pt in (4.17), we get

and

Ph =
!■+A iM i

Ab Eb

P .=

crh =  '
Ab+As-gE, ’

b

p Eg
p T>-rb p

T T Z s i l  I I A& Ej> 
I + T ,IT

p

A,+ Abf -

(4.19)

(4.20)

The distribution of forces between the elements of statically inde
terminate structures depends upon the ratios of their cross-sectional

Fig. 39

areas and moduli of elasticity. From equation (4.18), taking into 
consideration that

we find that the ratio of the stresses in bronze and steel depends only 
upon the ratio of their moduli of elasticity:
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and the stresses are directly proportional to the moduli of elasticity. 
Assuming that under compression £ ,—2X10' kgf/cm2 and £?,=  1 x 
XiO« kgf/cm2 {Table 1), it is obvious that stresses in steel bar will 
always be two times higher than the stresses in bronze jacket. The per
missible stresses for steel are usually three times greater than permis
sible stresses for bronze. Therefore, if the stresses in the bronze jacket 
are equal to the permissible stress for bronze, the stresses in the steel 
bar will be smaller than the permissible stress for steel. I-lence the 
dimensions of the column are obtained from strength condition of 
bronze jacket under compression:

°b
P

Ah+ A s J *
(4.21)

Let £ —25 tf. The ratio A JA h of the cross-sectional areas is usually 
selected from design considerations. Let A JA b~2, and the permissible 
stress [o&]=500 kgf/cm2. Equation (4.21) will then be written as

__25 000 <*5og
^ ( !  +  2X2) Ŝ OUU’

wherefrom

A b 10 cm4 and A, =  2 x 1 0 = 2 0  cm*

The diameter of the steel bar is calculated from the condition 

>  As, wherefrom dt =  j / ^  =  j / =  5.05cm «  51 mm

The di mensions of the bronze jacket section can be found if we assume 
a particular value of wall thickness t  from design considerations. Let 
/=5  mm=0.5 cm. Now, applying the approximate formula for a ring, 
we have

Ab <  n dbt, wherefrom db >  ^  =  3I 4W 5 =  ^-48 cm ~  ^  mm

The deformations of such structures are calculated according to the 
general principles. Since the steel and bronze portions of the column 
shorten by the same amount.it is immaterial which of the formulas 
in equation (4.18) is employed for calculating A/.

§ 21. Stresses Due to Temperature Change
In statically indeterminate systems, stresses without any external 

loading occur not only due to the inaccuracy of manufacturing and 
assembling, but also due to a change in temperature.

Considerable stresses of this type may arise in rails welded into a 
continuous line. The rails are subjected to tensile or compressive stres-
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ses when the temperature changes with respect to that at which they 
were welded. The problem may be schematically expressed as follows: 
we have a restrained bar whose both ends have been rigidly fixed at a 
temperature find the stresses arising when the temperature changes 
to U (Pig- 40). The length of the bar is f, cross-sectional area is 4 
and modulus of elasticity is E.

Let us ascertain the forces which will act on the bar when the tem
perature rises from U to U- The bar will tend to elongate and push apart

—  I  -  
Fig. 40

the supports A and B. The supports will resist this with reactions 
directed as shown in the figure. These forces will cause the bar to be 
compressed.

These forces cannot be found from static conditions, because all 
that we come to know from the single equilibrium condition is that 
the reactions at points A and B are equal in magnitude and opposite 
to each other. The value ol the reaction P remains unknown, and hence 
the structure may be considered statically indeterminate.

The additional equation can be written from the consideration that 
length I of the restrained bar remains unchanged in spite of the change 
in temperature. This implies that shortening A/P due to force P is 
equal in its absolute value to the temperature elongation Ai, which 
the bar would have experienced had the end A been fixed and end B 
free to move. Hence

A/f—A/p =  0 (4.22)

This is the condition of joint deformation; it shows that the length 
of the bar remains constant despite the temperature change, since it 
does not tear away from the fixed supports.

Since
A/P =  ~ j  and A/t =  «/(<,— it)

where a  is the linear thermal expansion coefficient of the bar material, 
we have

a / ( / 8 /,)

and
i = a = a £  ( ( , - / . )  (4.23)
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i.e. the stress due to temperature change in a restrained bar of uniform 
cross-sectional area depends only upon the modulus of elasticity of the 
material, its linear expansion coefficient and the temperature difference 
and not upon its length or the cross-sectional area.

Force P may be calculated from the expression

P = aE A [tt - Q

In this example, if /*>/„ stress a will be compressive, because the 
direction of reaction P inside the bar has been considered positive. 
If we follow the generally accepted convention of writing the compres
sive stresses with a minus sign, and the tensile stresses with a plus 
sign, then formula (4.23) should be 
written in the following manner to 
automatically give the proper sign:

<j—a E (tt — tt)
If the cross-sectional area of the bar 

is not constant along its length or if it 
is made from different materials, or if 
the supports permit a slight change in 
length, or if all these conditions take 
place simultaneously, the method of 
determining thermal stresses somewhat 
changes although basically it remains 
the same.

The variability in the cross-sectional 
area and the use of different materials 
must be taken into account when calcu
lating A/; it is determined as the sum 
of elongations calculated separately for 
each portion. The possibility of the 
bar to slightly change its length is re
flected in the equation of joint deforma
tion (4.22); the difference of deforma
tions caused by the temperature change and the forces is in this case 
not equal to zero, but equal to the length, by which the bar is free to 
elongate.

A steel bar consisting of two parts of length /i=40 cm and fa=60 cm 
and cross-sectional area /41=10 cm* and Aa= 20 cm*, respectively, 
has one end rigidly fixed whereas the other end misses the support 
by Ao^O.S mm (Fig. 41). Find the stresses in both the parts if the tem
perature increases by o0°C, a=125X 10“7.

^ Increase in temperature causes elongation of the bar by Al t, and 
the compression from the support reaction P results in its shortening 
by'Alp. The difference of these two deformations (in absolute value)

4-3910
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is Ao (see Fig. 41):
- a/ , - a/ „ = a0

This is the condition of joint deformation. The respective values of 
Alt and Alp are

A/t = a /  ( / i+ /a),

Therefore
M i l
/|4# J A,

i ld l l  
/i/ij J

whencefrom
D _  jaf (fi +  /a)^ A ,1 EAj  _  [125X10-?X 100 x60—0.03]X2Xl08Xl0

4 +&] ^ R l]
=  9300 kgf

Stress in the upper portion is
. P 9300 n o A i - r ,  .  o = -^ -  = — =930 kgf/cm*

Stress in the lower portion is
0" = ^ - = ^ ? = 4 65kgf/cra*

(both the stresses are compressive).
Had there been no gap A0, the force as well as the stresses would 

have increased 1.92 times.

§ 22. Simultaneous Account for Various Factors
Sometimes, in statically indeterminate systems, we have to consider 

simultaneously the effect of external forces, change of temperature 
and manufacturing inaccuracies. The problem can be solved in two 
ways: first method-simultaneous account for all the factors. In this 
case the equation of joint deformation must contain terms reflecting 
the effect of all the factors (load, temperature and manufacturing inac
curacies). The forces and stresses obtained as a result of such a compu
tation are final.

In the second method, we compute separately the forces and stres
ses due to the load, temperature and manufacturing inaccuracies. In 
other words, a number of separate problems are solved, each problem 
taking into account only one factor. The final forces and stresses are 
obtained as the algebraic sum of the values obtained from each of the 
solutions. The second method is often simpler and more convenient,



Ch. 4] Design of Statically Indeterminate Systems 83

although it calls for more calculation. I t  is known as the method of 
cumulative action of forces. This method is valid because of the appli
cability of the principle of superposition of forces. When deformations 
are small in magnitude, the deformation caused by a force or a group of 
forces either does not affect the deformation due to another force or 
group of forces, or the effect is so small (less by an order) that it may

Fig. 42 Fig. 43

be neglected. This principle is not applicable for extremely flexible 
or highly deformable structures like long thin bars, membranes, 
rubber parts, etc.

We shall solve the following example to illustrate the technique 
of simultaneous accounting of various factors.

Three parallel vertical rods of equal length 1=2 m support a rigid 
beam AB to which a force P—4 tf (Fig. 42) is applied. The distance 
between the rods and from the middle rod to the point of application 
of force P are a= 1.5m, b= 1 m and c=0.25 m, respectively. The middle 
bar is shorter than its design length by 6=0.2 mm. Data about the 
bars are given in Table 7.

Table 7

No. of rod Material A
(cm*)

B
(kgf/cm*) a

1 Conner 2 IX io* 17x10”*
2 Steel 1 2X10* 13x10"*
3 Steel 3 2X10* I3X10-*

During operation the temperature of the structure may rise up by 
by 2(fC.

Find the stresses in each of the three rods.
Let us suppose that forces Nu iV1? and Ar3 in all the rods are tensile. 

The reactions at the supporting points, equal to them, are shown in
4*
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Fig. 42. As the forces are parallel, we can write down only two equilib
rium equations. The first is the sum of the projections of forces on 
the vertical axis and has the following form:

+  =  0 {4.24)

For the second equation let us take the sum of moments of all forces 
with respect to the point of support of the second rod:

Nla— Nab+Pc=Q (*■25)

These two equations are insufficient to determine three unknown 
forces. We must consider the deformations. Figure 43 shows a sketch 
diagram of the structure, with the assumption that all the three rods 
are subjected to tensile forces. From this diagram we may write down 
the following condition of joint deformation:

— A/, — A a (4.26)

The values of the deformations entering into the equation (taking 
into account the temperature change) will be as follows:

_n±
EiAi 4 -cc

4 '» = 2%L+ a >l i ‘

j- a 8/ A/

Putting these values in equation (4.26) we get 
N J At,I

E$A9 
N J

- « , ( At ■

(-a*/ At ■

E,A| ■aJAt a~b
a, lM—t>

(4.27)

Solving equations (4.24), (4.25), and (4.27) simultaneously, we 
determine Nu Nt, and Ata. Their values are

Nt =  792 kgf, N2 =  1020 kgf, and JV, =  2188 kgf

Had our assumption about the direction of the forces been wrong 
for any of the rods, the value of that force would have been obtained 
with a negative sign.

Let us now determine the corresponding stresses:

in the first rod <j1= ^ = ^  =  396 kgf/cm* 

in the second rod 09 =  ̂  — 1020 kgf cm* 

in the third rod oa= ^ = ^ ^ = 7 2 9 k g f/cm *
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The problem could also have been solved by considering separately 
the effect of load, temperature and manufacturing inaccuracies and 
subsequently adding the stresses. The result would obviously have been 
the same.

§ 23. More Complicated Cases of Statically 
Indeterminate Structures

In all the statically indeterminate systems that we have considered 
till now, the number of unknown forces exceeded by one the number 
of static equations. They were all first-order statically indeterminate 
problems; one of the unknown forces may be considered as a redundant 
unknown, which cannot be determined from the static equations.

1

i

az

ali

60S W#

Fig. 44

There may be cases when the number of these redundant unknowns 
is greater; in such cases it becomes necessary to write down an equal 
number of extra equations from the conditions of joint deformation 
of the system. The structure shown in Fig. 44 may be taken as an 
example: a very rigid bar is hinged to a fixed support suspended 
from three rods and loaded with force P.

We may write down three static equations for bar AB. The number 
of unknowns is however five: forces in the three rods and the horizontal 
and vertical components of the reaction at hinge A.

The extra equations can be written by considering the deformation 
of the system. Since we are considering bar AB to be very rigid, its 
deformation may be ignored. Remaining straight, it will occupy posi
tion ABt- From the similarity of triangles we may find the relation 
between Alu A a n d  A/,; this will give us two extra equations, name
ly:

Ali <*x
A1$ O) and A tj  (lj

A l» ~  a9 
cos 45°

Further solution is the same as in the example discussed above (§ 18).
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CHAPTER S

Account for Dead Weight in Tension 
and Compression. Design of Flexible Strings

§ 24. Selecting the Cross-sectional Area with the Account for the 
Dead Weight (in Tension and Compression)

Till now, in determining the external forces stretching or compress
ing the elements of structures, we ignored the dead weight of these 
elements. The question arises: Does not this simplification introduce 
a considerable error in the computations? Let us therefore determine 
the stresses and deformations of a stretched or compressed bar ac
counting for its dead weight.

Let a vertical bar (Fig. 45 (a)) be fixed at its upper end and load p 
suspended from its lower end. The length of the bar is /, its cross-sec

tional area is A , modulus of elasticity E and specific weight y. Let 
us calculate the stresses in section MN  located at a distance x  from 
the free end of the bar.

Cut the bar through section MN  and separate the lower part of 
length x  loaded by force P and its own dead weight yAx (Fig. 45 (b)). 
These two forces are balanced by stresses acting on face MN  from cut- 
oil portion. These stresses will be normal, uniformly distributed and 
directed outwards of the portion of bar under consideration, i.e. they 
will be tensile. The magnitude of these stresses will be

Thus, when the dead weight is accounted for, the normal stresses 
are found to be not constant along the length of the bar. The most 
stressed and hence the critical section will be the uppermost section

P f
(b)

Fig. 45

(5.1)



87Ch. 5] Dead Weight. Design of Flexible Strings

for which x  has Hie maximum value equal (o /; stress in this section 
will be

It is this section which must satisfy the strength condition

Herefrom the required cross-sectional area may be calculated as

A > W = ^l

(5-2)

(5.3)

(5.4)

The only difference between this formula and the one for deter* 
mining the cross-sectional area of a stretched bar without account for 
the dead weight is that quantity yl is subtracted from the permissible 
stress.

Let us calculate the stresses for both the cases to evaluate the im
portance of this correction. Consider a mild-steel bar 10 m long having 
ta l= 1600 kgf/cm1 and the quantity v*=7.85 X 10"3X 10*=7.85 kgf/cm2. 
Thus, for a mild-steel bar the correction in the cross-sectional area 

7 85will be i.e. approximately 0.5%. Let us now consider a brick
column also 10 m long, which has [o]=12 kgf/cm1 and the quantity 
y/=1.8x 10“SX 103=  1.8 kgf/cma. Therefore, the correction for the
brick column will be i.e. 15%.

It is obvious that the effect of deadweight in tension and compres
sion may be neglected if the bar (column) is not very long or if it is 
not made from a low-strength material (brick, stone) with a great 
weight. The dead weight has to be considered when designing long 
elevator ropes, various types of long rods and high stone structures 
(beacon towers, supports of bridge trusses, etc.).

In such cases it becomes necessary to determine the most expedient 
shape of the element. If we select the cross-sectional area of a rod 
(Fig. 45) according to formula (5.4) and take it uniform along the whole 
length, the material of the element will be poorly utilized: the nor
mal stress will reach the permissible limit only in the uppermost sec
tion. In all other sections we will have margin of stress and conse
quently excessive material. Therefore, it is desirable to design the 
element in such a way that the normal stresses are the same in all 
its sections (perpendicular to the axis).

Such an element is classified as the bar of uniform strength under 
tension and compression. The element will have minimum weight if 
the stresses are equal to the permissible stress.
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Let us consider a long bar subjected to compression by the force P 
and its own weight (Fig. 46). The nearer a section is to the base, the 
greater is the force causing stresses in the section and therefore the 
greater must be the dimensions of the section area. The bar will have 
a shape continuously widening downwards. Cross-sectional area A 
will change along the height depending upon the value of x t i.e. A — 
=/(*)•

Let us establish a relation between the cross-sectional area of a sec
tion and its distance x from the top end.

The cross-sectional area of the top 
end A q is determined from the 
strength condition:

or A ' = w

where [or] is the permissible stress 
under compression; stresses in all 
other sections must also be equal to

Let us take two infinitely close 
sections at a distance x  from the top 
end to elucidate the variation of 
cross-sectional area with the height 

of the section. Let the distance between the sections be dx. Let us de
note the area of the upper section by A (jc) and the area of the adjoining 
section by A (x)+dA (*). Increment dA (x) of the area between the two 
sections must bear the weight yA (x) dx of the element of the bar en
closed between these two sections. Since it should cause a stress equal 
to the permissible stress lal on the area dA (x), we may determine the 
increment of area dA ( jc)  from the condition

(S'*)
wherefrom

A[x)

Integrating both sides, we get

In /I(* )+ C = j2 j*  (5.6)

At x=0  the area A (.v)=j40; putting this value In equation (5.6), 
we have

ln A i+ C ^ O , or C=*— In A,

P

rig. 46
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Therefore,

£ g - & ‘

and

A{x) = A0eW *  (5 7 )

If the cross-sectional area changes exactly according to this law, 
the lateral faces of the bar have a curved shape (Fig. 46), which com
plicates the machining operation and increases production cost. For 
this reason usually a shape approxi
mately corresponding to the shape 
of a uniform-strength bar is em
ployed, for example a truncated 
pyramid with plane faces.

The above computation is only 
approximate. We had assumed that 
only normal stresses are transmitted 
through the whole section of the 
uniform-strength bar; actually, near 
the edges, the stresses are directed 
along the tangent to the lateral sur
face.

In long ropes or stretched rods 
the shape of a uniform-strength 
bar is obtained approximately by 
dividing the bar lengthwise into a 
number of parts, the cross-sectional area remaining constant over each 
separate section (Fig. 47)—a so-called step bar is obtained.

For a given length the cross-sectional areas 4 ,, A s, . . . are deter
miner! in the following manner. The cross-sectional area of the first 
portion from the bottom will, according to formula (5.4), be

A -  P -  ' M -Y h

The cross-sectional area of the second portion can be determined 
by considering it to be loaded by external force P and the weight of 
the first potion y A J t

A — ^
4 "  |CFj —

The cross-sectional area of the third portion is determined by adding 
the weight of both the first and second portions to force P. The cross- 
sectional area of all other portions can be determined in identical man-

h
-f-

’1
h

k

- f

Fig- 47
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ner. Let us consider the following example to compare the effectiveness 
of using uniform-strength bars, step bars and bars of constant section.

A support with height h —4 2  m is subjected to compression by axial 
force P=400 t f . Assuming the unit weight of the laying as 2.2 tf/m3, 
and the permissible stress under compression as 12 kgf/cm3, compare 
the volume of laying for 

support of constant section; 
support made of three prismatic parts of equal length; 
support of uniform strength under compression.
We shall carry out the calculations in tons (force) and metres.
For the first case the cross-sectional area is

A _ _ MO _  i j c _ j
la} -A y  “  120 - 4 2  X 2 .2“

The volume
V =  Ah =  14.5 x42 «  610 m3 

In the second case, the area of the upper portion is
400

. , h 120— 14X2.2 
'*1—3*

=  4.48 m*

The cross-sectional area of the second portion is

P +  Yi4,T  4004-2.2x4.48X14 *
h--------------120— 1*4X2.2---------6  04 m

l° l ~ 3 ?

The cross-sectional area of the third portion is

t  _ P + ' f'/,1T + ' l’/ l jT  400+ 2.2 x4.46X14 +  2.2 x  6.04X14
‘ ( O l - A y  I io — 14X2.2

3

The total volume of the laying is

V = (At + A a + A , ) i = (4.48+6.04 -f 8 .12) 14 =  261 m»

=  8 .12 m3

The same result may be obtained from the condition that the force 
at the bottom of the third portion, equal to P+G (where G is the total 
weight of the support), is simultaneously equal to IcrlAa; therefore

1 /  6   |<Tl Aa— P n e ! t  ,
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In the case of support of uniform strength under compression* the 
cross-sectional area of the upper face is

A, _P _400 
l<r] “  120 =  3.33 m*

The area of the bottom section is
V . 2 2 X * 2

AA= A <fi«» = 3.33e 120 =  3.33e° 77 =7.15 m*

The weight of the support of uniform strength G is determined from 
the condition

P + G  = [o]Ah
wherefrom

G =  [<j] Ah— P =  120x7.15—400 =  460 tf 

The volume of the support is

| / = T = ^ =209nia
which is 20% less than the volume of the step support and approxi
mately three times less than that of the support of constant section.

§ 25. Deformations Due to Dead Weight
In determining the effect of dead weight on deformation under ten

sion and compression we must take into account that the relative 
elongation of various portions of the bar will vary just as stress a(x). 
To calculate the total elongation of the bar of constant section let us 
first determine the elongation of an infinitely small portion of length 
dx, which is located at distance x  from the end of the rod (Fig. 48). 
The absolute elongation of this portion (equation (2.5)) is

A* . e ^ * _ *  [ '+ ,,]
The total elongation of the bar

Al = j&dx = j %  [-x + H=-E?-+-!£
As for deformation in uniform-strength bars, the relative elongation 

is the same over the whole length because the normal stresses are 
the same in all the sections and equal to the permissible stress [<j1:
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The absolute elongation of a bar of length I will be

M  — d  =
f<T|/__ pi 

E ~  EAo

(the notations correspond to Fig. 46).
The deformation ol step bars should be determined by parts, calcu

lating the deformation separately for each prismatic portion. The de
formation of each portion has to be 
determined by considering not only 
its dead weight, but also the weight 
of portions which affects its defor
mation in addition to the external 
force. The total deformation is ob
tained as the sum of deformations of 
separate portions.

§ 26. Flexible Cables
A. In engineering practice, we come 
across one more type of a stretched 
element in which the dead weight 
plays an important part in determin
ing its strength. These are the 
so-called flexible cables. This term 

covers the flexible elements in electric transmission lines, cableways, 
suspension bridges and other structures.

Let us consider (Fig. 49) a flexible cable of constant section loaded 
by its own weight and suspended Iron! two supports at different heights. 
The cable sags along curve AOB under its own weight. The horizontal 
projection of the distance between the supports (points of fixation) is 
called the span and is denoted by I.

As the cable is of a constant section, its weight must be distributed 
uniformly over its length. Generally, the sag of the cable is small 
as compared to its span, and there is little difference (not more than 
10%) between the length of curve AOB and its chord AB. In this case 
we may consider with a sufficient degree of accuracy that the weight 
of the cable is distributed uniformly not over its length, but over the 
horizontal projection of its length, i.e. along the span I. We shall 
study only this type of flexible cables. Let us assume that the intensity 
of the load uniformly distributed along the cable span is q. This load, 
having dimensionality iforcet/llengthl, may be not only due to the 
weight of the cable per unit span but also the weight of ice or any 
other load also distributed uniformly. This assumption about the law 
of load distribution considerably simplifies the calculations, but si
multaneously renders them approximate. In exact calculations (load

r
z
i

T

pu

f

Fig 4B
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distribution along the curve) the sag curve is a catenary, whereas in 
approximate calculations it is found to be a quadratic parabola.

Let us take the lowest point of sag 0  as the origin of coordinates 
(Fig. 49); its position, which is as yet unknown, obviously depends 
upon the magnitude of q, upon the ratio of the length of cable along 
the curve to the span and also upon the relative location of the sup
ports. Evidently, tangent to the curve at point 0  is horizontal. Let 
us direct the #-axis to the right along this tangent.

m

Let us cut a part of the cable by two sections—one passing through 
the origin of coordinates and the other at a distance x from it (section 
nm). Since the cable is flexible, i.e. capable of resisting only tension, 
the discarded portion can act on the remaining portion only in the 
form of a iorce directed along the tangent to the sag curve at the point 
of section. Any other direction of the force is ruled out.

Figure 50 depicts the cut-out portion of the cable with Ihe forces 
acting on it. The uniformly distributed load of intensity*/ is directed 
vertically downwards. The action of the left discarded portion (ho
rizontal force H) is directed to the left because the cable is working 
under tension. The action of the right discarded portion, force T , is 
directed to the right along the tangent to the sag curve at this point.

Let us write down the equation of equilibrium for the cut-out por
tion of the cable. Let us take the sum of the moments of all forces 
about the point of application of force T and equate it to zero. Pro
ceeding from the approximation introduced earlier, we consider that 
the resultant of distributed load of intensity q is qx and that it acts 
at the midpoint of segment x  (Fig. 50). We get

Hy— q x j =  0, wherefrom y = z f f  (58)

It follows from this equation that the sag curve is a parabola. When 
both the supports are at the same level, In this case /  is
called the sag. It can be easily determined from equation (5.8) that 
due to symmetry the lowest point of the cable is at the middle of the
span, and Substituting the values ofA =6=-jand y= f in
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equation (5.8), we get

/ - &  (8.9)

From this formula we determine the value of H:

H=s%f (5.10)

The quantity H is called the horizontal tension of the cable.
Thus, if load intensity g and tensile force H are known, we can de

termine sag f  from formula (5.9). If q and /  are given, then the tensile 
force H may be determined by formula (5.10). The relation between 
these quantities and the length of wire s along the sag curve may be 
established with the help of the well-known approximate mathemat
ical formula *

s » / ( l + -§ £ .) (5.11)

Let us return to Fig. 50 and write down one more equilibrium 
condition for the cut-out portion of the cable, namely, let us equate 
to zero the sum of projections of all the forces on the x-axis:

— H +  T  cosot =  0

From this equation we find 7\ the tensile force at an arbitrary point:
H 

cos a (5.12)

It is evident from equation (5.12) that force T increases from the 
lowest point of the cable towards the supports and is maximum at 
the suspension points, where the tangent to the sag curve makes the 
maximum angle with the horizontal axis. This angle is small when the 
sag is not considerable, therefore we may consider with sufficient ac
curacy for practical purposes that the cable is subjected to the action 
of a constant force equal in magnitude to horizontal tension H. The 
strength design of a cable is generally carried out for this value. If, 
however, it is essential to design for the maximum force at the supports,

• Element of curve length d s ^ d x ^ / ' '  from formulas (5.8) and

(5.10) It follows that Therefore

After integrating from jc=0 to x=U2 and multiplying by 2, we obtain formula (5.11).



Cft. $| Dead Weight. Design of Flexible Strings 95

ils value for a symmetrical cable is determined in the following manner. 
The vertical components of support reactions have the same value
equal to half of the total load on the cable, i.e. The horizontal
components are equal to force H which Is determined by formula 
(5.10). Total reactions of the supports are obtained as the geometrical 
sum of these components:

r « -

If the cross-sectional area is denoted by A, the strength condition 
for a flexible cable may be written as

a

Replacing H by its value from formula (5.10), we get

Sag f  can be determined from this formula provided /, q, A and 
lal are'known. The solution is much simpler if q is considered to ac
count for the dead weight of the cable only; then q=yA, where y  is 
the unit weight of cable material, and

x yAi* _  yf*
'  —  8 i 4  [ a T “  8 [ a J

i.e. cross-sectional area A does not affect the value of /.
B. If the suspension points are at different levels, we find /i and /a 
by putting a and x=b  in equation (5.8):

f —QJLH (5.13)

From the second expression we determine tension

H = qb*

Dividing the first expression by the second one, we find

h  “  **
or a = ± b / %

(5.14)

Keeping in view that bA-a—U we get

b ± b  Y J T  = l or b =
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Substituting this value for b in formula (5.14), we finally determine *

I I
2 (V f*±  Vfi)*

(5.15)

Two signs in the denominator indicate that the cable may have two 
main shapes of sagging. The first mode, corresponding to the smaller 
value of n  (plus sign before the second root), gives us the peak of the 
parabola between the cable supports (Fig. 49 and the dashed curve 
A O iB  in Fig. 51). At the higher value of tensile force H  (minus sign 
before the second root) the peak of the parabola will be located to the

11

left of support A (solid curve 02AB in Fig. 51). We get the second mode 
of the curve.

A third shape (intermediate between the two main) of sag is also 
possible; it corresponds to the condition / j= 0 . In this case the origin 
of coordinates 0 3 coincides with point A. One or the other shape will 
be obtained depending upon the ratio between the length of cable along 
sag curve AOB (Fig. 49) and chord A B.

If sags / 1 and f a are not known for a cable hanging from supports 
at different heights but tension H is known, then the values of a and 
b as well as sags f t and fs can be easily determined.

The difference h in the level of supports (Figs. 49 and 51) is
A =  W »

Let us substitute the values of /i and f* from equation (5.13) in the above 
expression and transform it keeping in mind that a + 6 = /:

h =■§7j +  a)~ -ifij(b—a)

• The formula for / /  In this form was first obtained by Prof. I. Ya. Shtaermau 
(iVatika i Tekhnika, Odessa Polylechnieal Institute Journal, 1925).
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wherefrom
b—a = 2Hh

ql

and since a+b**l,
„ l Hh
a ~  2 ql

, i_ I . Hh and fr=3f  +  *̂ 7-

It should be noted that for a>0 the first shape of sag will occur 
(Fig. 51), at c<0, the second shape of sag, and at a=0, the third shape. 
Putting the values of a and b in expressions (5.13), we get the values 
of ft and /,:

f h
' l T

and
f q r - .H /r - .h  
'* *lx8H + 2qii ^‘T

C. Let us now see what will happen to a symmetrical cable covering 
a span I if its temperature increases to U and the load intensity to qt 
(say, for example, due to ice-covering), the initial temperature and 
load intensity being U and qu respectively. We assume that in the ini
tial condition either sag f> or tension H is known. (Knowing one of 
these two quantities we can always determine the other from formula 
<5.10).l

While calculating the deformation of the cable, which is considerably 
smaller quantity as compared to the cable length, we make two assump
tions: the length of the cable is equal to its span, and tensile force is 
constant and equal to H. These assumptions give a small error in gently 
sloping cables.

In this case the cable elongation due to the increase in temperature 
will be

A S i*  a  ( / . — JO / (5.16)

where a  is the linear thermal expansion coefficient of the cable mate
rial.

The cable elongates when the temperature increases. This will re
sult in an increase in its sag and, consequently, in accordance with 
formula (5.10) decrease in its tension. On the other hand, from the 
same formula (5.10) it is evident that tensile force will increase due to 
increase in load. Let us assume that the final effect is the tightening 
of the cable. Then, according to Hooke’s law, the elongation of the 
cable due to increase in tension will be

(H.>— H,) l
— zr1— (5.17)
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If H2< H u As2 will be negative. When the temperature decreases, 
A Si is negative.

Thus, the length of the cable in its second condition will be the sum 
of its length in the first condition and the deformations due to the in
crease in temperature and tensile force:

s8 =  Sj “1~ AS|-f-ASj (5.18)

The change in the length of the cable will also cause change in its 
sag. Instead erf it will become^.

Let us now substitute for St and s2 in equation (5.18) their expres
sions from formula (5.11), and for the deformations Asx and As8 their 
values from formulas (5.16) and (5.17). Then equation (5.18) takes the 
following form:

Replace/i and f t by their values from formula (5.19):

a n d

After certain transformations, equation (5.19) may be written in 
the form

« l  =  [ ^— (5.20)

Having determined tension Hz from equation (5.20), we can find f 2 
from formula (5.9).

If the transition from the first condition to the second one occurs 
only due to a change of temperature without any change in the load, 
then in equation (5.20) load intensity qt is replaced by qt. If the tran
sition occurs only due to a change in the load intensity without a 
change of temperature, the middle term in the square bracket is 
equated to zero.

Obviously, equation (5.20) is also valid for decrease in temperature 
and reduction in load intensity.

When the sag is not small compared to the length of span, the for
mulas derived above strictly speaking are not valid, because the actual 
sag curve—catenary—will differ appreciably from the parabola ob
tained by assuming uniform load distribution over the span and not 
over the length of the cable, what in reality takes place.

Accurate calculations reveal that the errors in the value of H are
as follows: for the error does not exceed 0.3%, for '
the error reaches 1.3%, and for j = y  the error is slightly more 
than 5%.
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CH A PTER 6

Compound Stressed State. Stress and Strain

§ 27. Stresses Along Inclined Sections Under Axial Tension or Com1 
pression (Uniaxial Stress)

In the preceding sections, while testing the strength of a stretched 
or compressed bar, we determined stresses only in a section perpendi
cular to its axis. However, proper evaluation of the critical stresses 
in the bar is possible only if we know its state completely; this requires 
the ability to calculate stresses not only in sections perpendicular to 
the axis.

Let us calculate stresses acting in an arbitrarily inclined section. 
Let us consider a prismatic bar stretched by forces/* (Fig. 52). Suppose

Pk
A )£*•

m

I

p\<

\ 
\

PM
Fig. 52

the bar is cut into two portions /  and II  by plane mn forming anglea 
with cross section mk perpendicular to the axis. The normals to these 
sections also form the same angle.

Let us assume that angle a  is positive if mk coincides with mn when 
rotated counterclockwise. We shall call normal OA directed outwards 
with respect to the cut-off portion of the bar the outer normal to sec
tion mn. Let us denote the cross-sectional area mk by A 0 and the area 
of section mn by Aa.

To determine the stresses transmitted through the given section from 
the upper portion (/) to the lower portion (II), we imagine the upper 
portion to be removed and its action on the lower portion replaced by 
stresses pa. To maintain the equilibrium of the lower portion, stresses 
pa must compensate for force P and must be directed parallel to the 
axis of the bar. It is evident that the stresses are not perpendicular to 
the plane on which they are acting. Their value will also differ from 
that in section mk.
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Assuming that at a sufficient distance from the point of application 
of external forces P stresses p* are uniformly distributed over section 
mn, we find

ABut since A a=*-----,w cos n.
P  cosa P « = —7— =  cosano

p
where a ,= j*  is the normal stress in section mk perpendicular to the
direction of the tensile force.

The magnitude of stresses p« changes with angle a. In order that 
we may have tostudy only one and the same type of stresses irrespec
tive of angle a, we resolve stresses p« into two components: one in 
plane mn and the other in a plane perpendicular to it (Fig. 53). Thus,

Pa

P t
Fig. 55

stress pa acting at point A of plane mn may be replaced by two mutual
ly perpendicular stresses: normal stress rrB and shearing stress t*. 
The magnitude of these stresses will depend upon angle a which the 
normal to the section forms with the direction of the tensile force. 
From Fig. 53 we have

C7a 33 Pa, cos a  =  a„ eosaa (6.1)
T« =  PaSina=o#sinacosa =  y a 0sin2a (6.2)

Let us lay down the following conditions as regards the signs of 
stresses a and t a. Tensile stresses oa, i.e. stresses coinciding with the 
direction of the outer normal will be considered positive; normal stres-
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ses in the opposite direction, i.e. compressive stresses, will be con
sidered negative.

We will consider the shearing stresses positive if their direction is 
such that the outer normal has to be rotated clockwise to make it co
incide with them. The reverse direction of t« will be considered nega
tive.

Figure 54 shows the accepted convention as regards the signs of 
a ,  a ,  and t .

We always have only two types of stresses acting at every point of 
the cutting plane irrespective of its angle of inclination a: normal and 
shearing.

Figure 55 shows these stresses acting on a thin layer of the material 
(hatched in the figure) cut out of the stretched bar by two parallel 
sections /- / and 2-2. Each of the planes experiences normal tensile 
stresses oa as well as shearing stresses t a which make sections 1-1 and 
2-2 shear one parallel to the other.

It means that the two types of stresses correspond to two types of 
deformations: lengthwise deformation (elongation or shortening) and 
shear. Corresponding to these two types of deformations we have two 
inodes of failure of the material: by breaking away and by shearing.

To check the strength of the material, it is essential to determine the 
maximum values of att and ra depending upon the location of plane rnn.

It follows from formulas (6.1) and (6.2) that oa reaches its maximum 
value when cos4 a  is equal to unity, i.e. a= 0 . The maximum value 
of Ta is obtained when sin 2 a= l, i.e. when 2a=90g or a = 45°. The 
maximum values of oa and t a will be

maxoa =<r() =  -^ -, maxxa =  ̂  (6.3)

Hence, the maximum normal stresses are acting in sections perpendi
cular to the axis of the bar; the maximum shearing stresses act in 
sections forming an angle of 45° with the axis of the bar and are half 
of the maximum value of the normal stresses.

A logical question that arises is for which of these stresses should 
the bar be tested, which of these stresses plavs the decisive role in the 
failure of material. These points will be discussed in detail in Chapter 7.

§ 28. Concept of Principal Stresses.
Types of Stresses of Materials

In the preceding chapters we got acquainted with the behaviour 
of materials under axial (or, as it is often called, simple) tension or 
compression. However, there may be cases in practice when the ele
ment is subjected to tension or compression in two or three directions 
under the action of external forces, i.e. it finds itself in a composite 
stressed state.
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In § 27 we showed that even under simple tension two types of stres
ses are possible: normal a and shearing t. It follows from formulas
(6.1) and (6.2) that in sections perpendicular to the axis of the 
stretched bar (a=0), wehaveonly normal stresses (t= 0), and In sections

parallel to its axis (a—90°), we 
have neither normal nor shearing 
stresses (cr=0 and t=0).

The planes in which the shearing 
stresses are. totally absent are called 
principal planes; the normal stresses 
acting in these planes are called 
principal stresses.

It has been proved In the theory 
of elasticity that three mutually per
pendicular principal planes through 
which three principal (normal) 
stresses are transferred can be drawn 
through an arbitrary point of a 
stressed body. Two of them have ex
treme values: one is the maximum 
normal stress, the other is the mini
mum normal stress; the third prin

cipal stress is intermediate between the above two. In every point of 
a stressed body we carl isolate an elementary cube whose faces are the 
principal planes. The cube material is stretched or compressed by 
three mutually perpendicular principal stresses which are transmitted 
through the principal planes (Fig. 56).

In the case of simple tension (§ 27) one principal plane at every point 
is perpendicular to the bar axis (a—O0), and the other two are parallel 
to it (a=90°). Since the normal stress is not zero (Ca^O) in the first 
principal plane and in the other two it vanishes, it may be concluded 
that in simple tension and compression out of the three principal stres
ses only one is not equal to zero at any point of the bar; this principal 
stress is parallel to the tensile force and the bar axis. This stress of the 
material is called uniaxial. The element isolated from the bar is de
formed in only one direction.

There are cases when the cubic element of the material is subjected 
to tension or compression in two mutually perpendicular directions 
or even in all three directions (Fig. 56). When two principal stresses are 
not equal to zero, the material is said to be in biaxial (plane) stress. 
When all the three principal stresses are not equal to zero in the given 
point, this pertains to the most general case of stress distribution in the 
material, the iriaxial (volumetric) stress; the elementary cube is sub
jected to tension or compression in all three mutually perpendicular 
directions.

Jn future we shall denote the principal stresses by ait a, and <j8.

Fig. 56
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The order of numbering the principal stresses will be set in such a 
way that Oi represents the maximum stress in algebraic value, and 
<ts the minimum one. The compressive stresses will be taken, as before, 
negative Therefore, if, for example, the principal stresses have the 
values of +1000 kgf/cm1, —600 kgf/cm1, and +400 kgf/cm1 the num
eration should be
<ji =  +  1000 kgf/cm1, <ia«  +  400 kgf/cm1, o4= — 600 kgf/cm1
then the condition will be satisfied.

Thus, we distinguish three kinds of stressed states:
1. triaxial stress, when all the three principal stresses are not equal 

to zero (for example, tension or compression in three mutually perpen
dicular directions);

2. biaxial stress, when one principal stress is equal to zero (ten
sion or compression in two directions);

3. uniaxial stress, when two principal stresses are equal to zero 
(tension or compression in one direction).

In § 27 we studied the stress distribution in uniaxial stressed state; 
below we give examples of planar and volumetric stressed states ex
plaining how stresses are distributed in different planes in these cases.

§ 29. Examples of Biaxial and Triaxial Stresses.
Design of a Cylindrical Reservoir

A. As an example of a composite stressed state we shall consider the 
stresses in the material of a thin-walled cylindrical reservoir which is 
filled with gas, steam or water at pressure of q atm, i.e. q kgf/cm1. The

side walls and the bottom of the reservoir are subjected to a uniformly 
distributed pressure q. The dead weight of the fluid in the reservoir is 
ignored.

The pressure on the bottom will tend to break the cylindrical portion 
across the cross section; on the other hand, the pressure on the side 
walls will tend to burst the reservoir along the generatrix of the cy
linder. Thus, if we isolate rectangular element A BCD from the cylin
drical portion of the resevoir, this element will be subjected to tension
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in two directions: by stresses cr' in sections perpendicular to the gene
ratrix and stresses a" in sections along the generatrix (Fig. 57).

The method of sections will be employed for calculating stresses 
o' and or". Suppose the internal diameter of the reservoir is D, and 
the thickness of its walls is/. Weshall consider / to be small as compared
lo £>(/< |).

Let ns imagine the reservoir (Fig. 57) cut along the plane 3nd con
sider the equilibrium of the cutoff pari, for instance, the right one

(b)
rtg. 58

(Fig. 58 («)). The resultant of the forces acting on the bottom and 
stretching the cylindrical portion of the reservoir along the generatrix is

The area of the ring (a thin strip of thickness / and approxi mate length 
jiD) upon which this force ads is

A »  InD

Hence normal stress in this section is:
rrZ>-

A IjiD 41
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Stresses a" in sections parallel to the cylinder generatrix will be 
found by isolating a ring at some distance from the reservoir bottom 
cut by sections mn and m V  at a distance a from each other and by 
considering a diametrical section of this ring (Fig. 58 (6)). The diametri
cal surface of the gas (or fluid) experiences a pressure? which has a re
sultant Pi^aDa. The area of the diametrical section (two walls) 
which bears this pressure in Ai=2ta, and stresses in the walls are

qDa qD 
' l tT  = - W

These stresses are two times greater than stresses n' acting in the 
ring section. s

Since there are no shearing stresses in the ring and diametrical sec
tions, the sections A and A\ qualify as principal planes, and stresses 
o' and o" as principal stresses. The third principal stress o‘" ——q 
acting on the reservoir wall in the radial direction is negligibly small 
sis compared to o ' and a"; it may therefore be considered equal to zero.

Consequently, element A BCD cut out of the reservoir wall (Fig. 57) 
is subjected to plane stress (biaxial tension). In accordance with the 
accepted numeration, the principal stresses are

. 0s =  TT and °3 =  0 M

Biaxial state of stress also occurs in spherical, conical and other 
thin-walled vessels, plates, various types of shells, etc.
B. The example of a triaxial stress is transfer of pressure from the balls 
to the race in a ball-bearing or from the wheels of a rolling stock to 
the rails.

As the contact between the rail head and the tyre may be looked 
upon as that between two cylinders of different diameters and crosswise 
generatrices, these surfaces must touch each other at a point. The nor
mal stresses arising at the point of contact when pressure is transmitted 
from one body to the other are known as contact stresses.

When force is transmitted, the materials of the tyre and the rail 
get deformed around the point of contact, and pressure is transferred 
through a contact surface of elliptical shape. The area of contact de
pends upon the pressure and the radii of the contacting surfaces. If 
we cut out a small cube (for example, with sides of 1 mm) of the rail 
material at the centre of the contacting surface, and if the faces of 
this cube are parallel and perpendicular to the rail axis (Fig. 59), 
then the stresses acting on the faces will be normal compressive *. 
Thus (Fig. 59(6)) we have three mutually perpendicular planes loaded 
by principal stresses o ', o", and a The emergence of lateral stresses

* These stresses are calculated in the theory of elasticity.
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a" and o '"  can be explained as follows: under the action of stress a ' 
perpendicular to the plane of transmission of pressure, the cube ma
terial tends to expand laterally, and this results in reactions o* and 
o '"  from the rail material surrounding the cube, that hinder transverse 
deformation.

The computed values of these stresses* show that they actually 
attain high values. Thus, for example, the values of o', or*, o '"  at the 
contact between the locomotive runner and rail are

ct' =  --110 kgf/mm*, o ' — 90 kgf/mm*, o ' " = — 80kgf/mm*

By applying the convention of numeration of principal stresses to 
this example, we get

ai = *=—80 kgf/mm*, o2 =* <f =* — 90 kgf/mm*, 
o3=o'=*r—n o  kgf/mm*

In the given example all the three principal stresses are negative. 
This is a case of triaxial compression. An example of triaxial tension 
ts the yielding of material at the neck in a specimen subjected to ten*

siofi. We also often come across cases of composite triaxial stressed 
state in which the principal stresses have opposite signs: o (!>0 
and oa< 0  (for instance, in the wall of a thick-walled boiler).

The triaxial stressed state is the most general stale of stress at a 
point; the biaxial and uniaxial stressed states are the particular cases 
when one or two of the three principal stresses become equal to zero.

* N. M- Belyaev, Compulation of maximum design stresses in compression of 
contacting bodies’*, in Proceedings of the Leningrad Institute of Railroad Engineers, 
issues 99 and 102 (1929).

Fig 59
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§ 30. Stresses in a Biaxial Stressed State

It is essential to determine the maximum normal and shearing stres
ses to check the strength of a material in biaxial or triaxiai stress.

Let us begin with the biaxial stress. Let us assume that principal 
stresses <7< and cr» are acting on the side faces of a right-angled paralle
lepiped (Fig. 60). Both these stresses are tensile. There are no stresses 
on the front faces of the element; therefore the third principal stress 
is zero. If one of the principal stresses a*, aa or both are compressive,

then their values in the succeeding formulas must be taken with a mi
nus sign, and the numeration should be altered in accordance with the 
order given in § 28. Thus, if one of the principal stresses is tensile and 
the otner is compressive, then the first will have to be numbered o* 
and the second o3; if both of the stresses are compressive, then the stress 
having lower absolute value will have to be numbered o8. and the 
greater o3.

Our aim is to determine the maximum normal and shearing stresses 
in sections perpendicular to the front faces.

Let us draw a section the normal to which forms angle a t with di
rection /  (Fig. 60). The same normal forms angle a* with direction / / .  
This section will be subjected to both normal stress oc and shearing 
stress t«, which depend upon o* and a,. Their values can beobtained 
by studying the action of at and <Ta separately and summing up the 
results. The fraction of the normal stress caused by Oi may be expressed 
according to formula (61) as ot coss oti; the other fraction of oa, 
caused by stress <j8, may be written according to the same formula as

Fig. 60



108 Complicated Cases of Tension, and Comprission I Part 11

ori cos* <x2. The total normal stress then becomes
<ja =  a, cos* a, +  <ja cos* a a =  a, cos* a , -j- o4 cos* (a, -f 90c)

or
aa = a, cos* a, -f <j2 sin4a, (6.5)

By similar reasoning and with the help of formula (6.2) we may 
find the shearing stresses in the given section:

= y  [c>sin ̂ a > +  a«s,n =  y  1°1 i><n 2a, +  o„sin 2 (a, +  90')]

or

^  =  2 ^  sin 3a* (6 .6)

In these formulas angle aj has been measured from the direction 
of axis I (stress a,) up to the normal to the given section by rotating 
counterclockwise. We shall follow the rules laid down earlier in § 27 
in choosing proper signs for ow and xa as well as for angles at and a*.

In future, in formulas giving the values of oa and xa we shall denote 
a, by a, always measuring it from the maximum (algebraic) principal 
stress in the anticlockwise direction.

Employing formulas (6.5) and (6 .6) which give the stresses in section 
a-a (Fig. 61), we can easily determine the stresses in perpendicular 
section b-b which has normal n$ forming angle (^a-f-9041 with the
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direction of the maximum principal stress:

On—<j, cos* p+c* sin* ft —o, cos* (a -f 90°) -f os sin* (a +  9(f)
<T|)= or, sin* a -f or* cos* a

T? = ^ ^ s i n 2 p = 2 i ^ s i n ( 2 a 4 - 1 8 0 g) 1 

Tp =  " '- g — sin  2 a  J

The formulas derived above clarify the properties of stresses acting 
in mutually perpendicular planes. For normal stresses we have

oft =  o, cos* a -f o8 sin* a 
or„ =  Oj sin* a cr, cos* a

Summing up, we get
0a -t-ff0 = a ,+ o a=coo$t (6.7)

i.e. the sum of normal stresses in two mutually perpendicular planes 
is constant and equal to the sum of the principal stresses.

For the shearing stresses, by comparing (6 .6) and (6 .6 '), we get
t * -  — *« (6 .8)

Hence, the shearing stresses in two mutually perpendicular planes 
are equal in magnitude but opposite in sign. This property is generally 
called the law of complementary shearing stresses, this law being valid 
in all cases in which shearing stresses are acting.

The system of stresses oa, oftr Ta, t p depicted in Fig. 61 acts on the 
faces of an elementary parallelepiped turned through angle a with 
respect to the directions of principal stresses cr, and a*. The pair of 
shearing stresses that tends to rotate the element in the clockwise 
direction will beconsidered positive. In Fig. 61 these stresses are denot
ed by Tft. It should be noted that this rule for choosing the sign for x 
coincides with the convention already decided upon ($ 27).

It is evident from formulas (6.5) and (6 .6) that the normal and 
shearing stresses in a plane depend upon its inclination.

Let us study expression (6.5) for maximum to determine the ma
ximum normal stress. By diiferentiating with respect to a  and 
equating the first derivative to zero, we get

— _  2at cosa sm a  +  2a* sin a  cosa =  0

“  — (<*« —<>i) sin 2a  -  0

or

(69)
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A comparison of expressions (6.9) and (6 .6) reveals that the condition 
Tor maximum of ora is the same as obtained by equating to zero the 
shearing stresses in the corresponding planes. From the same expression 
it follows that oa^ a x cos*a-f-ors sin2 a  is maximum either for a = 0  
or for Since Oi>Oa. then

max oa =  <r1 (a ta  =  0) 
mi noa — (at a=90°)

i.e. the maximum and minimum normal stresses at the given point 
are the principal stresses at and o3 acting in mutually perpendicular 
planes free of shearing stresses.

It is evident from formula (6 .6) that the maximum shearing stress is

m axta = <r<~ » - (a ts in 2 a= !, i.e. at a  =  45°) (6.10)

Hence, the maximum shearing stress is half of the difference of the 
principal stresses and acts in planes inclined at 45° to the principal 
ones and perpendicular to the plane of the diagram. In planes parallel 
to oT|, the maximum shearing stress is

max t 2= ( 6 .10')

§ 31. Graphic Determination of Stresses 
(Mohr’s Circle)

The calculation of oa and ta from formulas (6.5) and (6 .6) may be 
replaced by graphic determination (Fig. 62).

Let us take a rectangular coordinate system with axes a and t. 
Theo-axls directed to the right is taken positive. On the cr-axis we plot

segments 0/1 and OB representing in a certain scale the numerical values 
of a t and <Ti(it is convenient to draw theo-axis parallel to the maximum 
principal stress a,).
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In Fig. G2 both these stresses are considered tensile and are laid off 
on the o-axis in the positive direction. Had one or both of the stresses 
been compressive, we would have laid them off in the opposite direc
tion. Taking segment AB as the diameter, we draw a circle with the 
centre at C, which is called the stress circle (Mohr’s circle). To deter
mine normal stress oa and shearing stress x« in a plane the normal to 
which makes angle a  with the maximum principal stress au we must 
draw a central angle 2a at point C, plotting its positive value from the 
a-axis counterclockwise. Point D of the stress circle will correspond 
to the required plane; its coordinates OK and DK will be equal to 
oa andxa, respectively. This can be easily proved. From the diagram, 
the radius of the stress circle is

CD =  A C =  BC =  ̂ =,

From the right-angled triangle KDC we have

DK= CD sin 2a = sin 2a  =  xa

Further
OfC=OB +  5C +  CA r-oi + ^ ^ + 2i ^ ? c o s 2a  

= o 3 (i 4 . cos2a) — o„_}_2izJZ?2 cos*a
=  o 4 -f <Jt cos* a —a3 cos* a  =  cr1 cos* a-j-o3 sin* a  =oa

Thus, the coordinates of points on the circle determine the stresses. 
The values of oB are measured by the segments along the o-axis. Po
sitive values of crB are plotted in the positive direction of the o-axis. 
The values of xa are measured by the segments parallel to the x-axis. 
Positive values of xa are directed upwards, because according to the 
convention decided upon by us, the values of a  between 0 and 90° cor
respond to positive values of xa; this is also obvious from the formula

xa =  g |~ CT2 sin 2a

in which the maximum principal stress is taken as o<.
Having determined stresses oa and xa from the stress circle, let us 

represent them on the diagram of the cutoff element, taking care 
of their signs (Fig. 62). Let us recapitulate that we have decided to 
plot angle a  specifying the location of the outer normal to the cutting 
plane always from the line of action of the maximum (algebraic) prin
cipal stress. Let us therefore bring the direction of the maximum prin
cipal stress Ot in line with the o-axis on the stress circle. Then line BD 
inclined at an angle a  to the o-axis will be parallel to the normal to 
the cutting plane, i.e. parallel to oa. Line BM will be parallel to xa.
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As is qiear from Fig. 62, the maximum shearing stress is equal to 
segment CD9, i.e. the radius of the stress circle:

max x« = 0 | — 0*

angle 2a corresponding to this condition is 90° and, consequently, 
a=45°. In the stress circle max t a is represented by the ordinate CDo
whose abscissa is i.e. in the plane where the
normal stress has an average value.

It is similarly clear from Fig. 62 that the maximum normal stress 
is represented by segment OA which is equal to Oi, and the minimum, 
by segment OB equal to <r3.11 ensues that the normal stress in any plane 
at an angle a  must be between the principal stresses <ri and o8.

Thus, knowing the principal stresses at a point of a body in biaxial 
stress we can find the stresses and their directions in any other plane 
passing through this point with the help of Mohr’s circle.

Let, for example, the principal stresses at some point of the material 
be Oi=300 kgf/cm* and o*=>—700 kgf.'cm*. We shall find the normal 
and shearing stresses in a plane inclined at a ——30° to the direction 
of <Ti. The construction is shown in Fig. 63. For the chosen scale the 
stresses were found to be oa=50 kgf/cm* and xu= —430 kgf/cm*. 
Their directions are shown in Fig. 63 on the right.

If the principal stresses <Ti and aa are known, then with the help of 
the stres^ circle we can determine the stresses in two mutually perpen
dicular sections a-a and b-b the normals to which (Fig. 64) make 
angles a  pnd P, respectively, with the direction of the maximum prin
cipal stress ox.
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Let us plot angle 2a at point C of the stress circle (Fig. 64). Point 
Da will correspond to section a-a, and segments DaK* and OK* will 
represent the respective shearing and normal stresses in the plane.

To determine the stresses in section b~b we must plot angle 2B,
i.e. add 180° to angle 2a. All that is required for that is to extend ra
dius CDa; point Dp will correspond to section b-b.

Stresses t p and <rp are represented by segments Dpffp and OK$, res* 
peetively. It is clear from the diagram that t p=3—xa and

<*a+ = a,  +  oa =  const
The stresses acting on the faces of the element cut by planes a and b 

are shown in Fig. 64 on the right.
By bringing in line the direction of the maximum (algebraically) 

principal stress or with the a*axis on the stress circle (Fig. 64), we

Fig. 66

find that line BD* joining the extreme left point of the circle with 
point Da is parallel to stress oa, and line BD& is parallel to stress <rp. 
The arrows are put in accordance with the signs obtained.

Figure 65 shows how to construct Mohr’s circle when both of the 
principal stresses are compressive.

5-miq
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§ 32. Determination ot the Principal Stresses with the 
Help of the Sticss Circle

Sometimes it is required to solve a problem opposite to the one dis
cussed in the preceding section, i.e. determine the principal stresses 
if the stresses cr?, x«, erg, and tg are known. The easiest way of doing 
that is by plotting Mohr’s circle.

Assume that tfie normal and shearing stresses in two mutually per
pendicular planes having normals nx and n v are known (Fig. 66). Let

Fig. 66

us denote the normal stresses in the vertical plane (nx) by tra, and in 
the horizontal piane, by erg since they make certain angles a  and (3 
(JS^a-HIO*) with the principal stresses <Tj as yet unknown. The shear
ing stresses are correspondingly denoted by xa and xg; according to 
the law of complementary shearing stresses, xa= —xp. For the sake 
of definiteness while constructing Mohr’s circle let us assume that 
aa><Tp>0j and Ta>0 .

Let us plot stresses oa, <Tg, xa, and xg using the coordinate system 
of the required stress circle (Fig. 66):

Oa~0Kat ^H~OKfl, Ta =  /Ca^a

= KvPo.^ — KpDg

Since points Da and Dp corresponding to mutually perpendicular 
sections nfust lie at the opposite ends of the circle diameter, the point 
of intersection of line Da Dg with the cr-axis will give centre C of the 
stress circile. Circumscribing a circle of radius CDa or CDg around 
centre C, we get segments OA and OB on the o-axis which represent 
the principal slresses: OA=aj and OB=aa.



CKk\ Compound Stress. Stress and Strain i 15

The direction of ca is represented on the stress circle by BDa which 
is inclined at a positive angle a  to the cr-axis. Consequently, angle a 
should be plotted in the anticlockwise direction moving from point A 
towards Da in order to pass over from line Oi to line ca in the circle. 
In our example, we assume the direction of oa to be known. This means 
that in order to represent the direction of ax in the diagram of the ele
ment under consideration, we must plot angle a  in the opposite direc
tion from aa, i.e. in the clockwise^direction. The relative disposition 
of stresses Oi and cr* shown on the stress circle by OA and BDa must be 
retained in the diagram of the element as well.

We may also show on the stress circle the true direction of principal 
stress <T| as coinciding with the direction obtained on the diagram of 
the element by the method explained above. For this from *he extreme 
left point B of the circle, we must plot an angle a in the clockwise 
direction from the o-axis which is parallel to <ya, in other words, point 
D0 should be brought down to D*. Line BD’a coincides pn direction 
with stress Oi, and cr2 will be directed perpendicular to it. While repre
senting the principal stresses (in our example o, and or.) it is essential 
to take care of their signs obtained by plotting the circle, and also fol
low the rule of numeration of the principal stresses.

Let us point out that in the problems on biaxial stress discussed here, 
the third principal stress is zero. Therefore, if both principal stresses 
obtained from the stress circle are positive (Fig. 66), then the higher 
one will be oi and the lower a2; if one of the stresses is positive and the 
other negative, then the former will be <sr, and the latter a3; finally, 
if both stresses are negative, then the one with the greater absolute 
value will be o8 and one with the smaller absolute value o*.

Angle a  may be determined by the formulas (Fig. 66)

The minus sign is used because for positive values of oa and xa angle a  
(the angle of rotation of plane cr« to the principal direction) is mea
sured in the clockwise direction.

From Fig. 66, we can get the formulas for calculating the principal 
stresses in biaxial stress; they are represented by segments OA and 
OB. From the diagram we have

0i—Op

\

(6.11)

OA =  OC+CA and OB =  OC—CB

Further

OC=2«+£&, C K a - C K ^ — ^ -
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The radii of the stress circle CA*=*CB are equal to CDK=CD$ which 
may be found from the following expression:

CA~CB=* CDa = V  CKl +  K M  »  *[/r<£2L ^ i !  +

=  —OTp)* -j- 4t£

Therefore,

=  i  [(aa +  a ,)  ±  Yi f ln  - » , ) *  +  4 ^  ] (6.12)

In practice we often come across the cases of biaxial stress when 
ofl=0. For these cases the formulas for principal stresses will take the 
form

’ j - t k i R + 5 ? . ]  (6.13)

Here the minimum principal stress is denoted by <j« because it is nega
tive (the quantity under the radical sign is greater than cra).

The angle of inclination of the first principal stress to the o-axis 
is determined by formulas which are a corollary of (6 .11):

tan 2a = — -^2- Oa
ta n a  = — —ai /

(6.14)

Given below are examples on determining the principal stresses 
with the help of stress circle.

Suppose we know the stresses at a given point of the material, acting 
in two mutually perpendicular planes:

or* =  400 kgf/cm*, Ta =  —  300 kgf/cm3

Op =  — 200 kgf/cm3, tp =  300 kgf/cm3

Figure 67 shows Mohr’s circle constructed for these data. The prin
cipal stresses are

<t, =  530 kgf/cm*, a, =  — 330 kgf/cms (o„ =  0)

and the angle between aa and o, is a = 22°.
In another example

oa —1000 kgf/cm3, xa =  400 kgf/cm1 
Op =  0 , =  — 400 kgf/cm3
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The plotting of the stress circle is shown in Fig. 68 from which iI 
ensues that Oi=1140 kgf.cm* and a*——140 kgf/cm1. On the front 
face that lies in the plane of the figure, o4—0 .

For both examples the reader is advised to calculate the principal 
stresses according to formula (6 . 12) and compare the analytical values 
with those obtained by graphic construction.

§ 83. Stresses in Triaxial Stressed State
In the general case of a state of triaxial stress, normal as well as 

shearing, stresses act on the faces of an elementary cube cut out of the 
material of a body (Fig. 69). In accordance with the law of complemen
tary shearing stresses, xxt=*xzx, and x»z=%zy*. The set of
six stresses ox, a , and xXit, xXI, xyx completely describes the state 
of stress at a point and is known as the stress tensor.

It is established in the theory of elasticity that around any point 
of stressed material we can always isolate an elementary cube in which 
no shearing stresses act on the faces by rotation of planes. In this case 
the stress tensor is determined by three principal stresses au ait and o3.

* The subscripts on t  should be deciphered as follows: the first subscript de
notes the plane in which they act (direction of the normal to the plane), the sccon 1 
subscript denotes the direction of shearing stress (along which axis t  is acting).
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In particular, when 0 i=<xa“ 0 «—o (uniform triaxial tension or compres
sion), the stress tensor is known as spherical.

Suppose we have a cubic element cut from the body. The faces of 
the cube are subjected to principal stresses Oi, o2 and o8 (Fig. 70). Our 
aim is to determine the normal and shearing stresses in any inclined 
plane cutting the given cube, provided Oi>o£>o£>0.

First we shall determine these stresses in planes parallel to one of 
the principal stresses, for example ca. This plane is hatched in 
Fig. 70 (a).

We have seen earlier (§30) that the principal stress parallel to a 
given plane gives rise to neither normal nor shearing stresses in it.

Therefore, stresses in the planes under consideration will depend only 
upon ot and cr8—we will again deal with the biaxial stress. Points on 
the stress circle drawn for the principal stresses ot and os (Fig. 71) will 
correspond to these planes.

Fig. 69

Fig. 70
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Identically, stresses in planes parallel to a3 (Fig. 70 (b)) will be 
represented by the coordinates of the points of the stress circle const
ructed for stresses Oi and os. In planes parallel to a, the stresses will 
be represented by points of the stress circle constructed for a , and cr, 
(Fig. 70 (c)).

Thus, coordinates of the points on three stress circles (Fig. 71) rep
resent the normal and shearing stresses in sections of the cube which 
are parallel to one of the principal stresses.

As for the planes cutting all the three axes of principal stresses, it 
has been proved in the theory of elasticity that stresses a„ and xa 
are represented by coordinates of points D in the hatched area of 
Fig. 71.

The values of these stresses may be calculated by the following for
mulas:

an ■* <*i cos* cty 4 - at cos4 a,+<js cos* a , (6.15)
— cos* cos* a , -f o? cos4 a0—or* * (6.16)

Here a*, a fl and cta are angles which the normal n to the plane makes 
wdth the directions of principal stresses oa and <rt , respectively.

It is clear from Fig. 71 that in triaxial stress the maximum and mi
nimum normal stresses are equal to the maximum and minimum prin
cipal stresses, respectively.

The maximum shearing stress is equal to the radius of the largest 
circle and, consequently, half of the difference of the maximum and 
minimum principal stresses, ft acts in planes inclined at 45° to the 
direction of these principal stresses, the normal stresses in these planes 
being equal to half of the sum of the maximum and minimum prin
cipal stresses ( o t^ a ^ a ) .

Thus, in the most general case of the stressed state of a material, 
When all the three principal stresses are nonzero at the given point
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we have

m a x a ^ O p  m inan =  a„  maxTfl= 2 i ^ l  (6.17)

In planes parallel to one of the principal stresses and inclined at 
45° to the other two, the shearing stresses will be maxx=xlt3 according 
to formula (6.17), and further

_ _°i—0* _ _ <*a—a3
* i .  a £  * ^ a .  a =  2 (6,17')

The stresses x*, „  xu », and r,, 3 are sometimes called the principal 
shearing stresses. '

For checking the strength of material in compound stressed state 
(see Chapter 7) it is of interest to know the stresses in the octahedral

Fig. 72

planey the normal to which makes equal angles with the directions of 
all the three principal stresses (Fig. 72). Bearing In mind that

cos* at + cos* a 4 -f cos* 03 =  1

and when the angles are equal (a ,= a 2= a 3= a), 3 cos2a = l ,  orcos3a =  
=1/3, from formulas (6.15) and (6.16) we obtain

*oct =  j  (<7i +  oa-f-a8) =  (6-18)

(<h— <**)* +  (<T,—<r3)* +  («!—<Ta)* (6.19)

Using expression (6.17) for the principal shearing stresses, we get

4  K li..+  (6.19')
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It is evident from expressions (6.18) and (6.19) that the normal octa
hedral stress is equal to the arithmetic mean of the three principal sires* 
ses, whereas the octahedral shearing stress is proportional to the geo
metric sum of the principal shearing stresses.

An expression of the type (6.19) will be used in Chapter 7 under the 
name of stress intensity, which also characterizes the stresses in a ma
terial:

^  =  y =  V (o, —a*)14 - (0a—0a)a +  (0 , —03)* (6.20)

It can be easily seen that when0„= 0 #=O, i.e. in the case of simple 
uniaxial tension, intensity ot=au

§ 34. Deformations in the Compound Stress

When testing the strength of an element (Fig. 56) whose faces are 
subjected to stresses 0 *, at> and ait it becomes essential to determine 
the corresponding deformations. Let us number the edge parallel to 
principal stress 0 , as first, and those parallel to principal stresses o# 
and 0a as second and third. Let us now determine the relative longitu
dinal deformations of the element along these edges by considering 
the effect of each stress separately and then summing up the results.

Under stress or, the element will get elongated in the direction of 
the first edge, and the relative elongation is

The first edge, however, is simultaneously the lateral dimension 
for stresses a2 and o3; therefore, the element undergoes relative shorten
ing in the direction of the first edge due to stress oa and stress o*, 
which is equal to (see § 9)

* Of iff Om
«! =  — =  “ *F“T

The total relative deformation in the direction of the first edge may 
be written as

e, =  el +  e i+ el’' = -^-—p p -
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Similar expressions may be written for deformations in the other 
two directions, and we finally get

K tT + T t )

■ > • (* + * )
_  °3

(6.21)

If some of the stresses Ou o», cr3 are compressive, their numerical 
values should be put in formulas (6 .21) with a minus sign.

Now from (6.21) we can easily get expressions for tension or compres
sion in two directions by putting one of the principal stresses equal 
to zero. For example, for tiie case shown in Fig. 60, we have

_  *1
-'i— T  

—'2

*l - r

■p t

e, = —p- -f* £

(6 .21a)

Let us calculate the change in Ihe volume of a rectangular paralle
lepiped having edges of a, b and c, if it is under triaxial stress. Its 
volume before deformation is Vd=abc. After deformation, due to elon
gation of its edges its volume becomes

Vi =• (a +  Aa) (b -f A6) (c *f Ac)

or, neglecting the product of small deformations,
Vv =  cibc -f abXc -f- qcA6 +  bc&a =  V„ (1 -f- ex+ e±4 -s,)

The relative change in volume is

«v; (6.22)

Replacing the sum of relative elongations by some mean
e, - i  et ~ z x

Btni*.ni 3

we express the relative change in volume as
zY =  3emcan (6.22')

Replacing in (6.22) the values of ei, e3) and e3 from (6.21), we get

Sy =  et +  ' (<*1 +  “T (6.23)



Cn. 6] Compound Stress. Stress and Strain 123

It is evident from (6.23) that if Poisson’s ratio |ul is equal to j ,  the
relative change in volume is zero. We have already obtained this re
sult for uniaxial stress in § 9. It is clear from the same formula that 
if the sum of the three principal stresses is equal to zero, there will be 
no change of volume within the limits of elastic deformation.

It should be noted that formulas (6.21), (6.22), and (6.23) can also 
be used for an arbitrarily orientated element of the material the faces 
of which experience both the normal and shearing stresses (Fig. 69). 
For this all that is required is to replace c Jt a2, and c» by normal stres
ses ox, ov, and <r?, and &i, e*, en by e„, and e*. It will be shown later 
(§ 36) that shearing stiesses change neither the linear dimensions of 
the element nor its volume.

Let us return to-formula (6.23) from which it is obvious that the 
change in volume depends only on the sum of the principal stresses 
and not on their ratio. This means that the volume will change by the 
same value if the cube’s faces are subjected to equal mean stresses

0 me«n 3

The relative change in volume may in this case be expressed as

‘7 = ^ ^ .  <6.23')

£
The quantity _2 . is called the bulk modulus. Introducing

this notation in formula (6.23), we obtain

_ _ffmean +  <*a
K  3 K (6.24)

^mean =  K & y  ~  3/Cemean (6.24')

Formulas (6.24) and (6.24') describe the general Hooke’s law similar 
to Hooke’s law for uniaxial tension. It is evident from these formulas 
that if equal mean stresses

u m ean 3

forming the spherical stress tensor are applied to the cube’s faces, all 
the edges experience identical strain

_ °mean
m ean 3/ f (6.25)
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In this case the change in volume of the cube is not accompanied by a 
change of its shape—the cube remains a cube, but the dimensions of 
the new cube are different. Therefore, if we are interested in problems 
related to the change in volume and shape under compound stress, it is 
convenient to represent each of the principal stresses as a sum of two 
stresses:

c i • - ̂ inean +  <T2 — <*mc«n +  =  ̂ mean +
The given stress tensor formed by the principal stresses 0 1? cr2, and 

trs consists of two terms: the spherical tensor (made up of equal stresses

Gthm

&
t- 7 K

T

____cZ~smwn

t'v fa a  I 6  mean ^T ^m eo n  i Gf&uttaa

Gfitcn 7 Ttfneon
Fig. 73

^mtan) and 3 supplementary tensor known as the stress deviaior (Fig. 73) 
which represents a system of normal stresses

=  ^mean* =  ̂ “ "̂ mean* 0  ̂=  03—Onican
It can be easily seen that the sum of these supplementary stresses 

is equal to zero. Obviously, aH-oJ+a;—0^ + 03+ 03—3oroean=0, 
therefore they do not cause any change in volume (§ 34). The stress 
deviator (Fig. 73 on the right) is only responsible for the change 
of shape.

We shall return to the problem of the change in volume and shape 
later while discussing problems of strength of materials in compound 
stressed state (Chapter 7).

§ 35. Potential Energy of Elastic Deformation 
in Compound Stress

Potential energy of deformation is the energy accumulated by the 
material as a result of elastic deformation caused by external forces.

To calculate the potential energy accumulated by an elastic system, 
we may use the law of conservation of energy.

Let us first consider the case of simple tension (Fig. 74). If we load 
a bar statically by gradually suspending small loads A/>, then after 
each addition the suspended load comes down and its potential energy 
decreases, whereas the potential energy of deformation of the stretched 
bar increases.
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When the load increases slowly and gradually, the velocity of displa
cement of the iree end of the bar is very small. Therefore, we may ne
glect the inertia of the moving mass and, consequently, assume that 
the deformation is not accompanied by any change in the kinetic ener
gy of the system.

Under these conditions the potential energy of the lowering load is 
transformed into the potential energy of elastic deformation of the bar 
(we neglect the dissipation of ener
gy due to thermal and electromag
netic processes accompanying the 
elastic deformation). Thus an elastic 
system under static loading maybe 
considered as a machine transform
ing one form of potential energy into 
another.

As the potential energy lost by the 
load is equal to the work accomp
lished by it in lowering, the problem 
of determining the potential ener
gy of deformation comes to calculat
ing the work done by the external 
forces. In § 10 we obtained expres
sion (3.1) for the work done by the 
external forces in simple tension:

v - s #

This implies that the potential energy of tension is also

y  =  =  <6 2 «>

Fig. 74

a/ Pi since &1=y a '
The potential energy accumulated by a unit volume of material is

u = w= <0 <T8 (6.27)

Let us now pass over to the determination of potential energy accumu
lated in a unit volume of a material which is in a compound (planar or 
volumetric) stress. Making use of the principle of superposition of 
forces and assuming that the principal stresses increase gradually, we 
can determine the potential energy as the sum of the energies accumu
lated by a unit volume of the material under the action of each of the 
principal stresses Oi, o2, and o3 according to (6.27)

fliCj i OaSa i
"TT"* § * 2 "W=W
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where e*, e* and e3 are strains calculated from formulas (6.21). The spe
cific energy of deformation will be

or after multiplication

u = i  t°»'+'a* + +  ai<V)J (6.28)

Hence, the total energy of deformation accumulated in a unit volume 
of the material (a cube with edges of unit length) may be calculated 
from formula (6.28). It may be considered as consisting of two parts: 
(1) uv due to the volumetric change in the cube under consideration 
(i.e. uniform change of all its dimensions without any change in its 
shape) and (2) u,h due to the change in its shape (i.e. energy' spent in 
transforming the cube into a parallelepiped).

This division of the potential energy in two parts facilitates thestudy 
of strength of materials in volumetric stress (Chapter 7).

Let us calculate the values of both the components of the specific 
potential energy. It had been shown earlier (§ 34) that when the edges 
of the cube deform uniformly, i.e. when there is a change in the volume 
only, the relative elongation of each edge of the cube may be calculated 
from formula (6.25):

p _ t̂ntan
°moan —  3

where 0mean—- * , and the bulk modulus K- E
meBB 3   — ------   J' - 3 ( l -2 p )

The specific energy due to the change in volume will be
, . ’> ~mcBiiMint;aii îtiean (Olly o  °m e«n8m ean °itiean  (Oj 0 3 ) a

U y - S  §-----~ ~ 2 K ~ ---------JSR-----
OF

it \f ™_  I - 2n
6£ ( o r ,  + (6.29)

The potential energy corresponding to the change in shape of the 
isolated element may now be calculated as the difference

=* u—« v 5  ̂[o?+0^+<ri—2p (o,oa+o,0 $ + aao, )J
-----(a* +  + Cj)s

After simplifying, we get

«.h= fa*+ *a+ 0 ! — <r,oa— <y1oi—oaot) (6.30)
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Formula (6.30) may also be expressed through octahedral stresses 
(6.19) by writing the expression in brackets as the difference of squares:

Miill' +  (Oi-O.)*] =  ̂  (6.30')6 E
p

In simple tension, when O i=a=^-, o2=0, and o3=0, the specific 
potential energy corresponding to the volumetric change in the elemen
tary cube is

_ < ! - 2n)0* 
6E (6.31)

and due to change in shape

(6.32)

Obviously, the sum of the two will give the total specific energy of 
tension:

itt =  M„ +  u8h= -§F

§ 36. Pure Shear. Stresses and Strains. Hooke’s Law.
Potential Energy

A. While dealing with compound state of stress (§ 33) it was noticed 
that like in simple tension or compression (§ 27) planes inclined to the 
direction of principal stresses experience normal .stresses that result 

” in elongation (shortening) as we! las shearing stresses which correspond 
to shear.

In studying shear deformation it is desirable to find planes in which 
only shearing stresses act, i.e. planes that are free of normal stresses. 
An analysis of formulas (6.5) and (6.6) reveals that in biaxial stress 
under certain conditions (oc=45° and <r,-H73=0) the normal stresses 
in the inclined plane vanish (<Ja=0 p=O); only shearing stresses Ta=  
•*rmx act in this plane.

The stressed state in which only shearing stresses act on the faces 
of an element of a material is known as pure shear.

Consider a cubic element with a front face abed (Fig. 75). We apply 
equal shearing stresses t  to the faces perpendicular to the front face 
(recall that t a——t p). The front face experiences neither normal nor 
shearing stresses; it is, therefore, a principal plane in which the prin
cipal stress Is zero. The two other principal stresses can be found by 
solving the reverse problem: we determine them through known stresses 
acting in two mutually perpendicular planes (§ 32). Let us use Mohr’s
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circle for solving the problem with the following data: 
on the vertical face oa =  0 , t a =  x
on the horizontal face Op =  0 , xfi —— x

Since the normal stresses laid off on the o-axis are equal to zero, from 
point 0  (Fig. 76(6)) we plot segment ODa—xa—x upwards and seg
ment 02>0=Tpcs—T downwards. As points Da and Dp lie at the end

/ zz:71
V_______ 7

Fig. 75 Fig. 76

points of the diameter of Mohr’s circle, its radius is equal to 0Da=T. 
The segments OA and OB cut by the circle on the cr-axis are also equal 
to the radius and determine the magnitudes of the principal stresses:

O A = at =  x, OB =  o3 = — t, da =-0 (6.33)

Identical results are obtained if we put oa=<r6SS!0 and r a—r  in for
mulas (6 .12).

The direction of principal stress is shown on Mohr’s circle by the 
line flDp which makes an angle of 45° with the normal to plane be, 
A similar conclusion ensues from formula (6 .11). The element cut out 
of the material around the same point by the principal planes (Fig. 
76(a)) is stretched by stresses along diagonal bd  and compressed by
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stresses a# along diagonal ac. This can also be proved by considering 
the equilibrium conditions of a part of the cube cut out by a diagonal 
plane (Fig. 77).

Thus, pure shear is equivalent to a combination of two equal prin
cipal stresses—one of them tensile and the other compressive (the 
third equal to zero). In other words this is a particular case of biaxial 
stress when <r£= —a3. Planes inctined at 45° to the direction of princip
al stresses experience only shearing stresses which subject the ele

ment to shear. At the same time, the material of this element is 
stretched and compressed in the direction of principal stresses. 
It should be noted that shear is always accompanied by tension 
(compression), and vice versa.
B. We shall now consider deFormations in pure shear. Let a cubic 
element of the material be in a state of equilibrium in pure shear 
(Fig. 78). If we fix the face AB of this element, then the shearing stres
ses will displace the face CD parallel to AB  by a distance DDi=CC^= 
=As called the absolute displacement. The element A BCD gets warped 
and the right angles transform into acute or obtuse angles changing 
by a value y. This angle is called the relative shear or angle of shear, and 
serves as a measure of distortion (warping) of the angles of the rectan
gular element. Since in structures we usually come across only elastic 
deformations, this angle is extremely small.

The magnitude of the angle of shear is connected with the absolute 
displacement and distance a between the planes AB  and CD:

? =  ta n v = -— (6.34)

i.e. the angle of shear is equal to the absolute displacement divided 
by the distance between the shearing planes; it is expressed in radians.

It can be shown that the angle of shear is directly proportional to 
shearing stress t .  Thus the angle of shear numerically defines the shear 
deformation,
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Let us study Fig. 78 to establish the relation between x and y. Due 
to warping of the given element, diagonal AD gets elongated.This elon 
gation may on the one hand be related to the acting stresses and on the

other, to the angle of shear; comb in 
ing the two relations we can estab 
lish the dependence between x  and y 

From Fig. 78, we can obtain the 
absolute elongation of the diagonal 
by cutting the new diagonal ADi by 
an arc with a centre A and radius 
AD We get a right-angled triangle 
DDxDi in which arm DDt represents 
the absolute elongation As and arm 
DsPt represents the elongation A/ 
o f the diagonal. The angle at point 
Di may be taken as 45° due to the 
small value of deformation. Then

A/ =  As cos 45a

The relative elongation of the diagonal is

where Therefore

c = ~  cos 45° sin 45° a

Since — =v, and cos 45° sin 45°=0.5, we geta '
e =  .L (6.35)

On the other hand, the relative elongation of the diagonal caused 
by the principal stresses o ,= t  and o3= —t  (Fig. 76 (a)) may be expres
sed by formula (6 .21):

e =  fci=-£— M ■7f=a'2r (l "HO 

Putting this value of e in formula (6.34), wo get

-g -o + i* > -4 v

wherefrom

T“ 2 ( IT S V (636)
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Thus, angle of shear v and shearing stress x are directly proportional 
to each other, i.e. in shear the stress and corresponding strain are re
lated by Hooke’s law. £

Denoting the proportionality factor correlating t  and y
by G, we get

where
t= G y

G E
2(H-n)

(6.37)

(6.38)

Quantify G is called the modulus of elasticity in shear, or shear modu
lus, and expression (6.37) is Hooke’s law for shear. We see that it is 
completely identical to Hooke’s*law for tension (ar=£e). Shear mo
dulus G, 1 ike E, has the di mensions of stress.

Since in formula (6.38) for the shear modulus only two of the three 
elastic constants E, p, and G are independent, the third may be ex
pressed through the first two. However, it can also be determined di
rectly from experiments on torsion of round bars (Chapter 9).

The absolute displacement depends not only upon shearing stress 
but also upon the dimensions of the isolated element. Let us denote by 
A the area of the faces on which the shearing stresses are acting; the 
distance between the parallel faces is denoted by a (Fig. 78), and the 
force acting along these faces, which is a resultant of stresses t  (with 
the assumption that shearing stresses t  are uniformly distributed over 
area A), by Q=*t>4. Substituting t  and y in equation (6.37), we obtain

iL =  ~-G , wherefrom (6.39)

Absolute displacement is directly proportional to the shearing force 
and the distance between the sheared planes and inversely proportional 
to the cross-sectional areas of the sheared planes and the shear modulus, 
i.e. we have a formula which expresses Hooke’s law for shear that is 
identical to the formula for absolute elongation under tension:

. With the help of expression (6.39) we can also calculate the potenti
al energy of shear through the work done by force Q. Considering that 
force Q is applied statically, gradually increasing from zero to a finite 
value, we can express the work done by this force in affecting a dis
placement As as

i r = 4 QAs
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Substituting As from equation (6.39), we get
. ,  Q}a T*i4a
U = 'm = - w ~ (6.40)

Dividing by volume V—aA, we find the potential energy in pure 
shear as

U= y -  =  l g  (6.41)

The same result could have been obtained from formula (6.28), 
§ 35, by considering pure shear as a compound stressed state with 
principal stresses o2= 0 , and <r,=>—t.

In should be noted that in pure shear the potential energy is spent 
only on changing the shape, as the change in the volume in shear is 
zero. This becomes clear from formula (6.23) if it is taken into account 
that in pure shear the sum of principal stresses is equal to zero.

CHAPTER 7

Strength of Materials in Compound Stress
§ 37. Resistance to Failure. Rupture and Shear

Some problems related to the strength of the elements of structures 
under uniaxial loading were discussed in §§ 16 and 17. It is well known 
that among other conditions, the design of a structure must also satisfy 
the strength condition which requires that maximum stress in each 
part of a machine or structure must not exceed the permissible stress 
that constitutes a certain fraction of the failing stress. In order to select 
the permissible stress it is essential to study the behaviour of material 
during its deformation from the moment the load is applied right up to 
failure. The latter is also required for other purposes, for instance, for 
controlling the plastic deformation processes (wire drawing, stamping, 
rolling, forging, metal cutting, pressing of laminated plastics and 
other materials).

We do not meet any difficulty in experimentally investigating the 
behaviour of materials in uniaxial tension or compression with ma
chines commonly installed in material testing laboratories. The tension 
or compression test diagrams obtained as a result of these experiments 
give a clear idea about the resistance of a given material to elastic, or 
plastic deformation and enable us to determine mechanical character
istics like yield stress and ultimate strength which are so important for 
assessing the strength of material and specifying permissible stress.

The behaviour of material under loading depends upon its properties 
and the state oi stress. In some cases strain remains more or less pro-
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portional to stress right up to failure; failure occurs without any plas
tic deformation (Fig. 25). In other cases elastic deformation is succeeded 
by plastic deformation of considerable magnitude that ends in failure 
(Figs. 16 and IS). A continuously increasing plastic deformation may 
not necessarily lead to failure (Fig. 24).

The first diagram (Fig. 25) describes the behaviour of a brittle materi
al in uniaxial tension or compression, fn this case failure should be con
sidered as thecritical state of the material, and the ultimate strength 
as the failure stress. Under tension failure occurs in a section perpen
dicular to the tensile force, and under compression (with regular lubri
cation of the specimen faces that come in contact with the press plates) 
in sections parallel to the direction of compressive force (Fig. 28). 
In both cases faiture takes place through separation of material partic
les from one another, i.e. through rupture. In the case of tension, rup
ture can be caused both by the maximum normal tensile stress and 
the maximum elongation in the direction of action of the tensiie force, 
in the case of compression, failure may be considered to occur due to 
considerable tension in the direction perpendicular to the compressive 
force. It is noteworthy that under compression brittle materials often 
fail in sections that are inclined with respect to the direction of the 
compressive force. It may therefore be assumed that failure is more 
complicated in nature than described above and the cause of failure 
are normal as well as shearing stresses acting on these inclined planes 
(see § 40B for a more detailed discussion).

The second diagram shows the behaviour of ductile materials under 
uniaxial tension (Fig. 18 depicts the true stress-strain diagram for 
tension). The critical states in this case may be the beginning of yield
ing, neck formation, and rupture. The corresponding failure stresses 
will be yield stress, ultimate strength and true stress at rupture. The 
appearance of shear lines (Luder’s lines) after permanent plastic 
deformation (Fig. 13) and failure of specimens in planes inclined at 
n/4 to the direction of tensile force (§ 27) enable us to consider lhat 
the starting and growth of plastic deformation and the final failure 
occur due to slip and shear under the action of maximum shearing 
stresses. Such a failure is known as failure due lo shear.

The third diagram describes the behaviour of a ductile material under 
compression when plastic deformation does not lead to failure (Fig. 24 
shows the compression lest diagram). The beginning of yielding should 
be considered as the critical state, and yield stress, which does not 
differ much from yield stress under tension, as the failure stress. In 
this case plastic deformation begins and develops due to shear under 
the action of shearing stresses.

The two different concepts of failure of materials discussed above, 
namely (1) failure in the form of rupture due to elongation or mainly 
under the action of normal tensile stresses and (2) failure as a shear 
under the influence of shearing stresses, have been known for a long
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time. These concepts led to two types of resistance of materials to fai
lure: resistance to rupture and resistance to shear.

Till recent past it was considered that every material possessed 
only one type of resistance to failure—either resistance to rupture or 
resistance to shear. Such a one-sided concept of failure prevented a 
general solution to the problem of strength of materials from being 
found.

A few years ago a new concept that has a sound experimental support 
was put forward in the Soviet Union. According to this concept every 
material depending upon the working conditions may fail both due to 
rupture and shear and may therefore possess resistance to both types of 
failure. This new approach to failure helped us to clarify the concept 
of failure. Therefore, at the present stage of the science of strength of 
materials only the new approach should be considered correct.

The possibility of failure of materials due to rupture, supported by 
experimental evidence was not subjected to any doubts till now. On 
the contrary, many scientists tend to explain all cases of failure by 
the rupture phenomena.

The nature of failure due to rupture depends both on the type of 
material and the state of the stress. In principle it is possible that fai
lure may occur in some cases on account of brittle rupture without any 
plastic deformation and in other cases due to ductile rupture accompa
nied by the plastic deformation of more or less considerable magnitude. 
Thus, for instance, it is experimentally established that some grades 
of bronze and aluminium alloys are capable of failure due to rupture 
even after undergoing permanent set of about 20%.

The resistance to rupture is best studied by the testing of brittle 
non-metallic materials (glass, plastics, concrete, and stone).

It is extremely difficult to study the resistance to rupture of ductile 
materials because during testing it is, as a rule, impossible to avoid 
the stage of plastic deformation and hence the shearing stresses of a 
considerable magnitude. On account of the fact that ductile materials 
have a much lower resistance to shearing stresses (shear) as compared 
to their resistance to rupture, it is difficult to achieve rupture of these 
materials by conventional tests because failure due to shear takes place 
earlier. Therefore in order to determine the resistance to rupture the 
test conditions (type of stressed state, temperature, rate of deformation) 
should be altered so that the resistance to shear improves considerably 
without any change in the resistance to rupture.

Available experimental data enable us to consider that resistance 
to rupture does not depend much upon the rate of deformation and test 
temperature. It therefore follows that by conducting dynamic tests 
at low temperatures we can find, with certain approximation, the re
sistance to rupture in normal conditions.

Numerous experimental investigations reveal that the resistance to 
rupture of brittle materials is constant for different types of loading.
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However, we do not have sufficient data to be able to come to a similar 
conclusion for ductile materials. Some experimental studies point out 
that resistance to rupture depends upon cold hardening—It increases 
with the degree of cold hardening.

Failure due to shear is more complicated than rupture because it is 
usually preceded by considerable plastic deformations which result in 
redistribution of stresses and other complications. The existence of 
this type of failure, caused mainly by shearing stresses, is confirmed 
by a number of experimental data.

The failure of materials under tension accompanied by neck forma
tion, shear, torsion and bending usually occurs along planes close to 
the planes of maximum shearing stresses. Although it is not always 
possible to conclude about the type of failure {rupture or shear) merely 
from the angle of rupture, in a number of cases the location of the plane 
of failure and the appearance of the breakdown surface can be decisive 
factors in this respect. Thus, for instance, if failure under torsion oc
curs in planes perpendicular to the bar axis, it is undoubtedly caused 
by shearing stresses because in this case the surface of breakdown plane 
is completely free of normal stresses.

It is much more difficult to differentiate between failures due to 
rupture and shear when the body is under a compound stress. Still in a 
number of cases of complex loading it was established that shearing 
stresses played a major role in many instances of failure, which were 
earlier considered obvious examples of failure due to rupture.

In ductile materials shear occurring without preceding permanent set, 
usually of a considerable magnitude, is highly improbable, because 
failure due to shear takes place due to shearing stresses, which also play 
the major role in plastic deformation of materials. At least it has not 
been possible till now to practically achieve such failure in metals 
although some of them (for example, compressed magnesium and its 
alloys) fail due to shear after small plastic deformation (5-15%). 
This is known as the so-called “brittle shear".

Experimental data show that resistance to shear practically does 
not depend upon the type of stressed state for pure metals (copper, 
aluminium, iron) and some alloys. It is also established that it depends 
upon the rate of deformation and temperature to a much greater extent 
than the resistance to rupture. Resistance to shear increases with 
increase in rate of deformation and reduction in temperature.

The assumption about materials having resistance to both types of 
failure is confirmed by experiments on failure of cold-short metals 
and some brittle materials. For one and the same material the magni
tudes of resistance to rupture and shear are different: for ductHe mate
rials usually r^COnjp on the contrary, for brittle materials ̂ > 0^ .  
The laws governing xgh and tr^p may differ depending upon the changes 
in composition of material and its machining and heat treatment.



136 Complicated Cases of Tension and Compression [Part i f

The above discussion about the resistance of materials to failure 
may serve as a basis for strength test in simple and compound stales of 
stress. The application of the resistance characteristics fs discussed 
in succeeding sections. The considerable growth of research on failure 
of materials in recent years is fully reflected in the book Fundamentals 
of the Mechanics of Failure by L. M. Kachanov, Nauka, Moscow, 1974.

§ 38. Strength Theories

As has been already slated, in the case of uniaxial loading it is 
not difficult to find the breakdown stress which is used as a basis for 
designating permissible stresses.

It is much more difficult to find the breakdown stress in compound 
stressed stale which is in general characterized by the three different 
principal stresses. Experiments show that the breakdown state of an 
element of structure (yield, rupture) depends upon the nature of stres-
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sed slate, i.e. upon the ratio between the three principal stresses. 
Since the number of various possible ratios between the principal 
stresses is infinitely large, there exist a corresponding infinite number 
of potential stales of failure of the structure element. Hence, for each 
new ratio between the principal stresses it is necessary to experimen
tally find the permissible stresses anew. It should be borne in mind that 
it is much more difficult to conduct tests in compound stressed state as 
compared to simple tension or compression; these tests are more time 
consuming and expensive, and, as a rule, require special accessories 
to the machines available in laboratories.

Therefore, it is necessary to find ways of expressing the strength 
condition under compound stress in terms of a,, and <r„ obtained from 
experiments for the uniaxial stress.

Thus, in the general case, when all the three principal stresses are 
nonzero, the strength of the material is tested according to the fol
lowing plan:

(1) the three principal stresses cCXiiXJs are calculated;
(2) the material is selected;
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{3) the critical stresses on=a,j or or°=<ju and the permissible stresses 
are determined experimentally for the given material under simple 
tension or compression.

I t is required to write down the strength condition for the compound 
stress knowing cr(, oSt and <r3 and retaining the same safetv factor k 
(Fig. 79).

The above problem can be solved only on the basis of the assumption 
(hypothesis) about the type of function relating the strength of mate
rial to the value and sign of the principal stresses, and the factor that 
causes the critical state.

These factors may be numerous. As a matter of fact, even in simple 
tension of a bar of ductile material we may put the question: what is 
the cause of yielding?

We may assume that yielding starts when the maximum normal 
stresses in the bar reach the yield point au. However, one may as well 
look at the problem from a different point of view and assume that 
yielding starts when the maximum elongation of the material reaches a 
certain limit. One may also assume that large plastic deformations 
begin to occur when the maximum shearing stresses achieve a certain 
value.

Thus, we can put forward a number of hypotheses and on their basis 
formulate various theories erf strength. We shall see later that in simple 
tension or compression (in uniaxial stress) the results obtained by the 
strength tests are the same irrespective of the hypothesis used. This 
is so because the strength test is based directly upon experimental data.

The matters will be very much different in compound stress. In 
the succeeding sections we shall show how the strength condition chan
ges depending upon the accepted theory. One or the other theory is 
selected for practical application only after it has been experimentally 
verified for the compound stressed state.

Whichever strength hypothesis we choose, it can be expressed analy
tically as some function of principal stresses

<D(o,, o8, <r3) —const =  C (7.1)
In this form the strength theory expresses the condition of constancy 

(irrespective of the nature of stressed state) of the set of principal 
stresses that has one or the other physical interpretation. At the same 
time, equation (7.1) also describes some limiting surface in three- 
dimensional space of the principal stresses. Thus, for example, if 
C=<Jy or C=ou, the corresponding limiting surface is the surface which 
determines the conditions under which yielding or failure of material 
takes place.

Before we begin to expound various theories of strength, let us take 
note that the critical state for ductile materials (appearance of large 
plastic deformations) as well as brittle materials (appearance of cracks) 
lies at the boundary of application of Hooke's law (with known approxi*
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mat ion sufficient for practical purposes). This enables us to use the 
formulas which have been derived in the preceding sections and which 
are valid only within the limits of application of Hooke’s law for cal
culations relating to the strength test.

Our earlier discussion about the resistance of materials to rupture 
and shear emphasizes the need to distinguish between the strength 
theories for materials that fail due to rupture and the theories in which 
failure due to shear is considered the breakdown state. These theories 
are dealt with in §§ 39 and 40 separately.

§ 39. Theories of Brittle Failure 
(Theories of Rupture)

As has been already stated, failure in the form of rupture may be 
considered to occur either due to maximum normal tensile stress or 
due to maximum elastic elongation.
A. The assumption that failure is related to the maximum tensile 
stresses was put forward as early as the seventeenth century and sub
sequently supported by G. Lamd (1833) and W. J. M. Rankine (1856). 
At present the theory in which the maximum tensile stress is taken as 
the strength criterion is known as the theory of maximum tensile stresses 
or the first strength theory.

If then the stress <Tj will be the maximum tensile stress
tfwDx- According to the first strength theory, failure will occur irrespec
tive of the stressed state when

t̂nax =  =  r̂up
where orw„ is the resistance to rupture which is constant for a given 
material. For many brittle materials ornp is equal to the stress 
at the moment of failure under tensile loading. The safe state will obvi
ously correspond to the condition

°m3x =  cri < ^ T L= M <  (7.2)

where fcl, is the permissible stress in tension. Equation (7.2) repre
sents the strength condition according to the first strength theory. 
It is applicable only when Oi>0.

This theory is confirmed by tensile tests of brittle materials such 
as stone, brick, concrete, glass, and porcelain. In the case of compound 
stress the theory often comes into conflict with experimental data be
cause it does not take into account the other two principal stresses 
upon which the strength of material depends in many cases.
B. The idea that brittle failure is connected not with the maximum 
tensile stress but with maximum strain was first expressed by French 
scientists Ed. Mariotte (in 1686) and C. M. L. Navier (in 1826) and later 
supported by other French scientists, J . V. Ponceiet (1839) and
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B. Saint-Veuant (1837). The strength theory based upon this supposi
tion is known as the theory of maximum strain, or the second strength, 
theory. According to this theory failure occurs irrespective of the 
state of stress when maximum elastic strain £max becomes equal to a 
certain value efup which is constant for the given material. In general

8n.a x =  8 ,  =  -g - I ° i  —  ^

whereas in simple tension e=o/£; it is obvious that etup=aIUV/E. 
In the compound stress, failure will occur when

The stressed state 
is replaced by [oJt. 
theory may be written as

+  (7.3)

Thus in the theory of maximum strain, the permissible stress under 
tension is compared not to one of the principal stresses but to a combi
nation of all of them, called the reduced stress and determined by the 
formula

may be considered safe if in this expression CFra„ 
The strength condition in the second strength

This hypothesis is also not supported by some experiments on the 
strength of ductile materials. If it were true for ductile materials, 
then the specimen stretched in two or three directions should be stron
ger than the specimen stretched in only one direction; this is not 
confirmed by experiments. This hypothesis is similarly not confirmed 
for uniform bulk compression.

For brittle materials, the theory of maximum strain generally gives 
results which match well with the available experimental data. Ex
pression (7.3) may be applied if at—p.(cr#-{-O3)> 0 . Application of the 
second strength theory for the case of compression enables us to satisfac
torily explain the reasons behind the failure of brittle materials along 
planes parallel to the direction of compressive force and also explain 
more, or less correctly why the strength of brittle materials under 
compression is considerably higher than their strength in tension
(in tension emax==-^=&riip and a?=£efUP, whereas in compression

SjBax®8—j r 0?” 8™ and I °?l=  7 W  ,,e‘7  times gfeater)- However, 
the second strength theory is also confirmed mainly by experiments 
on brittle materials only.

Both theories discussed above are theories of rupture; none of them 
is universal, i.e. valid in all the cases of failure due to rupture.
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Sometimes the first theory conforms better to experimental data, some
times the second. For a solid uniform body the second theory appears 
to be more logical and well founded than the first one.

§ 40. Theories of Ductile Failure 
(Theories of Shear)

A. The fact that shear lines appear on the specimen surface during 
plastic deformation and that under tension ductile materials fail along 
the planes of maximum shearing stresses enables us to accept these 
stresses as the criterion of strength. This idea was first proposed by the 
French physicist Ch. A. Coulomb in 1773 and supported by the experi
ments of H. Tresca (1868), J . J . Guest (1900) and others. The strength 
theory based upon this assumption came to be known as the theory of 
maximum shearing stresses or the third strength theory. According to 
this theory the critical state of material (in the form of yield or failure) 
occurs, irrespective of the stressed state, when the maximum shearing 
stress V j, becomes equal to a certain value t 0 which is constant for 
the given material, i.e.

or
Tmix — T?J — %\x

where xu is the yield stress in shear and Tsh is the maximum shearing 
stress when the material fails due to shear. The safe functioning of 
material is obviously governed by the strength condition

(7.4)

In compound stress Tmax=(0 ,—<j3)/2. If we assume, following this 
theory, that permissible stress [xl does not depend upon the type of 
stressed slate, we shall find its value from experiments on simple ten
sion in which failure occurs as a result of shear. In this case 03=O and
Tnuxa*Y' ^  si1"655 ^  the right-hand side of the Jast expression Is
raised to permissible stress k l, the left-hand side of the same expres
sion will represent the permissible value of shearing stress r; thus,

Substituting now the values of Tfflax and I t J  in expression 
(7.4), we obtain

or
0 .- 0 ,  < [" ]  (7.5)
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Thus, for strength cheek according to this theory the permissible 
stress in tension or compression is compared not with the maximum 
normal stress, but with the difference between the maximum and mi
nimum normal (principal) stresses. The reduced stress in this case is

0^  =  01 o3

The advantage of the theory of maximum shearing stresses lies in 
its simplicity and the linearity of the strength condition, as in the 
first and second theories. It is well supported by experiments on ductile 
materials that have equal resistance to tension and compression, and 
also by experiments on bulk compression. This theory usually ensures 
sound dimensions of the designed elements of structures; sometimes 
the dimensions are even slightly on the higher side.

The drawback of the theory of maximum shearing stresses, which is 
seen immediately, is that it completely ignores the effect of the average 
principal stress on the working of the material. It implies that for 
constant maximum normal stress tri and minimum normal stress o#, 
we may vary cr« in any way without changing working conditions of 
the material as long as it is less thanoi and greater than o,. This state
ment is quite dubious, and experiments reveal that a* does have an 
effect upon the strength of materials. The theory also underestimates 
the danger of failure of elements subjected to approximately equal 
tensile stresses in the three principal axes. To this may be added that, 
according to this theory, the stressed states in cubic elements isolated 
near inclined planes (Fig. 54 (a) and (b)) must be identical from the 
point of view of failure if shearing stresses t«  in these planes are equal 
to each other. As t a increases the yielding and failure in the material 
in these elements begin simultaneously. Experiments show that for 
materials having higher resistance under compression as compared to 
tension, case (a) in which the normal stresses in the plane of shearing 
stresses are tensile is more dangerous than case (b), when the normal 
stresses in the plane of ra are compressive. As the shearing stress xa 
increases, the material of the element will begin to yield or rupture 
earlier in case (a) than in case (b). Thus, the strength of material is 
influenced not only by the shearing stress but also by the normal 
stress acting on the same plane. This factor is taken into account by 
Mohr’s theory (1900) which is discussed below.
B. The breakdown conditions p ? = Ty or = r sta discussed
above should be looked upon in a broader aspect than as mere interpre
tation of the theory of maximum shearing stresses. According to these 
formulas, it can be considered that critical state is determined only by 
the maximum and minimum principal stresses. Experiments do not 
fully confirm this hypothesis; however, the maximum possible error 
due to ignoring medium principal stress <r2 does not exceed 15% and in 
a majority of cases is considerably smaller. Therefore while writing
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the strength conditions it is permissible to restrict ourselves to studying 
the effect on strength only of the maximum and minimum principal 
stresses.

It is common knowledge that various cases of stress can be graphically 
represented by Mohr’s stress circles. Figure 80 depicts a number of 
such circles: circle 1 represents simple tension: a a= a 8= 0 ;

Fig. 80 Fig. 8 !

circle 2, simple compression: Oj=<t2= 0 , <*3̂ 0 ; circle 3, pure shear: 
—°>i <*1= 0 . The stress circles constructed for principal stress 

values corresponding to the critical state of materials will be called 
limiting stress circles. The limiting stress circles corresponding to the

Fig. 82

state of stress depicted in Fig. 80 are shown in Fig. 81. The diameter 
of the limiting circle which depicts the critical state in simple tension 
is the ultimate strength in tension; in the case of simple compres~ 
sjon the ultimate circle diameter is ultimate strength in compres
sion; and m the case of pure shear the limiting circle diameter is equal 
to



Ch. 71 Strength of Materials in Compound Stress 143

O. Mohr postulated that all the limiting stress circles constructed 
from arbitrary centres can be inscribed into a smooth curve, the envelope 
of the family of limiting stress circles, which is tangent to all of them 
(Fig. 81). The envelope intersects the or-axis at a certain point H, which 
corresponds to uniform triaxial tension (if <j,=o2= a 3> the stress circle 
becomes a point). The envelope is open on the opposite side because 
the failure of material under uniform triaxial compression is impossi
ble. Plotting the envelope can be simplified by considering it, in the 
first approximation, as a straight line tangent to the limiting circles

of tension and compression. If the ultimate strengths under tension 
and compression are equal, the envelope branches remain parallel to 
the c-axis over a large distance (Fig. 82). In this case Mohr’s theory 
coincides with the theory of maximum shearing stresses.

By reducing the diameters of all limiting circles k times, where k 
is the safety factor, we obtain a family of circles which represents the 
permissible stressed states instead of the limiting stresses (Fig. 83). 
In Fig. 83 segment OA (the diameter of circle /), represents the permis
sible stress under simple tension lo]„ segment OB (the diameter of 
circle 2) represents permissible stress under simple compression !olc. 
The intermediate circle 3 with centre at 0, touches the envelope CtCiH 
at point C3 and represents a stressed state with principal stresses 
and <r3.

From the similarity of triangles OiO*D4 and 0 i0^)3 it ensues that
OjDj 0 |0 j   OjCj—O jC j OOi+OOj

o r  0 2Ca— O A  “ 0 0 , +  OOj
By substituting corresponding stresses in place of segments, we obtain

<*i— o3—[<rh M<— (<h-+ <*>) 
l^lc—Mr Mi +  l<Mc
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After some transformations we get the strength condition according 
to Mohr’s theory:

ai— } ^ - <3f3 =  <y,-por,^[0j/. (7.6)

The same condition can be derived without using stress circles* 
if it is kept in mind that shear (according to Mohr) leading to failure 
occurs in that (breakdown) plane which has the most unfavourable, 
combination of normal and shearing stresses. The condition restricting 
the value of a particular reduced shearing stress in the breakdown 
plane may be written as

Vd =  M  +  /<T<[T]rod (7.7)
where | t |  and a are stresses in the breakdown plane (the sign of normal 
stress is taken into account) and f  is the coefficient of friction. The 
location of the plane of maximum reduced shearing stress (in Fig. 83 
this plane corresponds to point C3) is determined by angle a which
this plane makes with the plane of principal stress a,: tan 2a = y =  

= taiTp * 11 can be sbown (Fig. 83) that

a " d

when /= 0  strength condition (7.7) changes into the similar condition 
of the third strength theory: if oX ) (tension), condition (7.7) is satis
fied only when the value of lx | is reduced as compared to the value for 
o=0; if o < 0 (compression), condition (7.7) is satisfied even with a 
higher value of I r  J as compared to the value for o = 0 . These conclusions 
are supported by experiments discussed earlier at the end of §40A.

It can be easily seen that the strength condition (7 .6) according to 
Mohr’s theory coincides with the strength condition according to the 
theory of maximum shearing stresses if p=* 1, i.e. foj,=f0 jc. If the 
permissible stress under tension is very small (brittle materials), 
i.e. if It can be considered that fd ,= 0  and p—0, Mohr’s theory 
changes into the theory of maximum normal stresses. In biaxial stress, 
when <ja= 0  and Mohr’s theory coincides with the theory of 
maximum strain. Thus, to a certain extent Mohr’s theory generalizes 
the first three strength theories; it correctly describes plastic deforma
tion and failure due to shear of materials having different resistances 
to tension and compression. All experiments that verify the first and 
third theories and some experiments verifying the second theory also 
support Mohr’s theory, it  undoubtedly represents a forward step as

• See S. I. Druzhinin and Yu. I. Yagn, Strength of Materlah, "Kubuch', 
1933 (in Russian).
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compared to the first three theories. Yet it cannot be considered uni
versal, since in a number ot cases it does not correctly reflect the nature 
of failure due to rupture, and like the third strength theory it does not 
take into account the intermediate principal stress.
B. A number of authors suggested that the appearance of the critical 
state in materials depends not upon the magnitude of deformations 
and stresses separately but upon their combination and other factors 
like the potential energy or the numerically equal to it specific work 
of deformation. The amount of this work is expressed in terms of 
all the three principal stresses.

By the end of last century (1§85) Italian scientist F. Beltrami pro
posed that the total potential energy of deformation per unit volume 
of the material should be taken as the criterion of pliability and 
strenglh of materials. On the basis of this hypothesis the condition 
expressing the approach of the critical state may be written as

u ~ u °
where a0 is the potential energy accumulated in a unit volume of the 
material when yield or rupture sets in.

This hypothesis was not confirmed by experiments and is only of 
historical importance. It, however, formed the foundation upon which 
the new energy theory of strength was built; the latter generally gives 
results matching well with the experiments.

Considering the fact that plastic deformation takes place without 
any change in volume, F. Huber in 1904, R. Mises in 1913 and H, Hen- 
cky in 1924 proposed that instead of total potential energy of deforma
tion only that part of the energy which was spent on changing'the shape 
of a body should be accepted as the strength criterion. According 
to this hypothesis, irrespective of the stress yielding or rupture of the 
material starts when the potential energy of distortion per unit volume, 

reaches a certain limiting (critical) value for the given 
material, i.e.

h =  *& (7-8)

where =«*»,.* or Klh=“*n. w  
It is known that in compound stressed state (see formula (6.30'), 

§ 35)

—' ^£“[( 1̂— +  ( a t —<*,)* +  (<*3—°i)i] =*  ̂2£ ̂   ̂̂

and in uniaxial tension

If we accept, as already stated, that the critical value of the poten
tial energy of distortion (for example, corresponding to the beginning

6 -8310
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of yielding of material) does not depend upon the type of stressed state, 
we can consider that in uniaxial as well as in any other type of stress

Substituting the expressions for ush and h in equation (7.8), divid
ing both sides by 2^ ^  and extracting from them square roots, we
get the following expression which determines the beginning of criti
cal state:

y j  V  (<Tt— + (ora—<rs)a + (o4—cr,)* = tnct = atJ

It can be easily noticed that this equation represents the condition 
of constancy of stress (or constancy of the octahedral shearing stress). 
The strength condition according to this theory, known as the theory 
of potential energy of distortion or the fourth strength theory, may be 
written as

■—  V  ( 0 +  (0,-0,)*+(0, -  ff,)»
~  a  T.ct ^  =  [ffJ (7-9)

The theory of potential energy of distortion is well supported by 
experiments on ductile materials, but fails when applied to brittle 
materials. This is natural because it is the theory of octahedral or me
dium shearing stresses unlike the third theory, which is the theory of 
maximum shearing stresses. The fourth strength theory takes into 
account all the three principal stresses and is therefore more complete 
than the theory of maximum shearing stresses. Unlike the first three 
strength theories and Mohr’s theory, tne fourth strength theory is non
linear, which somewhat complicates its practical application.

Keeping in mind that the resistance of materials to plastic deforma
tion is to some extent affected by the mean normal stress omeB„, the 
condition expressing the onset of yielding according to the theory of 
potential energy of distortion may be written more precisely as

+  (7-10)

where A and B are constants that depend upon the properties of a 
material. The strength condition may then be written in the form

- y j  V t o + fa—<*.)*+(<*3—*i)J
+  -y-(Ol-f Oj +  O aX S , fo] (7.11)
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This expression can apparently be employed for checking the strength 
of parts of machines and structures made not only of ductile but also 
of some brittle materials. Unfortunately the possibility of applying 
this condition to brittle materials has not been studied sufficiently 
till now.

§ 41. Reduced Stresses According to Different 
Strength Theories

In conclusion of our discussion of strength theories, we may write 
the strength condition in triaxial stress as follows:

*«*<[*] <7-l2>
where <rrad is the reduced stress and Tol is the permissible stress in 
simple tension or compression. The reduced stress o.e<j may be interp
reted as the tensile stress in uniaxial loading equivalent to the compo
und stressed state under consideration as far as the danger of failure is
concerned. f t ,

The expressions for cred according to different theories are as fol
lows:

Wed “  ̂ max ~
Wo<l =  ̂ ®max = U|—fl (0*
Ofoi =  1=3 ̂ 1 —“®3* Wed pOa
o™ ,=-j£=-V (<rI- c . ) 1+(<JJ- f f .) a+ (9 ,-o ,)’

With a number of theories at his disposal for assessing the strength of 
parts from brittle and ductile materials, an engineer must choose in 
each particular case the most suitable theory proceeding from the actu
al properties of material. It is difficult to make the proper choice be
cause of the fact that in compound stress the division of materials 
into ductile and brittle is conditional. A material having good ductility 
under simple tension and compression may behave like a brittle mate
rial in compound stress and fail without undergoing large plastic defor
mation. On the other hand, a material that shows brittle in uniaxial 
loading may behave as a ductile material when subjected to other 
types of stress. Hence, ductility and brittleness of materials depend 
upon the condition in which the given structure functions. Therefore 
it is more correct not to speak of brittle and ductile materials but of 
brittle and ductile states of materials.

The main factors that affect brittleness and ductility are temperature 
(low temperature increases brittleness, high temperature as a rule 
improves ductility), rate of deformation (in case of fast dynamic load
ing brittleness increases, whereas ductility is retained when loading is

6*
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static and gradual), type of stress (states of stress close to uniform tri- 
axial tension are known as “tough” and they lead to higher brittleness; 
on the contrary stressed states close to uniform triaxial compression 
are known as “soft” and improve ductility).

At present many materials can be made to acquire brittle or ductile 
state by different means. If a material can deform and fail both as brit
tle and ductile, then, as was earlier stated, it also has two characteris
tics of resistance to failure that are determined experi men tally: resis
tance to rupture and resistance to shear. The resistance to rupture 
<jrw is found as the maximum normal tensile stress required for causing 
rupture crmi,x= o 1 (first strength theory) or the reduced normal stress 
which is the product of maximum strain and modulus of
elasticity £ , i.e. o^d=^i — (second strength theory). The 
resistance to shear is determined by the maximum shearing stress
when failure occurs due to shear Tsh=t?ll8x= i.(o I- ( r 3)« (third strength
theory), by the limiting value of stress a® at the moment of failure 
(fourth strength theory) and the limiting value of reduced stress

) 'n the case of shear failure (Mohr’s theory).
In the light of above, while designing, for instance, the elements of 

structures from mild steel, a ductile material in certain conditions 
(static loading, room temperature, uniaxial stress), it is not always 
possible to apply the third or fourth strength theories without taking 
into account the actual working conditions of the structures; similarly, 
while designing parts from concrete—a brittle material under the 
afore-mentioned conditions, the first theory is not always applicable.

The problem of applyingone o- the other strength theory’can be solved 
to the first approximation with the help of the so-called mechanical 
state diagram proposed by Prof. Ya. B. Fridman on the basis of re
search on the strength of materials carried out bv Prof. N. N. Davi- 
denkov and his followers.*

As an example consider the transmission of pressure from the locomo
tive wheel to the rail (Fig. 59). The elementary cube with edges of 1 mm 
cut at the centre of the area through which the pressure from the wheel 
is being transmitted to the rail is subjected to compressive principal 
stresses: o ,= —80 kgf/mm8; <r,=— 90 kgf-'mm*; cr3= — )10 kgf/mm2. 
We shall calculate by the third and fourth strength theories the reduced 
stress which should be compared with the permissible stress. Accord
ing to the theory of maximum shearing stresses

°red ~ CTi—o3= —80-)- 110 =  30 kgf/mm2

* F«>r instance, see N. M. Belyaev, Strength of Materials, JO-14 editions. $ 252 
(in Russian). *
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According to the distortion energy theory 

o!«v,  =  i  V/ (—80 +  9 0 )- - r ( —90 + 1 10)* +  (— 110 +  80)=“

=26.4 kgf/mm9

Since the yield stress for commercial rail steel is approximately 
40 kgf/mm* and the elastic limit is nearly 30 kgf/mm*, the computed 
principal stresses are within the permissible limits. This is confirmed 
by the behaviour of rail steel in exploitation.

Finally, it should be noted that all the preceding discussions of the 
strength theories pertain to the materials which may be sufficiently 
accurately considered as isotropic. The formulas derived above are not 
appiicabfe for anisotropic materials. For example, in the case of timber 
the direction of force with respect to fibres has to be taken into account.

§ 42. Permissible Stresses in Pure Shear
The permissible shearing stress in pure shear could, it seems, be 

determined as in uniaxial tension or compression, i.e. by experimen
tally establishing the critical stress (corresponding to yielding or 
rupture) and dividing it by the factor of safety. There are, however, 
some practical difficulties in applying such a method. It is very diffi
cult to simulate pure shear in laboratory conditions; the working of 
bolts and riveted joints is complicated due to the presence of normal 
stresses. In the case of torsion * of solid bars of round and other cross 
sections the stressed state is not uniform in the whole volume of the 
bar. Moreover, the plastic deformation preceding failure is accompanied 
by redistribution of stresses, which complicates the determination of 
critical stress. When thin-walled bars are subjected to torsion, the 
bar walls can easily loose stability. In the light of all these considera
tions the permissible stresses in torsibn and pure shear are chosen on 
the basis of one or the other strength theory depending upon the per
missible tensile stress that can be determined more reliably.

Keeping in mind that in pure shear Oi= t, crs=0, and <j3-=—x 
(see formulas (6.33) in §36), we can establish relationships between 
fa and fcrl according to the different strength theories.

After substituting CT!=t in the first strength theory condition 
<|or!f, it may be written as x <  [cl<, wherefrom

M '- fe l*  (7.13)
After substituting in the second strength theory condition

* The malarial of a bar subjected to torsion experiences pure shear (sec Chap
ter 9).
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the values of principal stresses in pure shear, we get

or

wherefrom

H (— *0 “  (1 + 1*> <  [<*]*

fob
l +  H

M n _  [oh
t+ft

After substituting in the third strength theory condition
*i—

the values of <*i and or», it takes the form
x — (—  t )  =  2 t ^ [ o ]

or

* < i r 0J

(7.14)

i.e.
(7.15)

The strength condition according to Mohr’s theory is crj—pcr8<  
< lo lf; in the case of pure shear we get t — p ( — t ) — (1  + p ) t < ( < j ] , ,

wherefrom or

<716>
In Fig. 83 permissible stress Ix]M is represented by segment OF. 
Applying the fourth strength theory, we find

Y ~  V (T-0)«+<0+T)>+(T+T)>=V5T< M
i.e.

* < y = -  and [,J1V“ T T  (717)
Expressions (7.15) and (7.17) should be used in the design of the 

elements of structures from ductile materials that have equal resis
tance to tension and compression. The difference between It]111 and 
lxl,v is about 15%. Expression (7.16) must be used in the case of ma
terials that have unequal resistance to tension and compression. Ex
pression (7.13) is used rarely. It is desirable to use expression (7.14) 
only for brittle materials; however, it is also used in the design of parts 
working in shear (bolts, and rivets). Since n«0.3 for steel, then

W n =-n3W . =  (0.75-0.8)[a],



PART III 
Shear and Torsion

CHAPTER 6
Practical Methods of Design on Shear

§ 43. Design of Riveted and Bolted Joints
While studying the stresses acting in inclined planes (§ 27) we saw 

that even in simple tension or compression two parts of a bar cut by 
an inclined plane tend not only to separate from each other but to 
shear along the sectioning plane. This is due to the fact that both nor
mal and shearing stresses act in the plane. We came across these, types 
of deformations—tension or compression and shear—while discussing 
compound stress and, in particular, in pure shear {§ 36).

In practice a number of parts of structures work mainly under shear 
due to which strength test for shearing stresses acquires major impor
tance. The simplest examples of such parts are bolted and riveted joints. 
In many fields rivets have been replaced by welding; however, riveted 
joints are still widely used for joining all types of metal structures: 
rafters, bridge trusses, cranes, for joining plates in boilers, ships, 
reservoirs, etc.

To make a riveted joint, holes are drilled or pressed in both plates. 
A red-hot rivet with one head is placed in these holes and its other end 
is riveted by strokes from a special hammer or by pressure from a hy- 
draulic press (riveting machine) to make the second head. Small rivets 
(having diameter less than 8 mm) are deformed in a cold state (in 
aviation structures).
A- Let us take the simplest riveted joint to study the working of riv
ets (Fig. 84). Six rivets placed in two rows join two plates by a lapped 
joint. Under the action of forces P these plates tend to shift over one 
another, this being hampered by the rivets to which forces P are trans
ferred.*

While checking the strength of rivets we shall stick to the established 
order of solving problems of strength of materials. Two equal and

* The resistance due to friction is not taken into account.
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opposite forces are transferred to each rivet: one acting from the first 
plate and the other, from the second plate. It has been experimentally 
shown that some of the rivets in a row carry greater load than the others. 
However, at the moment of breakdown, the forces acting on various 
rivets more or less level out due to plastic deformation. Therefore, it 
is generally accepted that all the rivets work under similar conditions.

Fig. 84 Fig. 85

Thus if there are n rivets in the joint shown in Fig. 84, then each of
the rivets will be subjected to two equal and opposite forces
(Fig. 85). These forces are transmitted to the rivet through the pressure 
of the corresponding plate on the semcylindrical surface of the shank. 
Forces Pt tend to shear the rivet along plane mk which is the parting 
plane of the plates.

To determine the stresses acting in this plane let us imagine the rivet 
shank to be cut by section mk and the lower portion removed (Fig. 85). 
The internal forces which are transferred through this section from the 
lower portion to the upper one will balance force Pu i.e. they will 
act parallel to it in the cutting plane and will give a resultant force /V  
Therefore, the stresses appearing in this section and acting tangential
ly to it will be called shearing stresses t .  Generally it is assumed that 
they are distributed uniformly over the whole section. If the rivet 
shank has diameter d, then the stress per unit area of the section will be

Denoting the permissible stress in shear by frl, we may write the 
strength condition of the rivet under shear as follows:

T= - T = - S i i - < M  (8 .1)
* T

i.e. the actual shearing stress x acting in the rivet material should not 
exceed the permissible shearing stress (see § 42).
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From this condition we can determine the required diameter of the 
rivets if their number is known, and vice versa. Usually the diameter 
of the rivet shank d is given in accordance with the thickness t of the 
parts to be joined (generally d&2t) and the required number of rivets 
n is determined from the relation

p
(8 .1')

The denominator of this formula represents the force which each of the 
rivets can withstand safely.

While deriving formula (8.1) one more inaccuracy had been allowed. 
Actually forces Pi acting on the rivet are not directed along a straight 
line but constitute a force couple.
This couple is balanced by another 
force couple, formed by the reaction 
of the riveted plates on the rivet 
head (Fig. 86) and gives rise to nor
mal stresses acting in planemk.

Besides these normal stresses, 
section mk is subjected to normal 
stresses from another source: during 
cooling the rivet shank tends to 
shorten which is hindered by the 
stop of the rivet heads by the plates.
This, on the one hand, leads to tight
ening of the plates by the rivets 
giving rise to forces of friction be
tween them, and on the other hand 
causes considerable normal stresses 
in the sections of the rivet shank.
These stresses are not very harmful. The rivets are made of steel posses
sing sufficient ductility; therefore, even if the normal stresses attain 
the yield point we can only expect some plastic deformalion (elonga
tion) of the rivet shank, which will reduce the friction between the 
plates. The rivets will however continue to work on shear as designed. 
These normal stresses are therefore not taken into consideration while 
designing riveted joints.

Expression (8.1) has been derived for single-shear riveted joints. 
If the joint is lapped by two cover plates (Fig. 87), each rivet experi
ences shear in two planes—mk and gf (Fig. 88). Such rivets are known 
as double shear rivets. If n rivets are required to transmit force P from 
one plate to the cover plates, then force acting on one rivet is Pi—
—P'n. The area of shear ant* the shearing stresses in
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tions m k  and g f  (Fig. 88) are
t ___ £ _

2nd2 
n 4

The strength condition for a double-shear rivet may be written as 

t  <  [t], wherefrom —-£ —  (8 .2)

Hence, in a joint having two shear planes, the number of rivets 
required according to the strength condition against shear is two times 
less than that required in single shear (formula (8 .1)).

Fig. 87 Fig. 88

In the case of multiple-shear rivets that are sometimes used in metal 
structures, the shear area of each rivet is A6h— and the strength 
condition is

(8.3)

where k  is the number of shear planes.
However, the observance of strength conditions for shear alone does 

not always ensure that the riveted joint is sufficiently strong. The 
joint will be spoiled if the hole walls or the rivet shank get crushed along 
the semicylindrical contact surface when the force is being transmitted 
from the plate to the rivet. Therefore, in order to ensure reliable work
ing of the riveted joint it is essential to check the rivets (or plates) 
against crushing.

Figure 89 presents an approximate picture of transmission of pressure 
to the rivet shank. The distribution of this pressure over the cylindri
cal surface is not known; it depends to a large extent upon the conditi
ons of manufacturing the structure. It is assumed that the non-uniform 
pressure transmitted to the semicylindrical surface of a rivet is distrib
uted uniformly over the diametral plane BC of the rivet. The stress
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in this diametral plane is found to be equal to the maximum bearing 
stress ab at point A of the rivet surface (Fig. 89).

This conditional bearing stress can be calculated by dividing the 
force acting on each rivet with the area of the diametral section BCC'B' 
(Fig. 89). This area is a rectangle one side of which is the rivet diameter 
and the other the thickness of the plate through which the pressure is 
transmitted to the rivet. a

The pressure on each rivet is —, therefore

_ _  P
b ntd

The strength condition for bearing will be

( 8 4 )

where lorhl is the permissible bearing stress. From this formula the 
required number of rivets may be determined as

n td |<r6| (8.5)

The permissible bearing stress is generally taken from 2 to 2.5 times 
greater than the permissible stress under tension or compression to], 
because the test for bearing strength is actually a simplified test of

C
Fig. 89

strength for contact stresses. Expressions (8.4) and (8.5) are equally 
valid for single-shear and double-shear rivets.

We shall illustrate with an example how to calculate the required 
number of rivets. Let us compare two types of a riveted joint, one 
lap-joint with single-shear rivets (Fig. 84) and the other with double
shear rivets (Fig. 87). Let P = 48 000 kgf, t= \  cm, [rl=1000 kgf/cm2 
and l<r&l=2400 kgf/cm*. The thickness of cover plates h  is always more 
than 0.5 t.
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(a) For a lap joint we have
according to the strength condition for shear (8 . 1)

48000
3 .1 4 x 2 4 1000

15

according to the bearing strength condition (8 .5) 
. x  P 48000

I IX  2X  2400-

Number of rivets required is 15.
(b) For a butt joint with two cover plates according to strength 

condition for shear (8 .2)

8

according to bearing strength condition (8 .5)

10

We should use 10 rivets (on each side of the joint).
We see that the number of single-shear rivets was determined by 

the strength condition for shear, whereas that of double-shear rivets 
by the bearing strength condition.
B. The presence of rivets introduces certain changes in the methods of 
checking the tensile or compressive strength of the plates themselves. 
The critical section of each plate (Fig. 90) is the section which passes 
through the rivet holes. The effective width of the plate is minimum 
in this section; it is said that the section is weakened by the rivet holes. 
If b is the total width of the plate, then we get the following strength 
condition:

7 < 5 3 S T < W  (8 .6)

where rn is the number of holes in the section (in our case there are two 
of them).

Knowing the plate thickness l> we can find its width b from the above 
condition. The area of the weakened section (b — m d)t is called the net 
area, whereas the area of the full section b t  is called the gross area.

The account of the effect of the rivet holes on the strength of riveted 
plates is generally accepted but is rather conditional. Actually, consid
erable local stresses arise over the contour of the plate, at the ends 
of the diameter perpendicular to the direction of tension. These local 
stresses in the material may reach the yield point and cause plastic 
deformations, though in a small volume of the plate material.
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These local stresses are potentially capable of causing cracks only 
in a material having low fatigue limit when it is subjected to a variable 
load (§ 16). However, in the usual working conditions of riveted joints 
this danger may be ruled out. To avoid failure of riveted plates due to 
rivets the latter should be located at a certain distance from each other 
and from the edge of the plates. The location of rivets in the top view 
is conditioned not only by the strength and lightness of the joint but 
also by manufacturing considerations.
C. Like rivets, link bolts of lugs and the common bolted joints experi
ence shearing and bearing stresses, therefore their design does not differ 
from that of riveted joints.

A somewhat different method is employed for designing high-strength 
bolted joints which have found wide application in recent years, es

pecially in bridge building. These bolts are used instead of rivets and 
are tightened by means of torque wrenches to a very high values of 
tensile forces, which ensure such tight pressing of the joined elements 
that the frictional forces at the interface are able, to bear all the forces 
transmitted through the joint. The high-strength bolts experience 
neither shear nor bearing strain.

The basic idea behind the design of these bolts lies in providing the 
equilibrium between external forces P transmitted through the joint 
and the frictional forces that develop between the joined elements. If 
we denote the tensile force for one bolt by N and the coefficient of 
friction by we get the following strength condition for the joint:

P=aNf n  (8.7)
Here n is the number of bolts and a  is a coefficient that accounts for 
possible deviations of N and f  from their nominal values (a< l). The 
required number of high-strength bolts is calculated from equation
(8.7):

(8-8)

In accordance with the existing standards for steel bridges, we 
assume

A f-0.6<jaA
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where A is the area of bolt section weakened by thread and o,t is the 
ultimate strength of bolt material which is not less than 12 000 kgf/cni*. 
Depending upon the grade of steel, the following values are used: a — 
=0.78 and /=0.4-0.45.
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§ 44. Design of Welded Joints

In manufacturing metal structures electric-arc welding is often em
ployed. It was invented at the end of the XIX century by Russian engi
neers N. N. Benardos (1882) and N. G. Slavyanov (1888) and ulti
mately found wide application throughout the world.

^ /w v y r

—  d.c Pouter 
— sourse
L/vwm

Electrode holder a

Electrode 

Welded metal

Fig. 91 Fig. 92

In electric-arc welding by Slavyanov’s method the electrode mate
rial (steel) melts under the heat of the electric arc and fills the joint 
of the elements to be welded, which are also heated to the fusion point 
by the electric arc. As a result, upon cooling the molten metal forms a 
weld which rigidly joins the elements (Fig. 91).

A thick protective coating is applied to the electrode to shield the 
molten metal from the harmful influence of the surrounding atmo
sphere. When the electrode melts, the protective coating forms a large 
amount of slag and gases which isolate the molten metal from the 
surrounding atmosphere. This ensures high quality of the weld metal, 
which may otherwise have very poor mechanical properties due to 
atmospheric oxygen and nitrogen (if the electrode is not coated or if 
the coaling is thin).

At present manual arc welding is used mainly in joints requiring 
relatively short welds, for example, in welding steel trusses, tacking 
of angles, etc. Structures requiring long welds (such as mass produced 
welded beams, ship bodies and gas holders) are welded by automatic 
arc welding under a flux layer (Fig. 92). In automatic arc welding the 
electrode wire rolled into a coil is fed to the joint at a certain distance 
from the weld, thus ensuring constant arc length. The carriage with 
the electrode moves along the joint at a rate which is determined by the 
welding conditions. The arc and weld are protected from atmospheric 
oxygen and nitrogen by a layer of flux (granulated slag of special com-
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position) which also melts in the arc flame, forming a brittle, easily 
removable skin.

Structures made of aluminium alloys, that have won wide popularity 
in recent years, are welded by argon-arc welding using an infusible 
tungsten electrode and an aluminium welding rod. The distinguishing 
feature of argon-arc welding is that the arc and molten metal are pro
tected from the atmospheric undesirable impurities by an argon jet.

Besides arc welding, resistance spot welding is employed in some 
cases when thin metal sheets have to be welded (for example, welding 
of thin plating and thin profiles). In spot welding the parts to be joined 
are placed between tightly pressed to them copper electrodes through 
which electric current is passed. The metal around the points of contact 
gets heated up to a temperature which is sufficient to ensure welding 
of the elements.

If the joint design, the electrode material and the welding method 
are properly selected, the welded joint is found to be in no way inferior 
to the riveted joint under static as well as dynamic loading (including 
impact and alternating ones). In addition, electric-arc welding has 
a number of advantages over riveting, the most important of which 
are lower labour consumption and the absence of weakening of the 
section of the elements due to rivet holes. This gives considerable sav
ing of resources and metal besides the economy due to greater compact
ness of the joint. The economic gains from electric-arc welding and 
the fact that it simplifies the structures have in the last few years 
led to gradual replacement of riveted joints by welded.

The welded joints, like the riveted joints, are designed on the 
assumption that the stresses are uniformly distributed in the weld 
section. The design is closely connected to the welding method; in 
particular, this is reflected in the permissible stresses, which are se
lected for the particular weld material in accordance with the welding 
method (manual or automatic welding) and also the thickness and com
position of the electrode coating.

According to existing standards, the permissible stress for weld 
material is taken the same as for the base metal in the case of automat
ic arc welding under a flux layer and manual arc welding with top- 
quality electrodes. For welding with common electrodes the permissi
ble stresses are reduced by 10%.

The gauge length of the weld is often assumed to be 10 mm less 
than the actual length to account for poor fusion at the beginning and 
crater formation at the end of the weld and also to take into considera
tion the difference in structure of the base and weld melafs.

Let us discuss the design methods for some types of welded joints.
The butt joint is the simplest and most reliable of all joints. It is 

obtained by filling the gap between the end faces of the elements to 
be welded with fillet metal. The butt joint, depending upon the thick
ness of the elements is made according to one of the methods shown in
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Fig. 93. The strength test is done for tension or compression according 
to the following formula

— U < K I (8.9)

Here lt~ A m is the nominal effective cross-sectional area of the weld 
having gauge length of the joint l=b  and weld height h equal to the 
thickness of the plates t.

Taking into account the possibility of poor fusion at the ends the 
weld length is taken as l=b—10 nun and the weld has a different 
strength as compared to the base metal. It should be noted that with

an appropriate quality of welding the strength of the butt joint is not 
less than that of the base metal even under impact loading.*

In order to achieve greater joint strength, it is sometimes made in 
the form of a cross-shaped joint with the help of a plate which is welded 
by means of fillet welds (Fig. 94). Similar welds are employed in lap 
and butt joints which are made with the help of cover plates.

The fillet welds laid perpendicular to the direction of force are called 
edge transverse fillet welds, whereas those laid parallel to the force 
acting on the lap joint are known as side or side fillet welds.

The fillet weld does not have a very definite shape of section (Fig. 
95(a)). In theoretical calculations of strength the weld section is con
sidered to be an isosceles triangle (shown by dotted lines) of height h ** 
(Fig. 95(6)).

* Ya. I. Kipnis, D. I. Navrotskii. Investigation of Strength of Welded Joints 
Under Impact, Transzheldorizdat, 1056 (In Russian).

•* Sometimes transverse fillet wolds are made concave with height h <0.7/. 
The cathetus of the wetd may be even less than the thickness of the plate.
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The joints made with the edge (end-lap) welds are shown in Figs. 94 
and 96. These welds fail in the weakest section AB, as established 
experimentally.

I t  is clear from Fig. 95(b) that the total stress acting in section AB 
may be resolved into normal and shearing components. As the resistance

(tt) (8)
Fig. 95

of steel to shear is lower than that to tension, the transverse fillet welds 
are designed for shear assuming that the shearing stresses are distri
buted uniformly over the area of section AB. Keeping in mind that

Fig. 96

force P acting on the joint is taken by two end-lap welds (Fig. 96), 
the upper and the lower ones, we get

T = - £ -  * 2/tw

As the area of the weld section is Aw=hl=*tl cos 45c«0.7 tl, and the 
gauge length is l= b , the strength condition may be written as

T«=T177^fTJ  (8.10)

The cross-shaped butt joint depicted in Fig. 94 is designed similarly.
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Actually, the weld material is subject to compound loading, the 
distribution of stresses in section AB  being non-uniform. A study of 
the welds by the methods of the theory of elasticity, which has a 
sound experimental support, reveals that there is a high stress concent
ration at the corners of welds.

Apart from this, due to shrinkage of the joints in the welding zone 
during cooling, additional stresses occur not only in the weld material 
but also in the base metal, thus subjecting it to a compound stress.

This factor may result in lower ductility of the weld metal thus ma
king the joint (with transverse fillet welds) less reliable, especially 
under impact or alternating loads, as compared to butt joints without 
cover plates.

A joint with side (longitudinal) fillet weld is shown in Fig. 97(a). 
The weld shown in Fig. 97(6) fails over a considerable length of the 
joint due to shearing of the weld metal parallel to the weld in the weak
est section AB. The strength condition for two symmetrically placed 
welds may be written as

Ttt,— 2 x  0 .7 // ( 8 - H )

The number of welds doubles if two overlapping plates cover the 
joint, and the strength condition takes the form

~  4 x 0 7 /7  ^  (8 .1 2 )

The required gauge length / of the side fillet welds is generally calcu
lated from formulas (8.11) and (8.12). The actual length of each weld 
is taken as /0=^-HO mm.

Experiments show that the side fillet welds fail in a way similar 
lo the failure of ductile materials with large permanent deformation. 
Th is makes the working of side fillet welds more favourable as compared 
to that of end-lap (transverse fillet) Welds. However, it should be borne
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in mind that there is high stress concentration at the ends of side fillet 
welds too.

In designing welded joints greater reliability of the joint is sought 
to be achieved by using, instead of a butt joint, or in addition to it, 
overlapping cover plates, which are welded by side fillet welds or edge 
welds or both. As was earlier pointed out, under impact and alternat
ing loads such “strengthening” of the butt joint may do greater harm 
than benefit.

In design of a combined joint using end-lap welds and side fillet 
welds simultaneously, it is considered that the joint resistance is the 
sum of the resistances of individual welds, i.e. P=Pe+ P a, where 
the resistance of the edge weld for a gauge length le is Po=0,7 tle hr J ,  
and the resistance of the side welds is P8—2x0.7 il, Irwl; here/„=&, 
where b is the width of the cover plate. By substituting these values 
we get

P -(Q .7 « # +  1.4«,)[tJ  (8.13)

The length of the side fillet weld / ,  can be determined if the length 
of the edge weld is known. If cover plates are used on both sides, the 
number of welds doubles, i.e. the right-hand side of formula (8.13) 
should be doubled.

The wide application of electric-arc welding in metal structures has 
led to the development of various types of welded joints, the design 
and analysis of which are discussed in special literature *.

The methods discussed in this chaptef on the design of riveted and 
welded joints for permissible stresses are accepted in machine building, 
ship building, aircraft building, etc. A fundamentally new method 
of design for limiting state (Chapter 25) is applied*in the Soviet 
Union for defining engineering structures (civil and industrial build
ings, bridges, tunnels, etc.). This method, however, does not differ 
much from the design for permissible stresses.

The joints in timber structures (grooves, keys, etc.) working under 
shear and bearing are also designed by the limiting-state method. 
The distinguishing feature of timber is its anisotropy due to which it 
has different shearing and bearing strength depending upon the angle 
between the direction of force acting on the element and the direction 
of fibres. Timber has higher shearing and bearing strength along the 
fibres than across the fibres or in an inclined direction; this is taken 
into account by means of coefficients. The design and analysis of these 
joints is available in special literature **.

* See, for example, G. A. Nikolaev, S. A. Kurkin, and V. A. Vinokurov, Ana
lysis, Design and Preparation of Welded Structures, Vysshaya Shkola, 1971 (in Rus
sian).

•* See, for example, A. P. Pavlov, Timber Structures, Goslesizdat, 1959 (In 
Russian). See also Building Structures, edited by G. Ovechkin, Gosstrofizdat, 1975 
(in Russian).



Shear and Torsion IPart I I I1<A

C H A PTER  9

Torsion.
Strength and Rigidity of Twisted Bars

§ 45. Torque

The results obtained during the study of shear enable us to pass 
over to the study of strength under torsion. In practice we come across 
torsion very often; the examples of rods working under torsion are 
axes of a rotating wheel, transmission shafts, elements of three-di
mensional mechanisms, springs and even an ordinary ward key.

We shall first study torsion in round shafts. Let us imagine (Fig. 98) 
shaft CF on which two pulleys, /  and / / ,  are fitted tightly. The shaft 
is supported by bearings C, D, E, and F*. Pulley I rotates the shaft 
with the help of a belt drive from an electric motor. Pulley / /  trans
mits this rotation to the machine tool through another belt drive.

Pulley I is acted upon from the tight and slack sides of the bell by 
pulling forces 7\ and / lt respectively, which lie in a plane perpendi
cular to the shaft axis. Similarly pulling forces T a and U act on pulley 
II and transmit to it the resistance offered by the machine tool. On 
the one hand, these forces exert pressure on the bearings (in the same 
way as the d?ad weight of the pulley) and, on the other hand, they con
stitute force couples lying in a plane perpendicular to the shaft axis.

Denoting the radius of any of the two pulleys by R and keeping 
in mind that tension (T) of the tight side is greater than tension (i) 
of the slack side, we can write the f o l l o w i n g  equation of moments with

* This arrangement of the bearings has been decided upon so that the bending 
of the shaft may become negligible.
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respect to the centre of circle (Fig. 98):
M>=TR — tR = {T— i)R  (9.1)

Thus forces T , and li form a torque (7\—tx) R x which twists the 
shaft in one direction (shown by arrow), whereas the resistance of 
machine tool gives a torque (T* — /*) Rt which is directed oppositely.

For uniform operation of the machine all the forces acting on the 
shaft must be in equilibrium; the torque ( 7 \— tx)Rx should all the 
time be balanced by the resisting torque (7% — /s) R it i.e.

(Ti -  M /?, =  (7 * ,-U) R 3 =  M (9.1')

There always exists an equilibrium between the torque transmitted 
from the motor to the machine tool through the shaft and the reactive 
torque on the shaft due to the resistance offered by the machine tool, 
irrespective of the type of transmission employed (V-belt, tooth gearing, 
friction gearing, etc.).

The portion of the shaft between the centres of the pulleys is sub
jected to the action of two equal and opposite force couples, acting in

Fig. 99

parallel planes, that rotate one with respect to the other: the shaft gets 
twisted. Thus torsion is caused by force couples lying in planes per
pendicular to the shaft axis.

We shall employ the method of sections in order to investigate the 
internal forces acting in cross sections of the shaft under the action 
of. these force couples. Let us consider, for example, the part of the 
shaft which is located to the left of section inn (Fig. 99). It ensues 
from the conditions of equilibrium of the part under consideration 
that the internal forces must result in a moment M t~ M x that balances 
the external moment, i.e. acts in the opposite direction. Similarly, if 
we consider the equilibrium of the part to the right of section mn 
we ffnd that in the same section the internal forces create a moment

The moment of internal forces acting in an arbitrary section of the 
shaft subjected to torsion that tends to rotate this section about the 
shaft axis is called torque or twisting moment. The magnitude and di
rection of torque depend upon the magnitude of the external moments 
acting on the length of shaft under consideration.



166 Shear and Torsion [Part I I I

It is easier to determine the signs of torques through the directions 
of external moments. Torque M t will be considered positive if the ex
ternal moment acts in the anticlockwise direction when seen from the 
side of the section; in Fig. 99, Af ,>0.

This sign convention for M t corresponds to the direction of internal 
forces that are transmitted from the part of the shaft under conside
ration to the other part, for instance, from left to right.

In the above case there were only two pulleys on the shaft, which 
transmitted to it equal and opposite torques (9.17); this resulted in 
torsion of the portion of the shaft between the pulleys by the torque

There are more complex situations when a number of pulleys are 
mounted on the shaft, one of them being the driving pulley and the 
rest driven. Each pulley transmits its torque to the shaft, and if the 
shaft is running uniformly, the sum of all the moments acting on the 
shaft must be zero.

Figure 100 shows a shaft which is acted upon by torsional moments 
Af», Afj, Af.,, Mi; torque M| acts in one direction (from the driving 
pulley), and M3, M3 and M4 in the opposite direction (from the driven 
pulleys). For uniform rotation of the shaft

—Afj-f-A4a-j-M5-f-M4= 0  (a)

The torque will have different values in different portions of the 
shaft. The portion of the shaft to the left of section /*/ will be in 
equilibrium under the action of torsional moment M4 and the torque 
in section /•/. Thus, Af, for this section will be equal to M4 with 
a minus sign because M4 acts in the clockwise direction when seen 
from the side of section. Therefore,

Similarly, if we consider the portion of the shaft located to the left 
of section 2-2 (Fig. 100), we find that the moment of internal forces 
in this section is M t = —Af4+Af,. We would have obtained the same 
value of torque in section 2-2 if we considered the equilibrium of the 
portion of the shaft to the right of section 2-2. In this case the expression 
for torque would have been M t = M t + M 9\ moreover, according to 
condition (a)

Af8-j-Af3 =  Af,—M4

Finally, for section 3-3, considering the right portion of the shaft, 
we get M t = M 9 or Af,a=Afi—M s—M4. From the expressions for 
M t which are given here it is evident that the torque in an arbitrary 
section of the shaft is numerically equal to the algebraic sum of the 
moments of external forces acting either to the left or right of this 
section.
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The value of the torque in different portions of the shaft may be rep
resented graphically by plotting the so-called torsional moment diag
ram. For this, the x-axis is plotted below the shaft drawing and the 
ordinates representing the value of torsional moments in the parti
cular section are laid off from it with proper signs (positive upwards).

Fig. 100

The torque diagram is plotted in the form of rectangles because within 
the limits of a particular portion, the value of the torque Mf does 
not depend upon the position of the section between the pulleys.

Suppose inFig. 100 Af i=600 kgf- in, Afa=300 kgf • m, Ma= 100 kgf- m, 
and Af4=200 kgf - m. The distribution of torsional moments along the 
length of the shaft is shown in Fig. 100.

§ 46. Calculation of Torques Transmitted to the Shaft

To find the torques acting on a shaft we must know the moments, 
transmitted to it by all the pulleys. These moments may be determined 
if we know the number of revolutions of the shaft and the power trans
mitted by the pulley. Let a force couple having moment M be acting 
on the pulley (Fig. 101). We can imagine the couple to be consisting 
of two forces P applied at the contour of the pulley. Upon rotation 
the couple performs work; the magnitude of this work per unit time 
is equal to the power transmitted by the pulley.

Let us calculate the work done by the couple when the pulley is ro
tating. As the pulley revolves through an angle a, each force of the 
couple covers a distance Rat, where R is the radius of the pulley. The 
total work done by the couple of forces will be

W = 2PRa=M a
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Thus, the work done by a force couple when it is revolved through 
an angle a  is equal to the moment of the couple multiplied by the ancle 
of rotation (in radians).

If the shaft Completesm revolutions per unit time, then the work done 
will be W=2nmM. On the other hand, work per unit time is the power 
/V. Therefore, the torque may be expressed through the given values 
of power and number of revolutions per unit lime of the shaft:

M (9.2)
If the power is given in h.p., then N=L  h. p. or N= 75 L kgf- m/sec 

and if the speed is m=n  r.p.m., or per second n/60, then
m  75 X 60 x  L 2250/,M —---- .. =  —2nn an 716.2-^-kgf-m (9.3)

The power may also be given in kilowatts, N —K kW. As 1 kW is 
approximately equal to 102 kgf* m/sec, we get

M « !L kgf. m =  973.6 £  kgf • m (9.4)

For given L or K we calculate the moment transmitted by each pulley 
from formulas (9.3) and (9.4), plot the twisting moment diagram and 
find the critical section in which M t=M ttm9X.

§ 47. Determining Stresses in a Round Shaft Under 
Torsion

Having plotted the A/fdiagram, we cin find in anv section of the 
s' aft the twisting moment made up of the moments of internal forces 
acting in this section. Let us try to determine these internal forces 
and the corresponding stresses in the section. For solving this problem 
we shall use the results of experimental research given below.
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A. Experiments show that when a round shaft is twisted by a couple 
of M (Fig. 102), the following points are observed.

All the generating lines revolve through an angle y, and squares 
drawn on the shaft surface warp changing into rhomb, i.e. they are 
subjected to shear.

Each cross section revolves w.r.t. the other about the shaft axis 
through an angle called the angle of twist. The value of this angle is

directly proportional to the torque and the distance between the sec
tions.

The end face remains a plane and the contours of all the sections 
remain undistorted (circles remain circles). Radii marked on the end 
face remain straight lines even after deformation.

The distance, between adjacent sections practically does not change, 
i.e. sections /- / and 2-2, while turning with respect to one another 
through angle A<p retain their relative distance Ax.

Thus, the experiments show that a bar in torsion represents a system 
of rigid discs mounted centrally on a common axis 0 ,03. Upon defor
mation all these discs turn w.r.t. one another without changing their 
shape, size and relative distance.

The experimental observations enumerated above give us the basis 
for formulating the following hypotheses:

1. all cross sections remain planes;
2. radii on the sections remain straight lines;
3. distances between the sections remain unchanged.
The applicability of these hypotheses is further supported by the 

fact that the formulas obtained on their basis give results which agree 
well with those obtained experimentally.
B. Let us now pass over to determining stresses in sections perpendi
cular to the shaft axis. Let us imagine (Fig. 103) the twisted shaft 
0,0* to be cut in two portions /  and I I  by a section /-/ perpendicular 
to the shaft axis and located at a distance x from section 0,. Let us 
remove portion II  and consider portion I. This part must remain in 
equilibrium under the. action of external moment A! applied in sec
tion Oi and torque M t acting in section 1-1. The equilibrium condition

Fig. 102
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of the cutoff portion may be expressed as
Mt = M

According to its definition, torque M* is the moment of internal for
ces that replace the action of the removed portion of the shaft. In 
order to be able to create moment M t, the internal forces in the section 
and the corresponding stresses must be tangential to the section and 
perpendicular to the radii *. For calculating the moments of these

Fig. 103

elementary forces and their sum let us consider an arbitrary
point at a* distance p from the centre of the circle and isolate an ele
mentary area dA around it (Fig. 103). The force actingon the elementa
ry area will be dP — dA, where t p  is the shearing stress at the given 
point. The moment of this force about point 0  is

dAft =
Considering area dA to be infinitely small, we can find the sum of the 
moments of all the forces as a definite integral over the area of the 
section:

2  Aft -  S *pP dA
A

or, since 2Aft=M #,

$TppdA=M* (9.5)
A

* If we assume that t  Is not perpendicular to radius, then it must have a compo
nent along the radius, which, according to the law of complementary shearing stres
ses, must give rise to shearing stresses along the cylinder generatrices, including 
the ones on the external surface of the shaft which is free of aU stresses (see Fig. 122).
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However, we cannot yet find x from the above equation as we do 
not know how the shearing stresses are distributed over the section. 
C, I t is not possible to determine the stresses in section 1-1 with

Fig. 104

the help of static equations only. It is a statically indeterminate prob
lem, and to solve it completely we must take into account the defor
mation of the shaft shown in Figs. 102 and 104.

Let us isolate (Fig. 104) on the surface of the shaft, prior to deforma
tion, a rectangle ABDC by two adjacent generating lines ab and cd 

• and two portions of sections 1-1 and 2-2.

After deformation both sections /- / and 2-2 turn about the fixed 
end through angles <p* (section 1-1) and <p*-fd<p (section 2-2). On 
the basis of the accepted hypotheses, we can say that both sections 
will remain planes, radii 0J3, CM, OlC and 0*D will remain straight
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lines and distance, dx between sections 1-1 and 2-2 will remain un
changed. Under these conditions the whole element ABDCOtOt will 
be displaced and warped because its right face which lies in section 
2-2 turns through dep w.r.t. the left face which lies in section /-/

Rectangle ABDC occupies the posi
tion which is shown in Fig. 104 by 
hatched lines. The warped element 
AiByDxCiOxOi is shown in Fig. 105; 
on the same figure is shown the form 
of the element if it had remained 
undistorted, i.e. if its left and 
right faces both had turned 
through the same angle.

The warping caused by unequal 
turning of sections 1-1 and 2-2 
transforms right angles of rectangle 
ABDC into acute and obtuse angles; 
the material of the element exper
iences shear (Figs. 102 and 104). 
The magnitude of this deformation 
is characterized by the angle of 

distortion or the angle of shear. On the shaft surface in rectangle 
this angle is equal to BAtBx\ it is denoted in Fig. 105 by y.

We already know that shear is accompanied by appearance of 
shearing stresses in the faces of the warped element {§ 36).

Figure 105 depicts the stresses acting on an elementary area fl,D,Oa 
enclosed between the right face (section 2-2) and the horizontal sur
face of the element AiBiOtOi. Their value may be expressed through 
the angle of shear y which characterizes the warping of the rectangle 
AyBiDiCi by formula (6.37):

r = y  G

As the absolute displacement of the element on the shaft surfaceliU* A.
is BB'~rd<p, at the angle of shear V ~ j -q = r~£i> the stress around 
point Bi will be

T/» =  Gy =  rG —

Let us now determine the stress t p at another point of section Lit 
which is at a distance (> from the centre (Fig. 105). For this we must 
find the angle of shear of the material at point L \ . In Fig. 105 the 
angle of shear or the angle of warping LKU  is denoted by y,». It will 
be less than the angle of shear y at the shaft surface. By the same
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reasoning as in determining y. we find that 7<»=p^and get

Tp =  pG "j~ (9.6)

The angle of shear and the shearing stress at any point in the cross 
section of the twisted shaft are directly proportional to the distance 
p of this point from the centre of the section. Graphically, the variation 
of the shearing stresses may be depicted by a straight line (Fig. 106). 
The shearing stresses t are maximum at points lying on the edge of the 
section and zero at the centre.

Thus, we have established the law of distribution of shearing stres
ses in cross sections of a twisted shaft.
D. The shearing stress may now be determined from equation (9.5). 
Replacing tp by its value from equation (9.6) and taking the quantity
G g  (which is constant when integrating over area) out of the integ
ral sign, we get

G g J p W - A f ,
A

($p3d/4, i.e. the sum of the products of elementary areas into the
A

squares of their distances from point 0 , is called the polar moment 
of inertia and denoted by Jp. Consequently,

From the equation we can find the twisting angle per unit length of 
the rod

dq> M t 
dx GJ p

Substituting ^  into (9.6), we get

(9.7)

(9.8)

The shearing stress is maximum at points of the section which lie 
at the rod surface, i.e. when p=tpm.,x=r:

r  __ MfPmax M i r''max 7 ~7Jp Jp
The formulas for may be written in another form:

_  M fP max ____ M_t______M t

(9.9)

(9.10)
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The ratio ■—-  — Wp is called the section modulus', as the mo-
Pmax

ment of inert ia Jp is expressed in units of length to the fourth power, 
the section modulus Wp is measured in units of length to the third 
power.

The quantities Jp and Wp are geometrical characteristics of the sec
tion under torsion, i.e. they show how shape and size of the section 
influence the torsional resistance of the rod. As described later {§48), 
their values are determined through the rod’s diameter.

§ 48. Determination of Polar Moments of Inertia 
and Section Moduli of a Shaft Section

To determine Jp=^p% dA we isolate a circular ring between radii
A

p and p+dp (Fig. 107). Now in this ring we isolate an elementary area 
dA. We sum up the products p*di4 for the ring and then sum up the

values obtained from all the.rings into which the section may be divid
ed. As all the elementary areas in a particular ring are located at a 
fixed distance from the centre, p, we have

2p*dA =  p*'£dA

In a ring 2 dA is the area of a thin circular strip; 2gL4,=2jip dp and 
therefore pa2<14=2np3dp. Summing these quantities for the whole 
of the section, we get

r  r

Jp =  ^ 2np» dp= 2 n  J  p» dp =* ̂  
b o

or expressing r through the diameter
nd*

's F ‘‘ O.ld* (9.11)
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This is the polar moment of inertia of a circular section. The section 
modulus of a circular section under torsion will be

Wp Pmax
it/ 4 nr9
17 T

nd*
t?r «  0.2d* <9.12)

It is clear from formula (9.8) that shearing stress r  is not large at 
points of thesection close to the centre (where p is small). The twisting 
moment is balanced, chiefly, by stresses acting in the section near its 
surface; the material of the central portion of the shaft experiences 
low stresses and does not contribute much to the resistance to torsion. 
Therefore the shafts of large diameters are sometimes made hollow 
to make them lighter and cheaper (Fig. 108). In this manner we re
move the central portion of the shaft, which is incidentally the weak
est portion of the forging, affected most by harmful inclusions.

We shall determine the moment of inertia and section modulus of 
such a tubular section. Let us denote the outer radius by R and the 
inner radius by r. Then substituting dA=2np dp, we get

R

W 4— *4) *  (D*— d•)
(9.13)

The section modulus is

m  - J p r«) n{D *-d*)
? Pmax 2# 160

If we assume the ratio dlD=a, or #=aZ>, wc get
nD4

^P~  32 ^

(9.14)

(9.13')

nD*
^ P~  is (1 a<) (9.140

If the thickness of the tubular section is small (t<,0.\R), then de- 
noting the mean radius of the pipe by and keeping in mind
that R—r=l, we obtain

J p  - 7  (R* “  ■r4) -  y  (*“ ■+ r*)(R +  r) (R - r) = £  (*• +  r*) 2r01

Replacing R by r0+ ja n d  r by r%— j  and neglecting the square 
of the thickness t we get

Jp «  2nr%t (9.15)



176 Shear and Torsion [Part I I I

Similarly the section modulus may be found as
Wp*s2nr\l (9.16)

These approximate formulas are very convenient for practical cal
culations.

It is obvious that for each cross section the polar moment of inertia 
and the section modulus have a single definite value which depends 
upon the dimensions of the shaft section.

§ 49. Strength Condition in Torsion
Knowing the section modulus we can determine max t from formula

(9.10).
According to the strength condition the maximum shearing stress 

must not exceed the permissible stress, i.e.

From this formula we can determine the section modulus for a known 
twisting moment and the assumed permissible stress, and then from 
the determined section modulus we can calculate the required radius 
or diameter of the shaft.

As explained earlier (§ 42), the permissible stress [xl should be taken 
0.5 to 0.6 of the principal permissible tensile stress, as in the case of 
pure shear. In practice the value of It] for mild steel varies from 200 to 
1000 kgf/cm*, and for carbon steel from 300 to 1200 kgf/cm4, depending 
upon the type of load (static, alternating, impact) and the magnitude 
of local stresses that occur in <the keyways, bosses and other places 
where the shape of the shaft section changes.

§ 50. Deformations in Torsion. Rigidity Condition

We had seen in § 47 that the torsional deformation of a cylindrical 
bar is distinguished by relative rotation of adjacent sections. The angle 
of rotation of one section with respect to another was called the angle 
of torsion <p. For sections located at distance dx from one another we 
had obtained expression (9.7)

If the distance between the sections is I, the angle of torsion is

max t  *= < ;  [ t  JW p (9.17)

(9.18')
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Usually the torque is constant within the limits of a particular por
tion; therefore integrating with respect to at, we obtain

Mft
GJp (9.18)

Formula (9.18) has complete analogy with the corresponding formula 
for tension and compression and expresses Hooke’s law for torsion. 
It is evident from formula (9.18) that the greater the torsional rigidity 
GJj„ the smaller is the angle of twist <p (for a given M t). Thus, Jp 
reflects the effect of the dimensions of the cross section on the deforma- 
bility of the rod under torsion, and G the effect of elastic properties.

If the shaft is mounted by a number of pulleys which divide it into 
portions subjected to different twisting moments M t, then formula 
(9.18) enables us to calculate the angle of twist of one end w.r.t. the 
other for all the portions.

Computation of the angle of torsion has practical importance: 
firstly it is required for determining the reactions of support of twisted 
shafts in statically indeterminate systems; however, this is a rare case. 
Secondly, we must know the angle of torsion to check the rigidity of 
the shaft.

The maximum permissible limits of angle <p, which should not be 
exceeded to ensure safe working of the machine, have been established 
experimentally. These limits are as follows: under normal conditions 
[<pl—0.3° per unit length of the shaft; under alternating loads l<p]= 
=0.25°; under suddenly changing (impact) loads Upl=0.15°. Sometimes 
under normal working conditions we take l<p!=l° per 20 times the 
shaft’s diameter *.

Hence, the shaft dimensions should be calculated not only from the 
strength condition (9.17) but also the rigidity condition

This condition is often the most important when designing long 
shafts. We shall explain the rigidity check with the help of the follow
ing example.

Suppose a shaft transmits A7=150 hp at n=60 r.p.m. It is required 
to select shaft diameter from the strength condition and check it for 
rigidity if the permissible stress [xl—600 kgf/cma and the. permissible 
angle of torsion per metre length of the shaft is hpJ=0.3°. Shear modu
lus G=8xlCfi kgf/cm*

• For some time now the permissible angle of torsion f<f] Is taken up to 2® and 
more per metre length of the shaft depending upon its functioning. Thus, for instance, 
angles of torsion of up to 2.5° per unit length are permitted for automobile cardan 
shafts.

7  - 8 8 1 0



178 Shear and Torsion {Part I I I

The moment transmitted by the shaft may be calculated from exp* 
ression (9.3);

M =  716 .2 - =  716.2 1800k g fm =  !8x 10*kgf-cm

From strength condition (9.17) the section modulus may be found as
Wp> M,

lt|
M  18X 10* o,-,a

= -^ -  =  -<550-=300
As fFp«0.2d3 Iformula (9.!2)J, the shaft diameter will be

d >  j / o = l l -45<:,n

Let us take d = !  1.5 cm and check the section for rigidity. According 
to formula (9.11) the polar moment of inertia may be calculated as

J p «  0. Id* =  0.1 X (11.5)* =  1745 cm*

The angle of torsion per metre (or 100 cm) length of the shaft is 
calculated from formula (9.18):

^ = ^ = ^ T r a  =  0 l29rad  =  0-78° > W

We see that although the strength condition is satisfied, the shaft 
diameter should be increased to improve rigidity and it should be cal
culated from expression (9.19):

Mtl

wherefrom, by substituting the value of permissible angle of torsion 
in radians l<f'l=0.3~, we obtain

•1 /  ISXHXXI80
V 0. I x 8 x  I0BX 0.3 — 14.56 cm

Hence, the shaft’s diameter should be taken d=14.6 cm to ensure re
quired rigidity.

§ 51. Stresses Under Torsion in a Section Inclined 
to the Shaft Axis

While studying the stresses in a round shaft under torsion (§ 47), 
we saw that sheafing stress t  acts at every point of a section perpendi
cular to the shaft axis. According to the law of complementary shearing 
stresses, a similar stress (Fig. 105) will act in the faces of the cutoff 
element lengthwise. These stresses will also be maximum at the sur
face and will be zero at points on the axis.
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Thus, if we cut the twisted shaft by a diametral plane (Fig. 109), 
the points on straight line AB  perpendicular to the shaft axis will ex
perience shearing stresses which change linearly. There will be no 
normal stresses in these planes.
Normal stresses act only, in in
clined planes and are maximum 
in planes which are inclined at 
45° to the shaft axis.

Actually, element ABCD cut 
near the shaft surface (Fig. 110) 
experiences only shearing stresses 
on its side faces. It is in similar 
conditions as the element abed in 
Fig. 75, i.e. in conditions of pure 
shear. Therefore, there are no 
shearing stresses in planes inclined at 45° to the shaft axis; these 
are the principal planes which are subjected to tensile and compres
sive stresses oi and o3 equal to x at each point (see Fig. 105).

m (b)
Fig. n o

The value of these stresses varies from point to point in direct pro
portion to their distance from the centre and is equal to x. Brittle ma
terials like cast iron fail in torsion due to rupture in an inclined sec-

Fig. i l l

tion BC (Figs. 110 and 111), i.e. in a section where the tensile stresses 
are maximum.

Knowing the magnitude and direction of the principal stresses at 
any point, we can determine the normal and shearing stresses in any
7*
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inclined plane by Ihe stress circle or with the help of formulas (6.5) 
and (6.6). As the absolute values of the maximum normal and shearing 
stresses are equal and the permissible shearing stress is less than nor
mal one, we can limit the strength check in torsion, as in pure shear, to 
analyzing shearing stresses only.

§ 52. Potential Energy of Torsion

Previously, when we were studying tension, it was shown (§ 35) 
that when an elastic system deforms, it accumulates energy called the 
potential energy of deformation.

This phenomenon occurs in torsion as well. If we twist an elastic 
rod within the limit of elasticity, then, when the external forces are 
removed, it will untwist and perform work at the expense of the po

tential energy it had accumulated during 
deformation. Neglecting the irreversible 
losses (healing, internal friction, etc.), we 
can consider that the work done by the 
internal forces, which is determined by the 
amount of accumulated potential energy 
£/, is equal to the work W done by the 
external forces.

Suppose we have a shaft one end of 
which is fixed and the other is loaded by 
a force couple which creates a moment 
that gradually increases from zero to a 
finite value M. The increase in M will 

result in a corresponding increase of <p which is related to M t by 
equation (9.18):

If we plot the angle of twist (deformation) along theje-axis and the 
corresponding values of the twisting moment along the y-axis, then the 
relation between the two will be represented by an inclined straight 
line OA (Fig. 112). By the same reasoning as employed in calculating 
the work done by a tensile force P, we find that the work done by the 
force couple M may be expressed through the area of triangle OAB:

(9.20)

The constant 1/2 in formula (9.20) is due to the fact that the moment 
M has not been applied in its full magnitude at once but increased 
gradually, ‘'statically” from zero to its finite value.

Replacing <p by its value from equation (9.18) and keeping in mind
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that U=W, we get the expression for potential energy in torsion:

U mU
2 QJp (9.21)

The potential energy may also be expressed through deformation 
if we replace the torque in formula (9.20) by its value from formula
(9.18):

GJ,
= p

Then
_gj_l  
~  21 r (9.22)

It is evident from formulas (9.21) and (9.22) that the potential ener
gy of torsion, as of tension, is a function of the square of force or de
formation.

§ 53. Stress and Strain in Close-coiied Helical Springs
Tension and compression helical springs are used in wagons, valves 

and other parts of mechanisms. When designing such springs, we must 
know how to calculate their maximum stress (for strength check) 
and deformation, their elongation or compression. This is essential 
because the load on the spring is controlled by deforming it more or 
less under tension or compression.

Hence, we must determine the relation between deformation and the 
force, acting on the spring provided its dimensions are known. It 
will be seen that the spring material experiences torsion when it is 
stretched or compressed.

We shall restrict our discussios only to close-coiled helical springs, 
i:e. springs in which the distance between adjacent coils (pitch) is 
small as compared to the diameter. If this condition is satisfied the 
coil inclination may be ignored and it may be assumed that any arbit
rary cross section of the spring is parallel to forces P acting along 
the spring axis and either stretching or compressing it (Fig. 113).

Let us introduce the following notations: radius of the spring helix 
R\ diameter of the spring wire d=2r> number of turns in the spring 
n and shear modulus of the spring material G.

To determine the internal forces and stresses acting in the spring 
section when it is stretched (or compressed), let us cut one of the coils 
by a plane passing through the spring axis and consider the equilibrium 
of one of the cutoff portions, for example, the lower onev(Figs. 113(b) 
and 114). External force P acting on this portion in The downward 
direction is balanced by an upward acting internal force P%=*P which 
lies in the plane of the section and is transmitted through this section 
from the upper portion to the lower one.

Since forces P and Pi form a couple with a moment M=PR  that
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rotates the portion of spring under consideration in the anticlockwise 
direction, it can be balanced only by a moment M t=PR  of the inter
nal forces lying in the plane of the section and acting in the clockwise 
direction. Since internal forces P\ and their moment Af*, which replace 
the action of the upper portion of the spring on the lower, lie in the

Fig. 113 Fig. 114

plane of section, they are made up of shearing stresses. Shearing force 
Pi=P  is formed from elementary shearing forces dPi=Tt cM that 
prevent the section from shearing downwards (Fig. 115 (a)). If the 
distribution of shearing stresses over the section area is assumed to 
be uniform, then force Pi may be expressed as Pi —TlA, wherefrom 
shearing stress

< 9 - 2 3 >

The torque M t that prevents the section from rotating (Fig. 114) 
is related to shearing stresses t 3 in torsion by the formula

Both systems of stresses t *  and t „  that appear in the spring section 
when it is subjected to a tensile force P are depicted in Figs. 115(a) 
and (b). At each point of the section stresses T i  and t 2  are summed geo
metrically as their directions coincide only along radius AO.

As the shearing stresses due to torsion are maximum at the periphery 
of the section Iformula (9.10)1, i.e.

-  _  M t  _ 2 P R
”*ni«K W^—1CFT
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point. A on the internal edge of the contour will be the critical point 
since here stresvsesxi and Ta add up arithmetically. Hence, the maximum 
total shearing stress in the spring section is

T _  p . a> *_  r  w \
m a x  nra 1 nrt \  ' r ) (9.25)

From strength condition rwax<  It], or

(9.25')

As in a majority of cases the second term inside the brackets is con
siderably greater than unity, the first term is usually ignored, i.e. 
the stresses due to pure shear are neglected and only stresses due to 
torsion by moment PR are consi
dered. Therefore

(9-26)

The elongation of the spring’s 
axis under tension, which is de
noted by K can be very easily cal
culated on the basis of this appro
ximation.

Let us cut from the spring a 
segment of length ds by two ad
jacent sections CO} and C02 pas
sing through the spring axis (Fig.
116). As we select the sections ve
ry close to each other, it may be 
assumed that before deformation 
the radii R drawn from the 
spring’s axis to the centres of the 
sections lie in the same plane and 
form a triangle OiCOt.

After deformation due to torsion of the segment ds, the second section
turns w.r.t. the first by an angle Consequently, radius
0 £  turns w.r.t. radius OiC by the same angle dtp and point C occupies 
the position Ci, which means that the end of the spring moves down by

If we consider that all similar elements ds deform in an identical 
manner, then the total distance by which the Iowa* spring end moves

Fig. IIS
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down, i.e. its elongation, may be expressed as the sum of dk:

X = GJp (9.27)

/
Here /=   ̂ds is the total length of the spring wire and is the rela*

A ^
tive angle of torsion of the ends of the spring wire, which is determined 
under the assumption that the spring wire has been straightened.

F i g .  1 1 6

Neglecting the inclination of the spring coils to the horizontal and 
assuming the number of turns to be n we get the total length of the 
spring wire equal to

I =  2siR n
Therefore

(9.28)

A similar formula can be derived by comparing the work done by 
external forces W = ^ P l  with the potential energy of torsion V=

Af2/— j-\ the reader is advised to do this independently.
Denoting the permissible elongation (or compression) of the spring 

by [XI, we can write the following rigidity condition:

* =  ̂ < [ > • 1  (9.2»')

Formulas (9.25') and (9.28') enable us to check the strength and find 
the deformation of the spring.

The greater the permissible shearing stress [xl, the more flexible 
is the spring and the greater wifi be its compression under a particu
lar load P, because it may be manufactured from a thinner wire. The 
wagon springs must be sufficiently flexible, therefore they are made 
from tempered steel with a high elastic limit. The permissible shearing
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stress may be up to 40 kgf/mm* and sometimes as high as 80 kgf/mm*. 
The permissible stress for chromium-vanadium steel in tension springs 
is taken up to 70 kgf'mm* at r—6 to 8 mm. The permissible shearing 
stress for phosphor-bronze is |t!=13 kgf/mm® at G=4400 kgf/mm* and 
r up to 8 ram.

These values of permissible stress are valid only under static loading; 
under alternating loads they reduce by about 1/3, and for springs work
ing non-stop (valve springs) by about 2/3. In these cases an important 
factor is the development of fatigue cracks (see § 16). In addition, the 
valve springs often work at high temperatures; this also requires a re
duction in the permissible stresses.

In practice, when designing springs according to formula (9.25), 
we introduce a correction factor ft which, apart from shearing, takes 
into account other factors (bending of the spring wire, longitudinal 
deformation, etc.) that were not considered above. The greater the ratio
•g , i.e. the greater the torsional rigidity of the spring, the greater the
value of factor ft.

Formula (9.25), which in addition to torsion accounts for shear due 
to force P, is replaced by

(9.29)
2

The value of correction factor ft may be taken from Table 8.

Table 6

Correction Coefficients for Designing Springs

Rir 4 5 6 7 8 9 10 It 12 15

k 1.42 1.31 1.25 1.21 1.18 1.16 1.14 1.12 1.11 1.09

In design of springs, the known quantity sometimes is not the force P 
which stretches or compresses the spring but energy T  which it must 
absorb. As in tension or compression of a rod, the potential energy of 
deformation U of the spring is measured in terms of the work done by 
the external forces.

As P and ?* arc linearly dependent upon each other Iformula (9.28)1, 
the potential energy of deformation of the spring may be written as

, ,  I 2Pt R3n
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From formula (9.26) we have

P R -
T nr*

Putting this value in equation (9.30), we obtain

4G

As 2nRn is the length of spring wire and nr2 its area of cross section,

U W (9.31)

Here V is the volume of the spring. Keeping in mind that U=T, we 
can write formula (9.31) as

4 GT
:rF F (9.32)

Thus, by assuming the limit ing value of stress T=rr] we can calculate 
the volume of the spring required to absorb energy T=U  such that 
the permissible stress ItI is not exceeded. The compression of the spring

under |x| should be checked; it should be such 
that the gap between the spring turns is not 
completely eliminated.

As an illustration we shall calculate the ma
ximum stress and elongalion of the cylindrical 
spring shown in Fig. 113, if spring radius 
R=lQO mm, spring wire diameter d=20 mm, 
number of turns n=10 and tensile force 
P=220 kgf. Shear modulus 6'=8.5 x  lO^kgf/em2. 

The stresses will be calculated with the help
of formula (9.29). As the ratio— =10, the
correction factor 6=1.14 (Table 8) and

T -  l . ! 4 ? m ^ = 1 5 9 2 k g f /c r a 1

The elongation (or compression) of the spring 
according to formula (9.28) is

Fig. 117 4 PR? 4 x  220xl0!'x i a
Gr* 8.5x !06X I4 =  10.4mm

In addition to cylindrical coil springs conical springs (Fig. 117) 
are also used in engineering practice. The radii of the top and bottom 
turns in Fig. 117 are denoted by Rt and R t respectively; the average
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radius R may be calculated by the formula

where n is the number of turns and a  is the angle formed by the radius 
under consideration with the top radius Ri and measured along the 
spring turns.

The strength of conical spring is checked with the help of formulas 
(9.25) or (9.26) by replacing R with its maximum value R». To deter
mine X, as in the previous case, we must add the elementary deforma
tions

Sometimes springs are manufactured not from a round wire but a 
rectangular-section wire; for such springs the formulas given in § 54 
(Table 9) have to be used to calculate the stresses and deformations.

§ 54. Torsion in Rods of Non-circular Section
In engineering practice we often come across rods of non-circular 

section subjected to torsion; these include rolled and thin-walled rods. 
Under torsion the cross sections of such rods do not remain planes, they 
warp. As depicted on the example of a rectangular section, points of the 
section do not remain on the plane (some get displaced inwards, others 
outwards) and the section undergoes plane skift (warping) (Fig. 118). 
A. When a rod of uniform section is twisted by force couples applied 
at its free ends, all cross sections of the rod undergo equal plane shift. 
Therefore the distance between equally displaced points on adjacent 
sections does not change, i.e. the lengths of longitudinal fibres remain 
unchanged. This means that the cross sections of the rod are free of 
normal stresses when plane shift of its sections is uniform.

Torsion is known as pure or free when cross sections of the twisted 
rod are free of normal stresses. It should be noted that free torsion 
is possible only under conditions of unconstrained (free) plane shift 
of all sections. In pure torsion the magnitude and distribution of 
shearing stresses are the same in all cross sections.

If plane shift of a single cross section of the twisted rod of non- 
circular section is constrained (for example, by the conditions of fixa
tion or loading), torsion can no more be considered free: it will be ac-

dX =  ̂ Rrfs

M t—PR is now a variable quantity. Therefore

(9.33)
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companied by change in length of longitudinal fibres and normal 
stresses wil 1 begin to act in cross sections. In this case the shearing stres
ses have different magnitude in different sections: they are made up 
of shearing stresses of pure torsion and additional shearing stresses

connected with the non-uniform 
plane shift of the rod along its 
length. Torsion with constrained 
plane shift is known as constrai
ned torsion.

Figures 119 and 120 depict the 
states of pure and constrained 
shear in an I-section. Figure 119 
shows the deformation of I-sec
tion with free ends to which force 
couples with moments M„ are 
applied, i.e. an 1-section subject
ed to pure torsion. Figure 120 
depicts the deformation of the 
same I-section when same mo
ments Mo are applied to its ends. 
In this case, however, one end of 
the rod is rigidly fixed: therefore 

the fixed end remains plane, its warping is completely constrained and 
hinders free plane shift of adjacent sections. Torsion may be considered 
free only at the free right end of the rod. Hence, this is a case of const
rained torsion or, as it is also known, bending torsion (the l-seclion 
flanges, like elements of thin-walled sections in general bend when the 
section is subjected to torsion).

Tin' problem of constrained torsion was first formulated and solved 
by Prof. S. P. Timoshenko in 1905 * *. However, these problems drew 
the attention of engineers and research workers only towards the end 
of twenties in connection with the developments in aircraft industry 
and introduction of thin-wailed structures in civil engineering. Soviet 
scientists contributed much to the theory of design of thin-walled 
structures and shells, in particular Prof. V. Z. Vlasov who put for
ward the general theory of design of thin-walled open-profile rods 
(1939**). This theory further developed in subsequent years and 
along with the theory of shell design grew into an independent branch 
of mechanics of structures, which is widely covered in literature.

The theory of constrained torsion is to a certain extent based on 
the theory of pure torsion of rods of non-circular sections; some of 
the results of the theory are given below.

• Proceedings of St. Petersburg Polytechnicol Institute, Vol. 4, 1905.
• • V. Z. Vlasov, Thin-walled Elastic Rods, Stroiizdat, 1940 (in Russian). Also

seeN. M. Belyaev, Strength of Materials, Nauka, 1965 (in Russian).
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B. Since torsion of rods of non-circular sections is accompanied by 
warping of the sections, one of the basic hypotheses of strength of 
materials—the hypothesis of plane sections—becomes inapplicable. 
The problem of torsion of such rods requires more complicated mathe
matical analysis and can be solved only by the methods of the theory 
of elasticity.

The first theoretical investigation of pure torsion in rods of non- 
circular sections was carried out by Saint-Venant in 1864; he also 
presented a number of solutions of particular problems (torsion of 
rods of rectangular and elliptical sections). Solutions to many problems 
on free torsion of rods, including rods of very complex profiles, have

been found by now on the basis of the general method of design of 
such rods developed by Saint-Venant. However, in spile of the com
plexity involved in solving these problems by the theory of elasticity, 
their results can be presented in a simple and convenient form for 
practical use. The formulas for maximum shearing stresses and strains 
are presented in the form of expressions which are completely identi
cal to the formulas for maximum shearing stresses and angle of twist

(b) 

Fig. 119

lb) 
Fig. 120
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of round bars in torsion:

‘max up
M,l

(9.34)

(9.35)

In these formulas J t and Wt are geometrical characteristics of the 
section (similar to J p and \Vp for round sections and having same 
units) which arc conditionalty called the torsional moment of inertia 
(Jt) and the section modulus in torsion (Wt). For circular and ring 
sections J t=J p and Wt^ W 9.

For some sections these geometrical characteristics have been de
termined in closed form: for instance, for an ellipse

t _  na1̂ 3
(9.36)

Here a and b are the major and minor axes of the ellipse, respecti
vely. The shearing stress diagram for the elliptical section is shown 
in Fig. 121. Along the profile of the section the stresses form a conti-

Fl«. 121

nuous flux tangent to Ihe profile, and attain maximum value at the 
end of the minor axis (Troax= ^ - j ; at the end of the major axisxa=
_  b tJ

Identical shearing stress fluxes are directed along closed curves 
shown bv dotted lines (shearing stress trajectories). The magnitude 
of shearing stress x  increases, as we move from the centre of the ellipse 
towards its periphery, in direct proportion to the distance (Fig. 121).
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It should be noted that when a rod of an arbitrary profile is sub
jected to torsion, the shearing stresses at the contour should be tan
gent to the section in accordance with the law of complementary shear
ing stresses. If the possibility of stress component perpendicular 
to the periphery is conceded, this will imply that complementary 
shearing stresses act on the side surface free of all stresses (Fig. 122). 
For the same reason shearing stress t= 0 at the corners. We can see 
this in the example of a rectangular 
section (Fig. 122; top left corner).

For a rectangular section with 
sides b and /i, the geometrical char
acteristics depend upon the ratio 
between the sides ana are expressed 
by the following formulas:

J t =  ab* and Wt = fto» (9.37)
or

J t = *Lhb*y W t ^Q Lhb* (9.37')

where

a. b
‘ k a and 0, =-r?>

Fig. 122
The distribution of shearing stres

ses over a rectangular section is
shown in Fig. 122. Along each side the shearing stress t varies accord
ing to a parabolic law and attains maximum value at the middle
of the longer side ; at the middle of the shorter side x=
= Y W - and at the corners t=0.

Table 9 contains the values of coefficients a, p and y.

Table 9

Coefficients for Designing Rectangular Bars Under Torsion

h/b a 0 y h/b a 0 V

1.0 0.141 0.208 1.000 3.0 0.790 0.801 0.753
1.2 0.199 0.263 0.935 4.0 1.123 1.128 0.745
1.5 0.294 0.346 0.859 5.0 1.455 1.455 0.744
i .75 0.375 0.418 0.820 6.0 1.789 1.789 0.743
2.0 0.457 0.493 0.795 8.0 2.456 2.456 0.742
2.5 0.622 0.645 0.766 10.0 3.123 3.123 0.742
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Table 10
Data on Torsion of Non-circular Sections

e. , Moment of Inertia JiShape of the section (cm*> Section modulus 
Wf (cm*) Remarks

x m*
10 (/«*-1-0 (1—a4) Wt = n r (1— a*)m

h i_h%
bi —77=m>l

a<l

Tmax — Mi.Wt

Wu — 2h0b,fij 
r (a- 2V o « i

At tfie mi ddle 
of longer side

,  M *
T'  - T J T

At the middle 
of shorter side 

Mf
X‘ & n

*  ( s - 4 - ‘)
4 - >  0.5 d

■ x M,‘max —
8 ( » - 4 ('°-7)

m

At the base of 
the tfroovc

•p _  Mi‘max —

a  and fl from tfie tabic depending upon the ratio d;D.

d/D 0.0 0.05 0.10 0.20 0.40 0.60 0.80 1.0

a 1.57 0.80 0.81 0.82 0.76 O.fifi 0.52 0.38

P 1.57 1.51* 1.56 1.40 1.22 0.02 0.63 0.38



According to Table 9, for narrow rectangular sections 
coefficients a  and p^3.123, and a t and {Jj are approximately equal 
to-3- (from 0.312 toO.333). In accordance with formula (9.37 ) for such 
rectangular sections we obtain

J , = \hV>, r ,  =  ±Ai>> (9.38)

Table 10 contains formulas for the geometrical characteristics of 
more complicated profiles and maximum shearing stresses in torsion. 
If we are studying torsion in a rod of complex profile which may be 
divided into a number of elements, then for such a section

A s=Ai +  Ai +  " ,5S2 '^  In
where n = l ,  2, 3, . . .  are the numbers of the elementary parts into 
which the section is divided.

As the angle of twist is the same for the complete section and all 
its parts, we have

(fl _  Mil Mi,t __Mt„l
* GJt GJtl GJln

the torque is distributed over different portions of the section in direct 
proportion to their rigidity:

=  =  ............

Correspondingly the maximum shearing stress in each of the n 
portions of the section is

t  A ft (  J t n \,n T̂ TW/J /ilw'/J
The maximum value of x occurs in the element for which is 

maximum. Hence "
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In addition to Table 10, we give here the formulas for J t and x 
for sections composed of narrow and long rectangles, for example, 
L-, T«, I- and IJ-shaped sections.

For such sections we may take

(9.38')
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where 6 is the shorter and h the longer side of the rectangles into which 
the section may be divided.

Coefficient t| depends upon the shape of the section and has the 
following values:

for an L-section r| =  1.00
for an 1-section i] —1.20
for a T-section r )= l . l5
for a U-section r| =  1.12

Angle <p is expressed as before by the formula

<P GJt

The maximum shearing stress is expected to occur in the broadest 
of the rectangles into which the given section has been divided. It 
may be calculated by the following formula:

_MtSmax
max — (9.39)

where 6nuix is the maximum thickness among all the portions.
We may use the formulas for round sections in the analysis on tor

sion of pipes with a non-circular section and small thickness of the 
wall. According to formula (9.16) the section modulus of a thin- 
walled ring is

W p='2nr\t=- 2 A

where A0 is the area of the circle bounded by the midline of the ring, 
and t  its thickness. Assuming that the shearing stresses are distributed 
uniformly over the ring section, we get

This formula may be employed for the analysis of thin-walled rods 
of non-circular closed sections.

The angle of twist may be determined by the formula
re _ Milr° _  xl 
' GJ pTb (/To

Multiplying and dividing by 2rcr0= S , we get

<9+1>
where S is the length of the centre line cf the pipe section, and A 0 
is the area bounded by the midline of the given closed section.



PART IV

Bending. Strength of Beams

C H A PT E R  10

Internal Forces in Bending. 
Shearing Force and Bending-moment Diagrams

§ 55. Fundamental Concepts of Deformation in Bending. 
Construction of Beam Supports

A prismatic bar with a straight axis bends if it is acted upon by 
forces perpendicular to its axis and lying in a plane passing through 
the axis.

A bar working under bending is usually called a beam. I t has been 
shown experimentally that under the action of such forces the beam’s 
axis takes the form of a curve, and the beam bends. Figure 123 shows

a system of forces bending a rectangular beam; the forces act in the 
plane of symmetry of the beam. If the plane of action of the forces 
differs from the plane of symmetry then in addition to bending the 
beam is subjected to torsion.

Beams are the most commonly used element of structures and ma
chines; they withstand the pressure of other elements of the structure 
(for example, forces P „  Pa, and P„ in Fig. 123) and transfer it to the 
parts supporting them (for example, forces PA and P6 in Fig. 123).

Thus, the beam experiences the forces applied to it and the reac
tions of the supports. Both kinds of the forces must be known to 
enable us to solve the problem on strength of beams under bending.
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The external applied forces may be calculated if we know the parts 
of the structure supported by the beam. These forces are classified 
as concentrated P  (tf, kgf, N), force couples with moment M  (tf* m, 
kgf-m, N*m), and loads uniformly and non-uniformly distributed 
over the length of the beam.

The uniformly distributed loads are measured by their intensity qf 
i.e. load per unit length of the beam and are expressed in tf/m, kgf/m 
or N/m.

The intensity of non-uniformly distributed loads varies along the 
length of the beam and is denoted by q (x). In this case q (x) is the load

per unit length of the beam at the given point *. In other words* 
q(x) is equal to the limit of the ratio of load acting over a length of 
dx near the particular point to the length dx.

A few examples of beams are given in Fig. 124(a), (b) and (c). The 
first one is a joist loaded by a uniformly distributed force^ = 2 0 0  kgf/m; 
the second beam is a dike support loaded by a triangular force (waler 
pressure) of intensity qix) varying from 0 to <70=  1200 kgf/m; the third 
one is the main beam of a bridge, which takes the forces exerted by 
the engine wheels.

The wagon axle is a beam supported by the wheels and subjected 
to the pressure of the axle box; beams in the aeroplane wings are bent 
due to air pressure.

For the time being we shall study only the beams which satisfy 
the following two limitations;

(1) the beam section must have at least one axis of symmetry 
(Fig. 125);

(2) all external forces must lie in the plane of symmetry of the beam.
The reactions of the supports, which balance the external forces

applied to the beam, must also, obviously, lie in the same plane.

(a) safe

Fig. 124

* Notation ?(*) shows that the intensity of load in this case is a function of x.
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To determine the reactions of the beam supports we must study 
their construction. The supports generally belong to one of the follow
ing three types:

(a) fixed hinged support;
(b) movable hinged support; 
fc) rigidly fixed support.
The fixed hinged support is schematically shown by point A in 

Fig. 126. It allows the supported section of the beam to revolve freely

Fig. 125

round a hinge mounted at the centre of gravity A of the supported 
section, but does not permit linear displacement of this end of the 
beam. The resistance of such a support is expressed by the reaction 
which is transmitted from the support to the beam end through the 
hinge and which lies in the plane of acting forces.

F»g- 126 Fig. 127

We know only the point of application of the reaction—the hinge— 
as it is the only point at which the beam and the support come into 
contact, but we know neither the magnitude of reaction nor its di
rection. Therefore, we must always replace the support by two compo
nents: Ha , parallel to the beam axis, and A, perpendicular to it. 
From this reasoning a fixed hinged support gives two reactions 
(A and HA) of unknown magnitude.

A movable hinged support permits, besides rotation, free displace
ment in ihe relevant direction (Fig. 126, point B). Hence, this support 
only hinders displacement perpendicular to the particular direction. 
Therefore, the reaction of such a support passes through the centre 
of the hinge and is directed at right angles to the line of free displace
ment of the support (usually the beam axis). Thus a hinged movable 
support gives only one unknown reaction B.
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Finally, a rigidly fixed support hinders all types of displacements 
of the beam end in the plane of action of the forces. It may be obtained 
from a fixed hinged support by removing the hinge (Fig. 127).

By removing the hinge we prevent rotation of the beam end, i.e. we 
introduce a new reaction that prevents such a rotation. This reaction 
is created by a force couple. Therefore a rigidly fixed end of the beam 
gives three unknown reactions: component HA parallel to the beam 
axis, component A perpendicular to it, and the bearing moment M A.

i A

m

Ha

m
Fig 128

<C

8

I
0

A beam may rest on a number of supports cf the types explained 
above. Figure 127, for example, shows a beam with a rigidly fixed 
end; in Fig. 126 the beam is supported at one end by a fixed hinged 
support and at the other end, by a movable hinged support; 
in Fig. 128 (a) the same beam is supported additionally at the centre 
by a movable hinged support; the beam in Fig. 128(b) is rigidly 
fixed at one end and supported by a movable hinged support at one 
of the intermediate sections.

In all these figures we have depicted the reactioas of the supports 
of a particular construction, which may arise under the action of 
external forces; the forces have not been shown in the figures.

To determine the unknown reactions we shall first use the static 
equations expressing the condition that under the action of the forces 
applied to it and the reactions the beam as a whole remains in equi
librium. As all the forces lie in a single plane, we may write down 
three static equations. Thus, the problem of determining the reactions 
from conditions of statics is determinate if the number of unknown 
reactions is not more than three.

Hence, the beams with the construction of supports that gives three 
reactions (Figs. 126 and 127) are statically determinate. Multiple- 
support beams with intermediate hinges also belong to the group 
of statically determinate beams. These beams may be classified into 
the basic statically determinate beams (A-f and 2-3) and the suspended
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statically determinate (1-2 and 3-D), which are supported by the former 
through hinges (Fig. 129).

All other beams belong to the group of statically Indeterminate; 
they will be analyzed later in special chapters.

The construction of the supports is, in fact, sometimes very much 
different from the construction shown in Figs. 126 and 127. Therefore, 
before we start analyzing a beam we must first study the design of

1 I
m i

!!!!!!!
3

Fig. 129

its supports and establish to which group of supports shown in Figs. 126 
and 127 do they belong.

As the deformation of the beams is usually very small and stresses 
are within the elastic limit, we must find out whether the support 
permits even a small rotation or displacement. If this is so, it is suf-

Fig. 130

ficient to consider the support hinged or movable. If the end of a me
tallic or wooden beam is fixed in a brick wall to a small depth, then 
a little rotation of this end is quite possible, and therefore the end 
should be considered as hinged.

Thus before determining the support reactions, we must represent 
the supports by schematic diagram replacing the actual construction 
by an equivalent approximate drawing. Thus, for Instance, the wagon
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axle (Fig. 130fo)) that experiences pressure P of the wagon body and 
transmits it to the rails may be looked upon as a beam loaded by for
ces P at points A and B and resting on hinged supports C and D of 
which one may be considered movable (Fig. 130(b)). This schematic 
drawing describes the actual working of the wagon axle with some 
approximation because the supporting sections may rotate under 
bending load and the distance between points C and D may also 
slightly change.

We shall employ the three equations of equilibrium to determine 
the support reactions in statically determinate beams. The axis of 
the beam is assumed as the x-axis and the centre of one of the hinges 
as the centre of coordinates; the y-axis is directed vertically upwards 
(it is assumed that the beam is horizontal).

To determine the horizontal component of the reaction we equate 
to zero the sum of projections of all the forces on the .v-axis. The ver
tical components of the reactions and the support moment are deter
mined by equating to zero the sum of moments of all forces about 
any two points of the beam, usually about the centres of gravity of 
the supported sections of the beam. The sum of projections of all 
the forces on the y-axis should be equaled to zero to check the correct
ness of calculations; this condition must become an identity when 
the values already obtained are substituted in it.

In beams with intermediate hinges, we first study the equilibrium 
of the suspended beams as beams on two supports and find their reac
tions. These reactions must balance the forces transmitted from the 
suspended beams to the base beam through the hinges. Knowing 
the forces, we can determine the reactions of the base beam (see § 59).

§ 56. Nature of Stresses in a Beam.
Bending Moment and Shearing Force

Selection of the design scheme and determination of the support 
reactions completes the first part of the problem of beam analysis— 
determination of the external forces acting on the beam.

We can now proceed with finding the stresses in beam sections; 
this will be the next step in solving the problems on bending. For 
discussion, let us consider a hinged beam (Fig. 131) which is loaded 
by forces Pu Pi, and P0. For the given system of forces the horizontal 
reaction HA is zero, the reactions A and B are determined from the 
equations of moments; thus all the external forces can be determined.

Before determining the stresses we must find the critical section 
of the beam through which the maximum stresses are transferred. 
This can be achieved by deriving formulas which enable us to deter
mine the stresses in any section (for example, inclined section 3-3). 
Once we have derived these formulas, we shall be able to determine 
the critical section as well as the maximum stresses.
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Let us start by determining stresses in a plane perpendicular to 
the axis of the beam, then in a plane parallel to the axis, and finally 
in any plane. Let us take a section /-/ perpendicular to the axis of 
the beam with its centre of gravity 0 t at a distance x from the left

support. To determine the stresses in this section we remove one por
tion of the beam and replace its action on the remaining portion by 
the unknown stress. For convenience of calculation, the equilibrium 
of that portion of the beam should be considered to which less number 
of forces are applied; in the example under consideration, the left 
portion. This portion must maintain 
equilibrium under the action of 
external and internal forces acting 
on it.

The only external force—force 
A acting upwards—is applied to 
the left of section 1-1 (the weight of 
the beam is neglected). This force 
can be balanced only by the inter
nal force Q=A (or Q =Fa+ JV —B=
=A) which is transmitted from the 
right cut-out portion of the beam 
and acts vertically downwards 
along the tangent to the section 
(Fig. 132(a)). Since forces A and Q 
lying in the vertical plane form 
a* couple with moment M =Ax  in 
the clockwise direction, the section 
must experience internal forces which also result in a moment of 
the same magnitude M =Ax  acting in the anticlockwise direction. 
Only normal stresses acting in the section are capable of creating this 
moment which retains the left portion of the beam in equilibrium.

Hence, the internal forces in section /■/ that replace the action of 
the removed right portion of the beam on the left are: force Q—A 
parallel to the external forces and made up of shearing stresses acting 
in the beam cross section; a force couple of moment M =Ax  that acts

(*)
x _ f ** cr

A

Fig. 132



in the plane of action of external forces and is made up of normal 
stresses.

This means that the section of the beam under consideration ex
periences shearing as well as normal stresses (Fig. 132(6)) that add up 
into internal force factors Q and M which together balance the system 
of external forces acting on the portion of beam being considered. It 
goes without saying that force factors Q and M of the same magnitude 
but acting in the opposite direction are transmitted across section 
/-/ from the left portion of the beam to the right, and they balance 
the external forces applied to the right portion.
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2 2

To determine the stresses acting in various sections of the beam, 
wo must learn to determine the magnitudes and directions of internal 
forces acting in an arbitrary section of the beam by expressing them 
through external forces. Let us consider, for example, an arbitrary 
section 2-2 (Fig. 131) and find the internal forces transmitted from 
the left portion of the beam to the right. In order to do this we 
remove the left portion and transfer the forces acting on it to the right 
portion—to the centre of gravity of section (point 0 *). In the proc
ess of transfer, the forces acting in a plane are reduced to a resultant 
force acting at the centre of forces and a force couple. Hence, the forces 
transferred from the left portion to the right must be applied at point 
02 in the form of force factors (Fig. 133): force

Q = A  — Pl (10.1)
force couple with moment

M = Ax —P ,(x—a) (10.2)

Assuming that A >PJt we direct force Q upwards and moment M— 
clockwise. Identical internal force factors Q and M acting in the oppo
site direction are transferred from the right portion of the beam to 
the left (Fig. 133).

It is clear from the above discussion that in any cross section of 
the beam the internal forces can be reduced to force Q and force couple
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of moment M , which together replace the action of one cutoff portion 
of the beam on the other.

Force Q, the resultant of elementary shearing forces acting in the 
beam section, is known as the lateral or shearing force. This force has 
the tendency to shear the section under consideration with respect 
to an adjoining section (Figs. 133 and 134). It is evident from equation 
(10.1) that the shearing force in each cross section is calculated as 
the sum of projections on the normal to the beam axis of all external 
forces acting to the right or left of the section. When all the forces 
acting on the beam are perpendicular to its axis, the shearing force

Q>0

Fig. 134 F‘g- 135

may be calculated as the algebraic sum of forces acting on the portion 
of the beam the equilibrium of which is being considered.

The moment of internal force couple made up of elementary normal 
stresses acting in the beam's cross section is known as bending moment. 
The bending moment tends to rotate the section under consideration 
with respect to an adjacent section, which leads to deformation of 
the beam axis, i.e. bending (Fig. 135).

It is evident from Eq. (10.2) that the bending moment in an arbit
rary section of the beam is equal to the algebraic sum of moments of 
all external forces acting to one side of the section about central axis 
y  that is normal to the beam axis.

Let us establish the sign convention for Q and M. As is shown in 
Fig. 133, the internal force factors Q and M act in opposite directions 
depending on whether the section under consideration belongs to the 
left portion or the right. This circumstance should be taken into ac
count when dealing with the sign convention in order to get identical 
values of Q and M not only in magnitude but also with the same sign 
irrespective of whether we consider the forces acting on the left cut
out portion or the right one.
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In accordance with the above (for a horizontal beam) we shall con
sider shearing force Q positive if the external forces to the left of the 
section tinder consideration act upwards or the forces to the right of 
the section act downwards. In other words, Q>0 if the resultant of 
external forces acting to the leH of the section is directed upwards; 
for forces acting to the right of the section Q> 0  if their resultant is 
directed downwards. According to this convention the direction of 
Q coincides with the direction of shearing stresses t  which constitute 
the shearing force (Fig. 134).

The bending moment will be considered positive if the algebraic 
sum of moments of forces applied to the left of the section gives a re
sulting moment acting in the clockwise direction; or if forces applied 
to the right of the section give an anticlockwise resulting moment 
(Fig. 135). Hence, for the left cutoff portion the bending moment due 
to each individual force is considered positive if the moment of this 
force w.r.t. the centre of gravity of the section is clockwise; on the other 
hand, A4<0 if the force gives an anticlockwise moment w.r.t. the 
centre of gravity of the section. If the right cutoff portion of the beam 
is considered, the convention is just the reverse.*

The accepted sign convention for M is related to the nature of de
formation of the beam: if the bending moment is positive, the beam 
bends with its convex surface down, if the bending moment is nega
tive, with its convex surface up (Fig. 135). In the section where M. 
passes through zero the beam axis has an inflection point; the beam 
axis remains straight in the segments where A4 r=0 .

We have seen that the expressions for shearing force and bending 
moment are different in different sections of the beam (/-/ and 2-2). 
By the very definition of internal force factors it is obvious that the 
shearing stresses are maximum in the section where Q~Qv a whereas 
the normal stresses are maximum in the section where M =M max. 
Therefore, for checking the strength of beams we must find those 
sections in which shearing force and bending moment are maximum. 
The search for these critical sections is greatly facilitated by plotting 
of bending-moment and shearing-force diagrams, i.e. diagrams that 
show how bending moment M and shearing force Q vary in different 
sections of the beam when they are plotted as a function of x.

Thus, the shearing force Q (a * )  and bending moment M  (x) are func
tions of x. In future for brevity's sake we shall denote these quantities 
by Q and M, and use the notation (x) only when we want to empha
size that Q and Af are variable quantities which depend upon x. 
While plotting the diagrams, Ihe ordinates which, to a certain scale, 
represent the value of the bending moment or the shearing force, are

Some writers rotate the signs for Q and At with the direction of the coordinate 
axes, which in some cases (for example, compound bending of bars with broken 
axis) simplifies the sign convention.
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laid off under the given section from the x-axis parallel to the axis 
of the beam. Positive ordinates of the Q- and Af-diagrams will be laid 
off upwards and negative downwards. Some books recommend plott
ing of the bending-moment diagram on the convex side of the bent 
beam, the positive ordinates downwards and negative upwards. 
However, this is merely a matter of liking, which is not significant.

It may become easier to plot these diagrams if we are able to estab
lish some relation between the values of bending moment and shearing 
force in an arbitrary section and also the relation of Q and M w'ith 
I he forces acting on the beam.

In the next section we shall explain how to correlate the external 
forces, the shearing force and the bending moment.

§ 57. Differential Relation Between the Intensity 
of a Continuous Load, Shearing Force and 
Bending Moment

ll was shown in §56 that for equilibrium of the cut-out portion of 
a beam it is essential to apply in the section force factors Q and M 
that replace the action of the removed portion on the portion under 
consideration. Hence, if we cut from the beam (Fig. I3o) an element 
of infinitely small length dx, it 
must remain in equilibrium un
der the continuous load of inten
sity if (which may be considered 
constant over the length dx), the 
forces Q and Qt and moments M 
and Mi, which represent the ac
tion on the element of the left and 
right cutoff * portions, respective
ly. Let us note that Q,=QH dQ 
and M i—M+dM  because the in
crement of these quantities in 
transition from section mn to an 
infinitely close section m»rti is 
also an infinitely small quantity.

The conditions of equilibrium 
of Ihe isolated element may be 
written as

£ F  =  0 , Q + q d x -iQ + d Q ) = 0 
2  M, =* 0, M + Q dx+ gdxd{ ~ ( M  + dM) =  0

From the first equation we get
qdx—dQ = 0

• No concentrated force or moment acts over the element dx.
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wherefrom

§ - 1  CO-3)

i.e. the derivative of the shearing force w.r.t. the abscissa of the sec
tion is equal to the intensity of the continuous load in the same sec
tion.

From the second equation, neglecting the infinitesimals of the 
second order, we get

Q d x-d M  = 0 or ^  =  Q (10.4)

i.e. the derivative of the bending moment w.r.t. the abscissa of the 
section is equal to the shearing force in the same section. 

Differentiating both sides of Eq. (10.4), we get
d*M dQ 
dx* =  dx

d*M 
dx2 ~ q (10.5)

I.e. the second derivative of the bending moment w.r.t. the abscissa 
is equal to the intensity of the continuous load. If q is directed down
wards, equations (10.5) become

d*M dQand - f c ~ - q

By integrating formulas (10.3) and (10.4), we get
X

Q(*) =  $ q{x)dx +  Q (0) (10.30
0 

X

'M(x) = S) Q (x)dx+ M (0) (10.4')
o

The arbitrary constants Q(0) and M (0) are concentrated force and 
moment (if they exist) in the beginning of the segment. These formu
las are convenient to use while plotting diagrams for non-uniform 
loading q=q(x). In the geometrical sense each integral represents

X X

area:  ̂q(x) dx=(oq is the load area (see §59) and J Q(*)dx=a>Q
O 0

is the area of Q-diagram over length x. Formulas (10.3') and (10.4') 
may be written in the form

Q W - » f + Q (0) (10.30
jM(x)=(0q +  M(0) (10.40

The relations obtained above may be used in plotting the diagrams
for Q and M , especially if we consider that the derivative of a function
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geometrically represents the slope of the tangent to the curve at the 
given point. In other words, the shearing force in a section may be 
regarded as the slope of the tangent to the bending-moment diagram 
at the point corresponding to the given section. Therefore, it should 
be borne in mind that if the x-axis is directed from right to left, then
~  = —Q, because the slope of the tangent to the curve changes its
sign if the direction of the axis is reversed.

It follows from Eq. (10.3) that in the section where intensity of 
the load q=Q, the shearing force Q=Qmax or Q=Qmin» because if
q =  ^  = 0  then the tangent to the shearing force diagram must be
parallel to the x-axis. By the same reasoning we come to another 
more important conclusion from Eq. (10.4): the bending moment is
maximum (or minimum) in the section where = 0 , i.e. where
the shearing force passes through zero.

Although Eq. (10.4) enables us to get Q as the first derivative of Af, 
it should be determined independently when plotting the shearing 
force diagram, and Eq. (10.4) should be employed only for checking 
its value. Similarly, for checking whether we are plotting the bending- 
moment diagram correctly, we can use formula (10.4') according to 
which the ordinate of Af-diagram in an arbitrary section is equal lo 
the area of Q-diagram to one side of the section or differs from it by 
a value equal to the concentrated bending moment Af (0), if the latter 
enters in the expression for Af (x). Likewise Eq. (10.5) may also be 
used to check the correctness of plotting the Af-diagram, because the 
direction of convexity of the bending-moment diagram is determined 
by the sign of the second derivative of Af. Instructions on checking 
the correctness of plotting the shearing-force and bending-moment 
diagrams will be given below (§ 60).

§ 58. Plotting Bending-moment and Shearing-force 
Diagrams *

Example, Plot the bending-moment and shearing-force diagrams 
for a simply supported beam loaded wiih force P (Fig. 137).

To calculate Af and Q in any section of the beam, it is first of alt 
necessary to find the reactions. The assumed directions of the reac
tions A, Hai, and B is shown in Fig. 137.

By equating to zero the sum of the projections of all forces on the 
axis of the beam we get

^  =  0

* A number of examples on plotting Q- and M-diagrams are given in problem 
books. Sec N. M. Belyaev, Problems in Strength of Materials, Pergamon Press, 1966,



This result could have been predicted beforehand, because all the 
forces acting on the beam are perpendicular to its axis.

By taking the sum of the moments of all the forces about point Bf 
we get

2 M b = 0 , +  A t—Pb=0
or
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Similarly
2 . ^  =  0 , ~~Bl + Pa= 0

or
b =  +  £

To check the correctness of the results obtained, we take the sum 
of the projections of all forces on the vertical y-axis:

A — P + B =  0 or A + B  = P
Substituting the values of the reactions found above, we get

Pb L Pa P ( a ± b )  n
I ’ I ~~ I

which is in accordance with the condition of equilibrium. Such a 
check is always desirable, because an error in determining the reac

tions will inevitably lead to errors 
in plotting the bending-moment 
and shearing-force diagrams.

The expressions giving the val
ues of shearing force and bending 
moment in any section may be ob
tained by taking an arbitrary sec
tion 1-1 between A and C at a dis
tance from A. Let us take note 
that the expression “taking a sec
tion” includes not only marking of 
the section on the drawing but also 
giving its distance from tne select
ed origin of coordinates. The cen
tre of gravity of the section is de
noted by Oi.

It is more convenient to consider 
the left cutoff portion to determine 

the shearing force Q in the section, because the left portion is acted 
upon by a less number of forces (only force A). Considering the por
tion of the beam to the left of section Ox and projecting the forces 
acting on it on a plane perpendicular to Its axis, we get the expression
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for shearing force <2t in the section at a distance x± from support A:

=  +  (10.6)

The shearing force in a section having abscissa x, does not depend 
upon this distance. Thus, as long as xt varies from 0 to a, the shearing 
force remains constant, and its diagram in this portion is represented 
by a straight line FsDt parallel to the axis of abscissa A 2B3 {"Fig. 137).

Expression (10.6) for Q, holds good as long as the section does not 
go beyond point C, i.e. till If XjX i, the left portion of the
beam will experience two forces A and P\ consequently, the sum of 
the projections of forces acting on the left cutoff portion will change.

To find the shearing force in the second portion, we shall have to 
take another section between points B and C with centre of gravity 
at Oj. Its distance x2 will be measured from the right support B. 
It will be convenient for us in this case to consider the equilibrium 
of the right portion of the beam as it is acted upon by only one force B.

Considering the right cutoff portion of the beam, we get the expres
sion for shearing force in section 2-2:

- T  (10.7)

The minus sign shows that force B acting on the right cutoff portion 
is directed upwards.

It is obvious that if we had considered the left cutoff portion, we 
would have obtained the same expression for Qt:

Q3 = A — P = — B (since A-\-B — P)

Expression (10.7) is valid for any value of x2not exceeding the lim
its of the portion BCy i.e. for O < X i0 ; this expression also shows 
that Qs does not depend upon x2.

The shearing-force diagram over the length of the second portion 
is a straight line EgG* parallel to the x-axis. I t has a discontinuity— 
a jump at the point of application of force Px. At this point the shear
ing force passes through zero and is not equal to D tE ^ P .  In a 
section immediately to the left of point C

Q =  +  ™

in a section to the right of point C
n — PaQ ----- t

Let us note that the absolute value of the jump is equal to the con
centrated force P acting in this section.
8 —3310
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Such a shape of the shearing-force diagram {Fig. 137) is possible 
only if we consider the concentrated force P acting at a single point C. 
Actually pressure P is transferred to the beam through a very small 
area (Fig. 138). Therefore, in this area the shearing force changes

gradually from to —^ . p a s 
sing through zero in the process.

The maximum absolute value of 
the shearing force in this example 
will be {if a>b)

I Qm« I = T

All sections of portion CB of the 
beam are prone to failure due to 
shearing stresses.

In plotting the bending-moment 
diagram we shall use the same 
sections l- i  (with the origin of 
coordinates at point A) for the left 
portion of the beam and 2-2 (with 

the origin of coordinates at point B) for the right portion of the beam.
Considering the left portion, we determine the moment in section 

/- /  as the sum of the moments of forces acting on it about the centre 
of gravity of the section Qt:

M ^ A x ^ j - X i  (10.8)

Afi is a linear function in x , . Therefore, if we move the section, i.e. 
change x t, then Mi varies linearly. Expression (10.8) for Af, holds 
good as long as the section does not go beyond point C, i.e. till 0 <

As soon as x, becomes greater than a, the left portion of the beam 
starts experiencing two forces: A and P , and formula (10.8) no more 
holds good. As the diagram is a straight line, it is sufficient to give 
two values to *, to obtain the two points required for plotting the line. 
At x,=0, we get Afi=0—this is the ordinate under section A. Simi-
larly at X i= a  we get Mt=-\-^-j- ; this is the ordinate under section C.

Laying off upwards from the x-axis (positive moment) the segment 
CiDu which expresses to a certain scale the ordinate and join
ing points Di and At by a straight line, we get the first portion of the 
bending-moment diagram. To plot the diagram for the second p6r- 
tion, we write down the expression for the moment about point Ot
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of forces acting on the right cutoff portion of the beam:

Ma= B x2^ ^ Xi (10.9)

In this portion also the moment is positive, because we consider 
the right portion, and force B rotates it about point Ot in the anti
clockwise direction. Expression (10.9) represents the equation of a
straight line and holds good for 0<x*<&. At xz—bt Afa* = + ^ p  and
at xa—0, Afa=0.

Thus, the second portion of the bending-moment diagram is repre
sented by the straight lineDjBj. The bending moment is positive over 
the whole length of the beam and is maximum in section C, the point 
of application of force P, where it 
is equal to

Mmax =  -7" (1CU°)

The maximum normal stresses will 
act in this section. £

At a<=b^ (the force acts in 2 
the middle of the beam) we get

<w«.x= - r  (1010')

In any cross section of the beam 
taken between the end points'
A-C and C-B the values of Q and Fig. 139
Af are graphically represented by
the ordinates of the corresponding diagrams shown in Fig. 137 by 
vertical hatching.

We shall study a few more examples on plotting bending-moment 
and shearing-force diagrams for beams subjected to various types of 
loading.

Let us plot the Af- and Q-diagrams for the beam shown in Fig. 139, 
loaded by a continuous uniformly distributed force of intensity q 
(expressed in kgf/m, tf/m, N/m, etc.).

Tt is essential to determine the support reactions before we start 
solving the problem.

The reaction HA is zero, reactions A and B are equal from symmetry; 
each of them is equal to half of the total load on the beam:
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Let us take a section 0  at a distance x  from the left end of the beam. 
We shall consider the equilibrium of the left-hand portion to deter
mine Q and M. It is acted upon by reaction A and load q uniformly 
distributed over length x.

We must take the sum of all the forces acting on the left cutoff 
portion to determine the shearing force in section 0. To the left of
the section is force A —^  directed upwards, and the resultant of
the uniformly distributed load over the length x , equal to qx and 
directed downwards. Therefore,

Q = A — q x ^ ^ - — qx

The shearing force varies with x linearly, and the line may be plotted 
by taking two values of the variable x : at *=0, Q= y  and at x= l,

Q=— y  • The shearing-force diagram is shown in Fig. 139; Qmax= y .
To plot the bending-moment diagram we take the sum of the mo

ments of the same forces acting on the portion of beam under conside
ration about point 0. Keeping in mind that resultant qx acts in the
middle of the segment of length x, with an arm of lengthy about point
0, we get

M - + A x - q x $ - $ x -

This equation of moments is valid for determining the bending mo
ment in any section of the beam.

In this case the bending moment depends upon the square of ab
scissa x; therefore, the diagram is of the shape of a square parabola. 
To plot the curve we need at least three or four points lying on it;

at x =  0 M — 0

a t * = T

at * “ T  m  =  +  t (*—t ) =  +  T
at x =  I M=Q

The bending-moment diagram is of the shape shown in Fig. 139.
To determine M we find abscissa x» of the corresponding section 

by equating the first derivative of M w.r.t. x  to zero:
dM ql 2qxa n
dx 2 2

*. = |-  and +  ^  (10.11)
wherefrom
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The maximum bending moment occurs at the middle of the span, 
i.e. in the section where Q—0. This is a check of the relation between 
M (x) and <?{*) established above (in § 57).

Let us consider one- more example—beam AB  rigidly fixed at one 
end (Fig. 140). Such a beam is usually known as cantilever. Since the 
right end of the beam is free, it is essential to consider the forces act
ing to the right of the section while plotting the bending-moment 
and shearing-force diagrams. In this 
case it is not necessary to deter
mine the support reactions of the 
rigid constraint (at the left end of 
the beam). Force P divides the beam 
into two parts: AC of length a 
and CB of length b.

If we consider section l- l at a dis
tance Xi from the free end, we ob
serve that there are no external for
ces to the right of the section and 
therefore it is free of internal for
ces. For all values of Xi between 0 
and xt=b

QL =  0 and

4 *| (
If B

w f Ill]

C H- a ---»
i

^ __ !
\
1It

W2* *"T*
£

IT3
18^ Tmllyiii!!1■
C
B

Mt =  0 <»>
J

The distance to se c tio n s  in por
tion AC will be laid off from the

Fig. 140

point of application of force P. To the right of the section we will 
have force P acting upwards and a uniformly distributed force of in
tensity q acting downwards over a length x2 and having a resultant 
gxt. The internal forces in section 2-2 will be

0.2 — — P +qx2
= Px2 <4

<b>

(c)

As the abscissa is varied from xs=0 to x2=a, shearing force Qa 
changes according to linear law and bending moment Afa according
to a parabolic law with a maximum in the section where 0 * = * ^=  0.

i.e. in the section where as is evident from equation (b).
Let us now plot the Q- and M-diagrams. In order to calculate the 

ordinates in a general form we shall assume a particular ratio between 
P and q (this can always be done when the quantities are known
numerically). Suppose, for instance, that P— g

It is evident from equation (a) that in the first portion of length b 
the ordinates of both Q- and A4*diagrams are equal to aero, and the
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diagrams coincide with the x-axes. In the second portion of length 
AC=a (0<*a<a) from equations (b) and (c) we have

at xa= 0 , n  = _p ~  ~ qaVa— r — 3 ,
. P a  

at x8«   ̂ ’ 3 » 0  — 0 M - W a r qa*
3 3 2x9 13

at x%*=a. Qa =  — P + q a = jq a , qa*
“ X

The Q- and Af-diagrams are depicted in Fig. 140. It is clear from 
the diagrams that the absolute maximum values of Q and M occur 
at the fixed end and are

§ 59. Plotting Bending-moment and Shearing-force 
Diagrams for More Complicated Loads

Having studied the characteristics of bending-moment and shearing- 
force diagrams and the general method of plotting them, we can pass 
over to solving more complicated problems.

Let us see how to determine Q and M when the beam is acted upon 
by a continuous non-uniformly distributed load whose intensity 
changes along the beam length with x (Fig. 141). In other words, q 
is a function of x  or q—q(x). The bending moment and shearing force 
will also be some functions of x:

M = M{x)  and Q =  Q (x)

The curve adceb representing the variation of q(x) is called the load 
curve, and the area bounded by this curve is called the toad area.

Let us calculate Q and M in an arbitrary section at a distance xt 
from the free end. Considering the shearing force as the sum of ele
mentary forces q(x) dx acting on the left cutoff portion of the beam, 
and replacing the summation by integration, we find

A ,  X ,

Q (x j =  — ^q  (x) dx *s — £ d<a=  — ©(xj (10.12) 
0 0

Here © (xi) represents the part of load area located to the left of sec
tion c-C. Thus, the shearing force Q (x,) equal to resultant R* of the 
continuous load over the length AC=xt may be calculated as the load 
area ©(x,), lying to one side of the section.

The bending moment in the same section is equal to the sum of 
moments of elementary forces q (x) dx, acting on the cutoff portion 
of the beam, about point C, and may be calculated as the moment
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of resultant RQt i.e.
M{xl) =  — R<lxr = — <o(x1)x r (10.13)

In other words, the bending moment of a continuous non-uniformly 
distributed load is equal to the product of the load area lying to one 
side of the section and the distance of the centre of gravity of this 
area from the section under consideration (arm of the resultant).

Let us study how to plot the bending-moment and shearing-force 
diagrams for a beam which is acted upon by a distributed force that 
varies along its length as shown in Fig. 142.

Fig. 141 Fig. 142

Loads of this kind are applied to beams that support water and 
earth pressure, for example, dam supports and columns for strengthen
ing walls of water storage reservoirs. Connecting rods of steam ar.d 
internal combustion engines are subjected to similar loading by forces 
of inertia.

The load is characterized by the ordinate q0, the maximum intensity 
of the load (in kgf/m). The reaction HA= 0; we have to determine 
A and B.

For determining A we write down the'equation of moments about 
point B. The moment of the load is equal to the moment of its resul
tant, i.e. moment of the load area ^m ultiplied by the distance of
its centre of gravity from point B. The resultant is shown in Fig. 142 
by the dotted line; this emphasizes that the concentrated force equal
to the load area (3>—-jqd  does not actually act on the beam, but we
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make use of it while taking the moment of the total load for determin
ing the- support reactions.

The equations of moments may be written as

2 ^  =  0, A l— Jtol =  0, =  ̂

2 ^ 1  =  0. — Bl +  t4  =  0,

Thus, support A takes two-thirds of the total load <o= whereas
support B takes only one-third.

To plot the diagrams let us take a section at a distance x  from the 
right end of the beam. The ordinate q{x) of the load in this section is 
determined from similarity of triangles:

Q M x x
~  T  • 9 (*) =  <7<>t

While determining Q and M  >ve shall consider the right-hand por
tion because it is acted upon by the concentrated force and triangular 
load, whereas the left-hand portion is acted upon by the concentrated 
force and trapezoidal load, which complicates the computations. 

Shearing force Q will be the sum of the projections on the vertical
or reaction B and the hatched load (a {x)= ^q (x)x= ^q (iJj , i.e.

In this case the shearing-force diagram is represented by a quadratic 
curve, and

at * = 0 ,

at x =  l. <}=&=. + A

at x , = = ~ 2  * « — ¥ 0 - f f 24
The shearing-force diagram is given in Fig. 142. It is clear from the 

diagram that the maximum shearing force (in absolute value) occurs 
in section A (at the support):

Q ou— +  =  +  ^

The shearing force passes through zero at x0 which may be deter
mined by the following equation:

0.577/
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We shall use this value of xa for determining the maximum value 
of At. The shearing force achieves its analytical minimum in point Bt 
where the intensity of the continuous load is zero. As is evident from 
Eq. (10.3), the tangent to the shearing-force diagram in this section 
is parallel to the *-axis.

Let us pass over to plotting the bending-moment diagram for which 
we again consider the right cutoff portion of the beam. The moment 
of the resultant of the hatched triangular load (Fig. 142) about point 0
is equal to its load area multiplied by the arm - j :

The bending moment in this section is
g o * 8
6/

This expression for M holds good for the whole length of the beam. 
The bending-moment diagram is represented by a cubic curve. To 
plot the cubical parabola we must calculate a few ordinates:

at x — 0, M =  0
at M=*2li f i - 1ai 'w - T T V 1
at x  =  l, M = 0

The bending moment is maximum in the section where (2=0, i.e. 
at ; it is equal to

Mmax
go P 

9/*3
go/8

15.58 (10.14)

The diagram is shown in Fig. 142. It is evident from formula (10.14) 
that the maximum bending moment differs slightly from the moment

a i 2at the middle of the span, which is equal to-j^-. In actual design
calculations for a beam loaded by a triangular force, the maximum 
bending moment Afm#x may always be replaced by the moment in
the middle of the span equal to ; the error will not be more than
2 .6%.

Let us analyze the plotting of shearing-force and bending-moment 
diagrams for a simply supported hinged beam (Fig. 143) loaded by 
a continuous force whose intensity varies according to the following 
parabolic law:
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Due to symmetry, the support reactions are

Here <o is the load area which is determined from condition

L.0 o J
J2l r i i_i l l  - 2 /, /

l I  2 3 J 3

(10.12):

(10.15)

Hence the support reactions are

Let us now write down the expression for Q(x) and M  (jc) In section 
/•/ at a distance xt from the left-hand support A . Denoting the load

area of length xx by <o(x), we get

d a
________ I *

4 LJI 1 J U 7

Fig. 143

Putting the values of A and <o (*)

(a) The shearing force Q(jc)= 
—A—to (jc>

The load area to the left of 
the section is

x ,

<a(x)=j<?(x)dx

in the expression for Q(x), we get 

- ^ < 3 * —2xt) (10.16)

(b) We shall calculate the bending moment with the help of for
mula (10.4'):

Af(*) =  $ Q(x)dx+M(0)

The constant of integration Af (0)=0 because there is no concentra
ted moment at this end of the portion. Putting the expression for
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Q(at) under the integral sign, we obtain

OP

M  W  = |  (3/—2x)j dx

2<?oX% , q^xj 
3 * l 31 3p“

(10.17)

It is evident from Eqs. (10.16) and (10.17) that the shearing force 
varies according to a cubical parabola, whereas the bending moment 
varies according to a fourth-degree parabola.

We shall take a few values of the variable x  to find points for plott
ing these curves:

* = 0 ,  C ( * ) = ^ , M (* )  =  0

*■=4 , J W ( * ) = i s 2 - "2 4 ?  2 “ 5 5 ^ *

X = .l ,  « ( * ) - # - ■ f * . l ------- - Y - o

The corresponding shearing-force and bending-moment diagrams 
are shown in Fig. 143. The maximum values of Q and M are respec
tively equal to

Q » „ = ^  and (10.18)

We shall now discuss the order of plotting Q- and M-diagrams for 
a two-span beam with an intermediate hinge; such beams are often 
employed in bridge design. The dimensions of the beam and the forces 
acting on it are shown in Fig. 144(a).

We must determine the reactions of the beam before plotting the 
diagrams. It is clear from Fig. 144(a) that Uie arrangement may have 
four support reactions: A, HA, B, and D. However, wecanwrite only 
three equations of equilibrium for the whole beam. The fourth equa
tion is determined from the condition that hinge C (on account of 
its construction) cannot transmit bending moment, because it permits 
relative rotation of one part of the beam (j4C) about the other (CD).

The last condition requires that the sum of moments of all forces 
acting either to the left or right of the hinge about point C should 
be zero. In other words, to maintain equilibrium the bending moment
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in the hinge must be zero. This additional requirement makes the 
beam AD statically determinate.

First we shall determine HA. By equating to zero the sum of pro
jections of all the forces on the beam’s axis we find that HA=0.

Fig. 144

Next we may write three equations for the moments as follows:
(1) by equating to zero the sum of moments of all the forces about 

point A\
(2) by equating to zero the sum of moments of all the forces about 

point B or D;
(3) by equating to zero the sum of moments of all the forces either 

to the left or right of hinge C, about point C.
By solving these three equations we can determine all the three 

unknown reactions A, B and D. However, the reactions can be deter
mined more easily by breaking the beam arrangement AD into simple 
beams. The suspended beam CD is supported by a hinge C at the end
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of cantilever BC and by a movable hinge at point D. Therefore, we 
may consider the whole beam (Fig. 144(6)) as a combination of two 
beams. The suspended beam experiences reaction C through the hinge 
at the end of the cantilever and in its turn presses this end with the 
same force C.

By first analyzing the equilibrium of the suspended beam we find 
its reactions D and C, then by taking into account the already known 
force C acting at the end of the cantilever, we determine reactions 
A and B. Jn this example

C -£ > = - j= :6 tf ,  6 - |= 1 4 .5 tf

B « +  c  +  6-- =  23.5 tf

Check: 2 Y ^ A  + B + D -q lt—P=  14.5+23.5+6-4X8-12=0.

Having determined the reactions we again assume the beam to be 
a single unit with all forces and reactions and determine the moments 
and shearing forces as in the general case. We shall check the values 
by equating to zero the sum of moments about point C. It should be 
borne in mind that hinge C does not represent the separation point 
of sections of the diagrams if it is not acted upon by an external force. 
The bending-moment and shearing-force diagrams are shown in 
Fig. 144(q).

After determining the reactions it is more convenient to plot Q- 
and M-diagrams separately for each suspended beam and the main 
beam, laying the values of Q and M from a common x-axis.

§ 60. The Check of Proper Plotting of Q- 
and M-diagrams

The differential relations between the bending moment, shearing 
force and intensity of continuous load determine the relation between 
shearing-force and bending-moment diagrams for any load. This 
relation is of great practical importance in checking the correctness 
of the plotted curves. We give below some concluding remarks which 
may be helpful in plotting Q- and Af-diagrams.

1. It has already been slated 57) that the ordinate of the shearing-
force diagram Q = -^  geometrically represents the slope of the tan
gent to the bending-moment diagram at the corresponding point. 
Identical geometrical relations exist between q and Q (Fig. 145).

2. If in a certain section
(a) Q>0, i.e. tan a> 0 , the moment increases;
(b) Q<0, i.e. tan a< 0 , the moment decreases;
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(c) Q passes through zero, changing its sign from plus to minus,
^max»

(d) Q=0, i.e. tan a= 0 , M=const.
3. If <7=0, i.e. ^  =0, Q=const. Hence in portions free of contin

uous load, the shearing-force diagram is bounded by straight lines 
parallel to the x-axis; the bending-moment diagram*is made up of 
inclined straight lines provided Q #0 (see item 2(d)). If ^<0, i.e. 
tan P<0, the shearing force decreases.

4. Over portions of the beam loaded by uniformly distributed force, 
the bending-moment diagram is a parabola, whereas the shearing- 
force diagram is an inclined straight line. If the load is distributed 
non-unlformly, then the Q- and At-diagrams are represented by curves 
whose shape depend upon the type of loading.

5. In sections under concentrated force the shearing-force diagram 
undergoes a jump (equal to the force), and the bending-moment diag
ram experiences a sharp change in the angle between the adjacent 
regions (see, for example, section C in Fig. 137).

6. If the continuous load is directed downwards, i.e. =<7< 0 ,
or, in other words, if the second derivative characterizing the curva
ture of the M-curve is negative, then the diagram is convex upwards. 
On the contrary, if q> 0 (the load is directed upwards), the bending- 
moment diagram in the corresponding portion is convex downwards 
(Fig. 146).

7. In a hinged support the shearing force is equal to the reaction 
of the support, and if there is no external moment acting on it, the 
bending moment in the hinge is zero.

8. The bending moment on the free end of a cantilever is zero if 
the end is not acted upon by a concentrated force couple. In the ab-
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sence of a concentrated force on the free end the shearing force Q is 
also zero.

9. At the fixed end, Q and Af are equal to the reaction and moment 
of the support, respectively.

10. In sections where a force couple is acting, the bending-moment 
diagram undergoes a jump equal to the moment of this force couple. 
The shearing-force diagram however, remains unaffected.

The differential relations explained in § 57 and the remarks given 
above help not only in checking the correctness of the diagrams but 
will be used in future in plotting the diagrams too (Chapters 15, 16, 
etc.).

§ 61. Application of the Principle of Superposition 
of Forces in Plotting Shearing-force and 
Bending-moment Diagrams

Analyzing the expressions for Q and M obtained in the previous 
examples, we see that the external forces enter these expressions to 
the first power; M and Q are linearly dependent upon the load.

Analyzing, for example, equation for M (x) in the section of a can
tilever (Fig. 140),

Af (*) =  Px— q -y-

we find that the ordinates of the bending moments in sections of this
portion consist of two components, Px and — the first component
representing the bending moment in the particular section due to 
force P, whereas the second due to uniformly distributed load q.

We could have plotted the ben ding-moment diagrams for forces 
P and q separately, and then added their ordinates algebraically. 
This would be the application of the method of superposition of forces.

We shall illustrate with an example how to plot the total bending- 
moment diagram. For the beam shown in Fig. 147 we have already
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plotted separately bending-moment diagrams under uniformly distri
buted load q(M J and concentrated force P(Mp). The absolute maxi
mum value of tne bending moments at the rigidly fixed end are

— ̂  and Mp = —Pl

To add the ordinates of two diagrams of similar sign, we place one 
above the other as shown in Fig. 148(a). The bending moment in an 
arbitrary section is the sum of moments:

and
Mp = — Px

The sign of MP changes if force P is directed upwards. To add (wo 
diagrams having different signs, it is sufficient to superimpose one

Fig. 147 Fig. 148

of them over the other (Fig. 148(b)).
Suppose that in absolute value min Mv>max M P, i.e.

t |>IwI
Upon superposition of diagrams their ordinates get deducted automat
ically, and in this example we shall get a negative ordinate at the 
fixed end, the ordinates being positive over the span at a certain dis
tance.

Obviously, in graphical summation both the diagrams must be 
drawn to the same scale. In an identical manner we can plot the shear-
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ing-force diagram. The method of summation of diagrams is parti* 
cularly useful in analyzing statically indeterminate solid beams 
(Chapter 19).

To obtain the diagram in the conventional form, we may lay off 
the summed ordinates from the horizontal axis (Fig. 148(a) and {b)).

C H A PTER 11

Determination of Normal Stresses in Bending
and Strength of Beams

§ 62. Experimental Investigation of the Working 
of Materials in Pure Bending

The bending*moment and shearing-force diagrams enable us to 
determine the internal forces in an arbitrary section of the beam; 
these forces are made up of normal and shearing stresses in the section 
as a result of bending. We shall discuss how to determine these stres
ses. It was earlier shown that shearing force in a section is the resul
tant of elementary shearing forces, and the bending moment, of the 
normal stresses which form force couples. If no shearing force Q acts 
over a certain length of the beam, i.e. the shearing stresses in sections 
within this length are absent, then these sections are acted upon only 
by normal stresses which are easier to compute in this case.

A -P
(bj

Fig. 149

The type of bending in which shearing force is zero in sections nor
mal to the beam’s axis is known as pure bending. Pure bending can 
be achieved in practice if the system or external forces acting on some 
portion of the beam can be reduced to force couples (see, for example, 
Fig. 130). Actually, however, pure bending is possible only in those 
cases when the dead weight of the beam is sufficiently small as compa
red to the external forces acting on it and may therefore be neglected.

As an example we shall consider the bending of a wagon axle (sec 
§55). The external forces acting on the axle (its weight is neglected) 
are depicted in Fig. 149. Keeping in mind that due to symmetry both
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the support reactions are equal (A=B—P), for an arbitrary section 
between points C and D we obtain

Q(x) = A — P = 0, M (x) =  Ax— P (x ~ a ) = P a ~  const
Thus, there is no shearing force in the middle portion CD of the

axle, and Af=con$t ^recall that ; the beam experiences pure
bending over the length CD.

Let us now return to finding normal stresses for this case. Let us 
take a section at a distance x  from the left support A and consider the 
equilibrium conditions of the left cutoff portion (Fig. 149). This por-

Fig. 160

tion is acted upon by a force couple with moment M =Pa  and normal 
stresses in the section, which form force couples with a resulting mo
ment M (x). Our task is to find the magnitude of these stresses at every 
point of the cross section and determine their maximum value. How
ever, the conditions of equilibrium between the external and internal 
forces expressed by the relationship M (x)=Af are not sufficient for 
determining normal stresses a because we know neither the magnitude 
of these stresses nor their distribution over the section. The problem 
is statically indeterminate, and for its solution we must study the 
elastic deformation of the beam on the basis of experimental investi
gations. Let us consider the results of experiments obtained from pure 
bending of a beam by moment M acting in its plane of symmetry 
(Fig. 150).

Lines 1-1 and 2-2 drawn on the beam surface perpendicular to its 
axis are traces of two adjacent cross sections located at a distance Ax 
from each other, whereas lines ab and cd joining them and parallel 
to the beam’s axis represent longitudinal fibres of length Ax prior 
deformation (Fig. 150(a)).

Experiments reveal" that after deformation (Fig. 150(6)):
(I) Lines 1-1 and 2-2 remain straight but turn with respect to one 

another through an angle Aa. This leads us to the idea that the cor-
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responding cross sections also remain planes but turn with respect 
to one another through angle Aa.

(2) Lines ab and cd change their length: line ab gets shorter, whereas 
cd elongates leading to the conclusion that the upper fibres are sub
jected to compression and lower to tension.

(3) As shown in Fig. 150(c), the cross-sectional dimensions also 
change: in the upper part the width of the beam increases, which cor
responds to axial compression, whereas in the lower part (stretched 
zone) it decreases.

As the deformation of the longitudinal fibres varies continuously 
over the height of the beam, there must be a layer at a certain height 
which does not change its length at all; this layer is called the neutral 
layer and serves as the interface between the compressed and stretched 
zones. In Fig. 150(6) the neutral layer is shown by dotted line; seg
ment OiOa retains its initial length Ax.

The neutral layer is perpendicular to the plane of symmetry of 
the beam in which the external forces act and intersects each cross 
section of the beam along a straight line which is also perpendicular 
to the piane of action of the external forces. The line of intersection 
of the neutral layer with the plane of a cross section is known as the 
neutral axis of the section. The neutral layer is an aggregate of the 
neutral lines.

As the section is symmetrical with respect to the plane of applica
tion of the external forces, both halves of the beam width must deform 
symmetrically about this piane; this enables us to consider that lon-

S'tudinal deformation of the fibres of an arbitrary layer parallel to 
e neutral one is independent of the location of the fibres along 

the beam width.
It has been experimentally established that deformation in the la

teral direction is related to the deformation of longitudinal fibres by 
Poisson's ratio. This gives sufficient ground to presume that the lon
gitudinal fibres do not press each other, and under pure bending ex
perience only simple compression on the concave side and simple 
tension on the convex, i.e. on the other side of the neutral layer.

At the same time, lateral deformation is instrumental in somewhat 
distorting the beam section and making the neutral axis curved 
(Fig. 150(c)), which leads to additional deformation of the neutral 
layer making it doubly curved. However, as the elastic deformations 
are small these distortions are ignored: in each cross section of the 
beam the neutral axis is considered a straight line and the neutral 
layer, a cylindrical surface.

Since the section is symmetrical w.r.t. the plane of application of 
external forces, the beam axis also curves in the same plane in bending. 
Such bending in which after deformation the beam axis remains in 
the plane of application of external forces is known as uni-planar 
bending.
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Experimental study of the bending of beams helps us to make, a 
number of assumptions which have been used in deriving new con
clusions:

1. In pure bending the cross sections which were planes prior defor
mation remain planes during deformation too (the hypothesis of plane 
sections).

2. Longitudinal fibres of the beam do not press on each other, 
and therefore due to normal stresses experience simple uniaxial ten
sion or compression.

3. The deformation of fibres does not depend upon their position 
along the width of the section. Therefore, the normal stresses, though 
changing along the height of the section, remain constant along its 
width.

In addition to the assumptions made above, we shall introduce 
three limiting conditions:

1. The beam has at least one plane of symmetry, and all the exter
nal forces lie in this plane.

2. The beam material obeys Hooke’s law*, the modulus of elasticity 
being the same under tension as well as compression.

3. The relation between the beam’s dimensions ensures that it 
works under pure bending without warping or twisting.

It is known from experience that beams with a small width easily 
loose their stability as far as the shape of the section is concerned 
(they warp). If in a beam of rectangular section the ratio of height
to span is y  , it works not as a beam but as a plate and it must
be analyzed in a different manner. *

In general, assumptions made above are only approximately true. 
However, the theoretical error is so small (except in special cases) 
that it can be ignored.

§ 63. Determination of Normal Stresses in Bending. 1 
Hooke’s Law and Potential Energy of Bending

A. Lei us consider a beam subjected to pure bending by a moment M 
(Fig. 151). Let us cut the beam in two parts by section /-/, and using 
the method of sections consider the equilibrium of one of the portions, 
say, the left, shown below In Fig. 151. For simplicity we consider a 
beam of rectangular cross section. As the curvature of the beam is 
practically negligible in comparison with its dimensions, the cutoff 
portion may be drawn in undeformed shape.

The line of intersection of the plane of symmetry of the beam with 
the plane of the section is taken as the z-axis (positive direction down- 
wards); the neutral axis of the section has been taken as the y-axis, 
its location along the height of the beam being not yet known. The
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x-axis has been taken along the neutral layer perpendicular to the 
y~ .and 2-axis.

Every point in the cross section is acted upon by a normal stress o. 
Let us isolate an elementary area dA about an arbitrary point having 
coordinates y  and z, and denote the force acting on it by dN=adA. 
The cutoff portion of the beam maintains its equilibrium under the 
action of external forces constituting a couple of moment M and

1 2

w ------ X  —
1

dx
1

tl

J# adk

Fig. 151

the norma! force dN which represents the influence of ihe removed 
portion of the beam. The beam will remain in equilibrium only if 
this system of forces satisfies the six static equations. Let us first 
write down the equations of projections on the three coordinate axes 
of x, y  and z.

As the projection of moment M on any axis is zero, these equations 
give us the condition that the sum of the projections of normal force 
dN on the beam’s axis is zero. Replacing the summation over the 
whole area by integration, we get

2 X = 0 .  J odA = 0  (U .l)
A

Expressions 2 ^ = 0 and 2 ^ = 0  give identities of the type 0=0, 
because the force dN=<Jd/Tprojects on these axes into a point.

Let us now write down tne equations of moments about the axes 
Ox, Oy and Oz. Let us note that moment At I ies in the plane xOz and 
therefore does not give any moment about axes Ox and Oz.

Expression 2 M*—1Ogives an identity, because the forcedN=adA  
is parallel to Tne x-axis:

2 ^  =  0, M — 2<W * =  0 or M — ^a zd A = 0
A
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wherefrom

\<szdA = M (11.2)
A

or Jo*/d,4e=0 (11.3)
A

Thus, out of the six static equations we can use only three:

2 X « 0  or JodA ^O  (11.1')
A

2 ^  =  0 or J ozdA = M (11.2')
• A

2 A fi =s0 or J aydA = 0  (11.3')
A

However, the three static equations obtained above are not suf
ficient to determine the normal stresses, because a varies with the dis
tance z of area dA from the neutral axis according to a law which we

yet do not know. The distance z is also 
unknown, because we do not know the lo
cation of the neutral axis Oy.
B. Let us isolate an element of length dx 
of the beam by two infinitely close sec
tions I-J and 2 - 2  to study its deformation. 
The shape of the element before and after 
deformation is shown in Fig. 152.

For greater clarity the deformation of 
the element is shown in a highly mag
nified form. Both cross sections continue 
to remain planes but turn about their 
neutral axes (points 0, and Oz in the 
front view) to form an angle da. The neut
ral layer has been shown by a dotted line. 
Line OiOa of the neutral layer retains 
its initial length dx after deformation. 
All fibres above the neutral layer shorten, 
whereas those below it elongate.

We shall try to find the elongation of 
an arbitrary fibre AB at a distance z from 

the neutral layer and stretched by stress a. The initial length of this 
layer is d x = _ 0 |0 8=p da. After deformation its length along the arc 
AB becomes w AB=(p-f-a) da. The absolute elongation of the fibre 
is A /=(p+2) da—p d a = 2 da. Relative elongation is equal to
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i.e. the elongation of fibres is directly proportional to their distance 
from the neutral layer.

Here p is the radius of curvature of the neutral layer, which may be 
considered constant for the isolated (infinitely small) element. As* 
suming that under bending the fibres do not press on each other and 
that each fibre experiences simple (uniaxial) tension or compression, 
we may make use of Hooke’s law in determining the tensile stresses:

o =  £e or o =  ~  (11.4)

Equation (11.4) shows that the normal stresses in bending vary in 
direct proportion to distance z of the point of the section under con
sideration from the neutral layer. This means that stresses vary along 
the height of the beam linearly.

On the neutral axis 2=0 and cr=0. If we move into the zone of com
pression (above the neutral axis), a along with z changes its sign to 
minus (compression) and continues to increase in absolute value as

We move away from the neutral axis. Hence the maximum stress 
occurs at the uppermost and lowermost layers of the section when 
z=zma3t. The distribution of stresses along the height is shown in 
Fig. 153.

Equation (11.4) only gives an idea about the nature of distribution 
of normal stresses over the section; it cannot be. used for calculating 
the magnitude of the stresses because both p as well as z are not known 
since we do not know the location of the neutral layer in the height 
of the section.
C. To determine a as a function of the bending moment, we shall 
simultaneously solve Eq. (11.4) obtained from deformation con
siderations and the static equations (11.1), (11.2), and (11.3).

Substituting the value of o from expression (11.4) in Eq. (11.1), 
we get

2 *  =  0 or zd A —Q
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Since — — consMO,

\z d A  = Q (11.5)
A

This integral represents the static moment of the area of section about 
the neutral axisOy, which becomes zero only about the central axis. 
Therefore the neutral axis must pass through the centre of gravity 
of the section. As the centre of gravity also lies on the axis of symmetry 
Oz, the point of intersection of these two axes 0  represents the centre 
of gravity of the section, and Ox represents the axis of the beam.

Thus, we have completely determined the location of the neutral 
layer and neutral axis. The centres of gravity of all sections of the 
beam are located on the neutral layer.

Now let us put the same expression (11.4) into Eq. (11.3):

=  -zt/dA — 0, or -~-^zydA*=0

wherefrom it ensues that
\zy d A  = 0 (11,6)
A

The above integral, which is the sum of the products of elementary 
areas by their distances from the coordinate axes Oy and Oz is called 
the product of inertia of the section with respect to the axes Oy and Oz. 
The product of inertia of the section may be positive or negative; 
consequently it may also vanish, because the coordinates Of elemen
tary areas may have different signs.

According to expression (11.6), the product of inertia of the section, 
which is generally denoted by

J t0*=jzydA

should in this case be zero.
As the section is symmetrical about axis Oz, for each elementary 

area dA with coordinates (z, y) to the left of the z-axis we can find 
a similar, symmetrically located elementary area to the right of 
the z-axis. The 2-coordinates of these areas wi11 be the same by the mag
nitude and sign, while the^-coordinates will be equal in magnitude but 
will have opposite signs. Therefore the integral

\zy d A
A

will consist of two integrals equal in magnitude but of opposite signs. 
Thus, for symmetrical sections this integral is always zero, and Eq.



Ch. Ill Normal Stresses in Bending. Strength of Beams 233

(11.6) changes into an identity. In our case the condition J (I(= 0  
is satisfied. Bending will be uni-planar only under the condition that 
the product of inertia of the section is zero about axes one of which 
is In the plane of application of the external forces; then all sub
sequent conclusions will be valid.

Finally, let us study Eq. (11.2); substituting expression (11.4) 
into it, we get

2 ^  =  0, f — z*dA =  M or
a p a

Let us introduce the notation

J . ^ i A  (11.7)

This integral, which is the sum of the products of elementary areas 
by the square of their distance from the axis, is called the axial or 
equatorial moment of inertia of the area about the */• axis and is denoted 
by J y  As the y-axis is the neutral axis, /„  is the moment of 
inertia of the area of the section about the neutral axis *. From 
the Iransformed expression of equation (11.2), we get

or (»-8)
P P J '

P
Putting this value of -r in Eq. (11.4), we get

<7 Mz
J (11.9)

Hence, the normal stresses in any point of the section are directly 
proportional to the bending moment and its distance from the neutral 
axis, and inversely proportional to the moment of inertia of the sec
tion about the neutral axis.

The neutral axis passes through the centre of gravity of the section 
and is perpendicular to the plane of action of the external forces.

it is obvious from formula (11.7) that the moment of inertia is 
measured in units of length to the fourth power and depends upon 
the shape and size of the section. Methods of determining the moment 
of inertia for various sections will be given below.

Let us modify formula (11.8) to understand the physical meaning 
of this quantity:

I M
p*" EJ

(1110)

* In future, when denoting the moment or Inertia about the neutral y*axls, we 
shall often drop the Index y  and denote it in short by J  instead of / v-
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It is clear from this formula that the greater the moment of inertia 
J of the section for a given bending moment, the greater will be the 
radius of curvature of the neutral layer and, consequently, of the 
beam’s axis, i.e. the less will be the bending of the beam.

The value of the moment of inertia characterizes the ability of 
beam to resist bending depending upon the shape and dimensions of 
its cross-sectional area. The modulus of elasticity E also characterizes 
the ability of the beam to resist bending depending upon the material 
of the beam. The product EJ is called the rigidity of die beam under 
bending. The greater the rigidity, the less will be the bending of the 
beam with a given bending moment.
D. The relative rotation of the sections is connected with the bending 
of the beam’s axis. As is clear from the drawing (Fig. 152), the length 
of segment OxOi=dx is equal to pda. Herefrom the angle of rotation 
between two adjacent sections may be written as

1 MReplacing — by its value we get

da M dx
~eT (11.11)

i.e. the deformation and displacements in bending—the angle of 
turningda and the curvature of the beam — are directly proportional
to the bending moment and inversely proportional to the rigidity 
of the beam.

Repeating the reasoning employed in § 52, we can easily calculate 
the potential energy accumulated by the beam during bending. If we 
consider the bending of an infinitely small segment of the beam of 
length dx, we can calculate the work done by the bending moment 
over the da as follows:

d J T - I ^ d a

Putting the value of da from Eq. (11.11), we get

d y = d r = 4 ^

Integrating over the whole length of the beam, we get

j ,  C M 'd x
u - \ - w r ( 11. 12)
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In pure bending of a beam (M=const) with a constant cross-section
al area over the whole length (£J=const), the potential energy may 
be expressed as

(1U 2 ')

If bending moment along the beam’s length is expressed in terms of 
different functions of x  (for different portions), then integral (11.12) 
breaks up into a sura of integrals (each within the limits of the cor
responding portion), and the expression for potential energy of bend
ing becomes

y = Z f w  (1U2' )
The potential energy of deformation of the beam on account of shear 

{§ 36) caused by shearing forces Q is usually neglected as it is rela
tively small (for details, see Chapter 18).

§ 64. Application of the Results Derived Above 
in Checking the Strength of Beams

Formula (11.9) solves the question about the magnitude and distri
bution of normal stresses over the section. It has been derived for pure 
bending, when the sections remain planes.

Experiments show that when Q is not zero, the sections not only 
turn but also slightly warp under the action of shearing stresses. 
This warping, however, does not alter the distribution of stresses in 
fibres enclosed between the two adjacent sections. Therefore, for
mula (11.9) may be used even when Q is not zero.

It should be noted here that as yet we can use this formula only if 
the sections of the beam have an axis of symmetry, and the external 
forces act in the symmetry plane.

The neutral axis of each section, from which z is measured, passes 
through its centre of gravity perpendicular to the axis of symmetry.

Figure 154 shows examples of the distribution of stresses for beams 
of various sections—rectangular, T-shaped, triangular. The normal 
stresses are the same in all points located at equal distances from the 
neutral axis. We get compressive stresses to one side of the neutral 
axis, and tensile stresses to the other. The maximum stresses occur 
in points which are farther from the neutral axis. For the accepted 
convention of signs of M and z, formula (11.9) automatically gives 
the proper sign of a, plus for tensile stresses and minus for compres
sive stresses.

If the bending moment is positive, the beam bends with its convex
ity downwards, the upper fibres are compressed (z<0), whereas 
the lower fibres are stretched. The reverse picture occurs if the bend'
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ing moment is negative. Therefore, in selecting the sign of normal 
stresses while solving practical problems, we may follow the follow
ing rules: if the point of the section under consideration is located 
in the zone of stretching, a should be taken with a plus sign: if the 
point is located in the zone of compression, a should be taken with 
a minus sign. Obviously, in this case the absolute values of M and 
z should be used in formula (11.9).

Fig. 154

To check the strength of a material w.r.t. normal stresses, it is 
essential to find the maximally stretched or compressed areas. This 
can be achieved by applying formula (11.9) to the critical section, 
i.e. using instead of M and instead of z put z ^ ,  the distance
of the farthest point from the neutral axis. Then we get the following 
formula for the maximum normal stress:

„   Mjnaxzm3X
“max j

Usually, this formula is transformed by dividing both the numera
tor and the denominator by amax:

et __ Mm axwmax =  j  
2m»x

Quantity//2^JX is called the axial section modulus and is denoted 
by the letter W. As /  is measured in units of length to the fourth 
power, W is measured in units of length to the third power, e.g. cm3. 
Hence

where
tfmasc A!max (11.13)

W J  
zma x

(11.14)

If the section is symmetrical about the neutral axis, for example, 
a rectangular section, the outer stretched and compressed fibres are
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located at equal distance from the neutral axis, and such a section 
has a single definite value of the section modulus about the y-axis. 
Thus, if we consider a rectangular section of height h  (Fig. 155(a)), then

and W = j -
2

If the section is not symmetrical about the neutral axis, for example, 
a T-shaped section, we get two values of the section modulus: one
for layer A (Fig. 155(6)), 1^= ^-, and the other for layer B,

z f

■if tr *
t

z’
<
k t
'b)

Fig. 155

Now in formula (11.13) we should introduce: Wi when calculating 
stresses in point A and W* when calculating stresses in point B.

Let us write down the strength condition for tensile or compressive 
stresses. The condition reflects the idea that the maximum stress 
should not exceed the permissible:

From this condition we find that

W (11.16)

i.e. the section modulus determined from strength considerations 
should be greater than or equal to the maximum bending moment 
divided by the permissible stress.

Since W depends upon the shape and size of the beam section, by 
selecting a particular shape (rectangular, T-shape, 1-shape) we can 
find the dimensions of the beam such that its section modulus equals 
the one obtained from formula (11.1G). We shall show below how this
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can be done in practice. The values of W and J for rolled sections are 
given in specification tables (see Appendix).

We must differentiate between the following two cases when using 
formulas (11.15) and (11.16).

The first case is more common in bending, when the material shows 
equal resistance to tension and compression; in this case the permis
sible stress is the same for both deformations:

K I  =  K l  =  M

In the case of a symmetrical section it becomes irrelevant whether 
we check the strength of the stretched or compressed fibres, because 
for both of them the section modulus W and the maximum actual 
stress have the same value. In the case of an unsymmetrical section, 
in formulas (11.15) and (11.16) W should be replaced either by Wi 
or by Wt, whichever is less; it should correspond to the farthest fibre.

The second case deals with beams whose material has different 
resistance to tension and compression. In this case we must write two 
strength conditions instead of one—one for the stretched fibres and 
the other for compressed:

« ( -  +  T rT  < !* .]. » ,------< [ o J  (11.17)

Depending upon whether the material has better resistance under 
tension or compression, i.e. which of [o j or |crc] is greater, we have 
to design the section by selecting its shape and size such that Wt 
and W9  satisfy the strength condition.

The physical nature of section modulus is clear from formula (11.13): 
the greater the section modulus W, the greater is the bending moment 
to which the beam can be subjected without danger of failure. Thus, 
section modulus characterizes the efFeclof shape and size of the select
ed section on the strength of the beam when the stresses do not exceed 
the limit of proportionality.

Formulas (11.13) and (11.17) cease to be valid for stresses exceeding 
the limit of proportionality of the material.

Formulas (11.15) and (11.17) enable us to check the strength of 
a given section (when the value of section modulus W is known). 
If the beam's material has been selected and its permissible stress is 
known, then with the help of formula (11.16) we can compute the nec
essary value of section modulus, provided the maximum bending 
moment Mmx is preliminarily calculated. Then, depending upon 
the beam's profile, i.e. the shape of the section, the required cross- 
sectional dimensions can be determined.

It was shown earlier that for this we must find the relation between 
the cross-sectional dimensions and the value of the section modulus. 
In § 73 we shall elaborate on this.
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C H A PTER  12

Determination of Moments of Inertia
of Plane Figures

§ 65. Determination of Moments of Inertia and Section 
Moduli for Simple Sections

While deriving the expression for normal stresses (§ 63) we had 
obtained expression (11.7) of the type

where z is the distance of any elementary area from the central tj- 
axis. This integral, which covers the whole area of the cross section, 
was called the moment of inertia of the area about the neutral axis. 
The ability of a beam section to resist deformation in bending depends 
upon the value of moment of inertia (11.10).

Apart from this, the strength condition in bending (§ 64) includes 
the expression foY section modulus (11.14):

I t  ensues from the above that we must learn to calculate the mo
ment of inertia and section modulus for cross sections of any shape 
to ensure strength and rigidity of the beam. Let us.start with the sim
plest beam section, a rectangle of width b and height h (Fig. 156). 
Draw axes of symmetry Oz and Oy through its centre of gravity 0. 
If the external forces acting on the beam lie in plane xOz, then Oy 
is the neutral axis (axis Ox is directed along the beam). Let us first 
find the moment of inertia about this axis, and the section modulus 
of the rectangle.

Elementary areas dA into which the whole area of the section should 
be divided will be taken as narrow rectangles of width b and height 
dz (Fig. 156). Then

If we take the integral over the total area of the rectangular section,

Ju= \z* d A
A

dA = bdz
and integral J y

It ftz varies from — j  to +  -j*. Therefore

( 12- 1)
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We get the section modulus about the neutral axis Oy by dividing 
Jv by zn*x=  2" •

J v __M3/ I 2 _  AM
? n » x  2  ~

( 12.2)

If we have to calculate the moment of inertia and section modulus 
of the. rectangular section about the axis Oz, then all that is required 
is to interchange b and h in the above formulas:

and

W hb» 
* = ~ T (12.3)

Let us note that the sum of the products z2dA does not change if 
we displace all the strips dA =b dz (Fig. 156) parallel to themselves 
in such a way that they lie within the parallelogram ABCD (Fig. 157).

r * - b ------ *1
a

~ 7

r
h .

1

L— [.

/ f t

7
Fig. 156

+  y

Hence the moment of inertia of the parallelogram ABCD about 
the y-axis is equal to the moment of inertia of an equivalent rectangle 
ABGE:

0 2 .1)

As the moment of inertia of an area is an integral of the type
Jy—\ z z dA, we can immediately determine the moment of inertia of a 

n
rectangular box section (Fig. 158) with the help of formula (12.1):
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The section modulus is
Jv BH* — bh9  _ BIP—bh3  

12///2 =  577 (12.2')

Note that the section modulus cannot be calculated in the form of 
difference W—Wt—W9  or —Ma/6, because this runs coun
ter to the very concept of section modulus as the ratio Jh!zmax.

Fig. 158

While determining the moment of inertia of a circle of radius r 
(Fig. 159) we similarly divide its total area into elementary strips of 
thickness dz along the axis Oz\ the width of the strips &=&(*) also 
varies along the height of the section. The elementary area is

dA = b (?) dz

The moment of inertia is

J — J z*b(z)dz
A

As the upper and lower halves of the section are identical, it is 
sufficient to calculate the moment of inertia for one half and double 
the result. The limits in which z varies are from 0 to r:

r

J = 2[z*b{z)dz

We introduce now a new variable of integration, angle a  (Fig. 159): 

z=*rcosy, d2=» —— rsinyda, 6(2)=*2rsin*^

9 —3 3 1 0
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The limits of integration are a=Jt at z= 0 anda=0 at z=r, therefore 

J ~ — 2^ 2r‘ cos* ^ s in * - y y d a = - ^  Jsin*ada ‘̂ -  (12.4)

and

(12.5)

For a circle any axis passing through the centre of gravity is the 
axis of symmetry. Therefore formulas (12.4) and (12.5) are valid for 
ail such axes.

Substituting r—j , we shall now express 
diameter:

Fig. 161 

J  and W through the circle’s

J ltd*
04

w =n
32 «  O.ld*

(12.4')

(12.5')

The moment of inertia of a triangle (Fig. 160) about AB is: 

z*bxdz, bz = b^-j^- — b  ̂1 —
A
h

Later (§§ 66-68) we shall explain how to calculate the moment of 
inertia of a section of any complex shape about an arbitrary axis.

The symmetrica! sections which we generally come across in prac
tice are: for wood—rectangular and circular, for metals—I-shaped 
and T-shaped (Fig. 161). For rolled sections we may use the GOST
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tables * (specifications), which contain the dimensions and the values 
of J and W for the sections manufactured at the rolling plants. These 
tables are given in Appendix.

Generally, metal beams have complex cross sections, because a more 
economic exploitation of the metal is possible in these sections as 
compared to, say, rectangular or circular sections.

We saw in § 48 that the shafts are made hollow to remove the por
tion of material that works under lower loading. In bending beams 
the material near the neutral axis experiences very small normal 
stresses (formula (11.9)) and is consequently not utilized fully. It is 
therefore more expedient to modify the rectangular section by re
moving the metal near the neutral axis and utilizing a part of this 
metal in the upper and lower zones of the beam, which work under 
more severe conditions, and saving the rest of it. Thus, from a rectan
gular section we obtain an I-shaped section (Fig. 162), which has the 
same strength but is lighter. The 1-sections should preferably be used 
for materials which have equal resistance to tension and compression 
(in the majority of the metals).

The T-shaped sections are used in the cases when this is dictated by 
design considerations and when the materials, for example, cast iron 
and concrete, greatly differ in resistance to tension and compression. 
The latter condition requires that the stresses should be different in 
the outer fibres.

It ensues from the above discussion that the most economic design 
of the section should endeavour to obtain the maximum moment of 
inertia and section modulus for the fixed area A. In this design the 
greater part of the material will be located farther from the neutral 
axis.

However, in some sections the section modulus may be increased 
not by adding, but, on the contrary, by cutting off a part of the sec-

* GOST stands lor All-Union State Standard (in the USSR].

b

Fig. 162 Fig. 163

9*
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tion which is farthest from the neutral axis. If we cut off the hatched 
segments of the circular section (Fig. 163), its section modulus some
what increases, because the decrease in the moment of inertia is less 
than that of distance znK from the outer fibres.

The most effective section in bending will be that for which the 
ratio W/A of section modulus to the cross-sectional area is maximum. 
It is more convenient to assess the effectiveness of section by the di
mensionless coefficient a =W>\Ah), where h is the height of the sec
tion. Table 11 contains the values of coefficient a  for a few sections. 
We see from the table that a  is maximum for an 1-seclion.

Table 11
Coefficients of Profile Effectiveness

Shape of section  Coefficient ~ 1 _ C o n fid en t  Shape of sec tio n  a

I-sect! o n  (depending upon 0.31-0.34 
the profile No)

Channel section (depen- 0.29-0.3J 
ding upon the profile 
No)

T-soctlon 0.085

Rectangle 0.107 
Circle 0.125 
Triangle 0.083 
Hollow circular section 0.226 

(when r/f?=i0.9)

§ 66. General Method of Calculating the Moments 
of Inertia of Complex Sections

While checking the strength of elements of structures we often come 
across sections of complex shape for which the simple method used for 
calculating the moment of inertia of sections like a rectangle or circle, 
discussed in §65, does not hold.

W (b) (c)
Fig 164

Such a section may be, for example, a T-shaped section (Fig. 164(a)), 
a pipe section working under bending load (in aviation design) 
(Fig. I64(/>», a ring cross section of the neck of a shaft or a more com-
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plex section (Fig. 164(c)). AH these sections may be divided into 
simple shapes such as rectangles, triangles, circles. It can be shown 
that the moment of inertia of a complex section is the sum of the mo
ments of inertia of the parts into 
which it is divided.

Let us take (Fig. 165) an arbit
rary figure representing the cross 
section of abeam; they»axls is drawn 
in the plane of the section. The 
moment of inertia of this figure 
about the y-axis is (11.7)

A

where z is the distance of elementa
ry areas dA from the y-axis.

Let us divide the area of the 
figure into four parts: A1t A t, Aa, 
and A 4. Now when calculating the 
moment of inertia according to 
formula (11.7), the terms under the integral sign should be grouped in 
a way such that we can carry out integration of the elementary areas 
separately for each portion and then add the results. The value of the 
integral will remain unchanged after this operation.

The integral will break into four integrals each of which covers 
one of the areas A t, At, Az or A4:

= \  z*dA —  ̂zt dA +  J z* dA -f 5 z*
j\ >1] /1|

dA 4- J a* dA
a4

Each of these integrals represents the moment of inertia of the cor
responding portion about axis Oy; therefore

A, =  (12.6)

where Jj, is the moment of inertia of area At about the (/-axis, Jll 
is the moment of inertia of area At about the same axis, and so on.

The result obtained above ttiay be formulated in the following man
ner: the moment of inertia of a complex figure is equal to the sum of 
the moments of inertia of parts comprising it. Therefore, to calculate, 
for example, the moment of inertia of the section shown in Fig. 164(c) 
about axis Oy, we must calculate the moments of inertia of appro
priate triangles and rectangles about the same axis and add the re
sults. We must know how to calculate the moment of inerlia of an 
arbitrary figure about an arbitrary axis lying in its plane.

The solution of this problem forms the contents of this chapter.
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§ 67. Relation Between Moments of Inertia About
Two Parallel Axes One of Which Is the Central Axis

The problem of obtaining the simplest possible formulas for com
puting the moment of inertia* of any figure about an arbitrary axis 
can be solved in a number of ways. If we take a number of axes pa

rallel to one another, then the mo
ment of inertia of the figure about 
any of these axes can be calculated 
if we know the moment of inertia 
of the figure about the axis passing 
through its centre of gravity and 
parallel to the selected axes.

We shall call the axes passing 
through the centre of gravity the 
central axes. Let us take (Fig. 166) 
an arbitrary figure. Draw the cent
ral axis Oy and denote by Jv the mo
ment of inertia of the figure about 
this axis. In the plane of the figure 
draw axis 0 i{/i parallel to the 
y-axis and located at a distance a 
from it. We shall try to establish 

the relation between J y and J'y, the moment of inertia about the 
y,*axis. For this we shall have to write the expressions for J v and Jy. 
Break the figure into elementary areas dA, and denote by z and Zt 
the distances of points lying on the elementary area from axes Oy and 
Od/u respectively. We find that

Jy — ^z^dA  and Jy—^ z \d A

But it is evident from the drawing that

Therefore
Zi =  z + a

J'y = J (z + afdA =  ̂(2a +  2az+fl8)<L4
A A

=  J z*dA +  2 a $ zdA -f a* $ dA
A A A

The first of the three integrals represents the moment of inertia 
about the central axis Oy. The second integral represents the static 
moment about the same axis. It is equal to zero, because the y-axis 
passes through the centre of gravity of the figure. Finally, the third
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integral represents the area of the figure. Therefore
J ^ J ^ a ' A  (12.7)

i.e. the moment of inertia about an arbitrary axis is equal to the mo
ment of inertia about the central axis parallel to the arbitrary axis 
plus the product of the area of the figure by the square of the distance 
between the axes.

Hence, our problem reduces to determining the central moments 
of inertia. Knowing them we can calculate the moment of inertia 
about any other axis with the help of formula (12.7). It is evident 
from formula (12.7) that the centred moment of inertia is the minimum 
of the moments about parallel axes, and it may be expressed as

Jv = J'y-a * A  (12.7')

We can similarly determine the product of inertia J'ox of the sec
tion about axes Otyi and 0,Zi parallel to the central axes, if Jyt=
=  \#z dA is known (Fig. 166). From the definition

A

where y t—y+b, zt=z-f-a; therefore 

I {y + t>){z+a)dA
A

=  ̂y zd A + a b [d A  + a[ydA -{-b^  zdA
A A A A

The last two integrals are equal to zero because they represent the 
static moments of the area about the central axes, Oy and Oz. Therefore

J 'yz^J^+ a bA  ( 12.8)

The product of inertia of a section about two mutually perpendi
cular axes parallel to the central axes is equal to the product of iner
tia of the section about the central axes plus the product of the area 
of the figure by the coordinates of its centre of gravity w.r.t. the new 
axes.

§ 68. Relation Between the Moments of Inertia 
Under Rotation of Axes

We can draw any number of central axes. But the question is: Can 
we express the moment of inertia about an arbitrary central axis 
in terms of the moment of inertia about one or two definite axes?
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We shall see how the moment of inertia about two mutually perpen
dicular axes changes when Ihe axes rotate through an angle a.

Let us take an arbitrary figure and draw two mutually perpendi
cular axes Oy and Qz through its centre of gravity 0  (Fig. 167). 
Suppose that the moments of inertia about these axes, Jv and J 2t 
and the product of inertia of the section, Jy2, are known. Let us draw 
the second system of coordinate axes Oyx and 0 zx at an angle a  to the

first. This angle will be considered 
positive if the rotation of the axes 
about point 0  is anticlockwise. 
The origin of coordinates 0  is re
tained. L$t us express the moments 
about the second system of coordi
nate axes, J'y and J'z, through the 
known moments Jy and J x.

The expressions for the moments 
of inertia about these axes are as 
follows:

=  5 z* dA,
A

J'u = \ z \ d A ,

J ^ W d A
i-l

J z = \tM A

(12. JO)

(12.9)
It is clear from the drawing that the coordinates of area dA in the 

system of rotated axes Oyt and Ozx are
y t =  OE+EC = OE - f  B D = y  cos a -f- z sin a  ^
zx =  AD — DC =  AD— BE =  z cosct—//since j

Putting these values of y x and zx in formula (12.9), we get 
J ’y— J (zcosa—ysina)*dA

A

=  $ (z1 cos*a + y* sin*a—2yzsinacosa)dA

or

Similarly

OF

y^=-cos*aJ a*/L4-f-sin*a J y*dA—sin2a J yzdA
A A A

(ycosa +  zsina)3dA
A

/;= » s in * a  J zadA +  cos4a  $ y*dA -f-sin 2a J yzdA

(12. 11)

( 12.12)
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The first two integrals in expressions (12.11) and (12.12) represent 
the axial moments of inertia, J y and J z, whereas the third represents 
the product of inertia of section about the two axes, J„z. Therefore

J'u =  J u cos* a  -j- J t sin* a —J vt sin 2a 
yz =  Jy sin* a  +  J g cos* a  -f sin 2a 1

(12.13)

To determine the product of inertia of the section we may require 
formulas for passing over from one system of coordinates to the other. 
For the rotated axes (Fig. 167) we get

= l  clA
A

where y x and Zi are calculated according to formula (12. 10). Conse
quently

Jyg = £ (2 $ in a+ 0 cosa) (ecosa—ysina) dA
A

*s=sinacos a   ̂z*dA—sin a  cos a   ̂yt dA
A A

+  cos* a ^ y zd A  —sin* a  J yz dA

After simplification we get

J W = T  («V— J z) sin 2 a  -j- J vt  cos 2 a (12.14)

Thus, in order to determine the moment of inertia about an arbit
rary central axis Oyx, we must know the moments of inertia J 0  and J z 
about a system of two mutually perpendicular central axes Oy and Oz, 
the product of inertia of the section, Jaz, about the same axes, and the 
angle between axes Oyx and Oy.

To calculate J v, J z, and J,fZ we must select the axes Oy and Oz 
and break the area of the figure into parts in such a way that the above 
values may be computed for each composite part by using the rule of 
parallel axes only. We shall show in the example below how to do 
this in practice. It should be noted that complex figures should be 
broken into elementary areas for which the central moments of iner
tia about a system of two perpendicular axes are known.

Lei us note that the above procedure and the final results (12.13) 
and (12.14) would have been the same if we had taken the centre of 
coordinates in an arbitrary point 0  other than the centre of gravity 
of the section. Hence, formulas (12.13) and (12.14) hold true when 
we transfer from one system of mutually perpendicular axes to an
other rotated through an angle a , irrespective of whether the axes 
pass through the centre of gravity or not.
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From formula (12.13) we may obtain another relation between the 
moments of inertia when the axes are rotated. By adding the expres
sions for Jv' and J t' (12.13), we get

+  J'z — Jy (cos* a + sin* «) +  h  (sin* a + cos* a) =  /„  +  J t (12.15)

i.e. the sum of the moments of inertia about any two mutually per
pendicular axes Oy and Oz does not change when the axes rotate. Put
ting the values of Jv and Jz from (12.9) in formula (12.15), we get

$ z*dA +  \y*dA = \{z*+y*)dA = [p ‘ dA = J p (12.16)
A A A  A

where p—V y*+z* is the distance of elementary area dA from point 0. 
As we already know, the quantity P*dA is called the polar mo

ment of inertia about point 0  (§48).
The polar moment of inertia of a section about a point is equal to 

the sum of the axial moments of inertia about two mutually perpen
dicular axes passing through this point. This explains why this sum 
remains constant when the axes rotate. Expression (12.16) may be 
utilized for simplifying the computation of the moment of inertia. 
Thus, for a circle we already have (§ 48)

nr*
~ 2

Due to symmetry in a circle / v= / „  therefore

which is the same as obtained by integration (§ 65).
Similarly, on the basis of formula (9.15) we get the following ex

pression for a thin-walled ring section:

§ 69. Principal Axes of Inertia and Principal 
Moments of Inertia

Formulas (12.7) and (12.13) solve the problem set before us in § 66: 
knowing the central moments of inertia J,, and Jz, and for a par
ticular figure we can calculate its moment of inertia about any other 
axis.

As the basic system of axes we select a system which will help 
simplify formulas (12.13). To be precise, we may select a system for 
which the product of inertia of the section is zero. Indeed, moments
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of inertia Jy and J t are always positive because they are the sum of 
positive terms; the product of inertia of the section

= l  zydA
A

may be positive or negative, because the terms zy dA may have differ
ent signs depending upon the signs of y  and z for particular elemen
tary areas. This means that it may 
also be zero (§ 63, item C).

The axes about which the product 
of inertia of section is zero are 
called the principal axes of inertia. If 
the centre of this system of axes 
lies at the centre of gravity of the 
figure, then they are called the 
principal central axes of inertia. We 
shall denote these axes by Oy0  and 
Ozo', for these axes

y***=  0

Let us determine the angle Oo 
between the principal axes and the 
central axes Oy and Oz (Fig. 168).
In formula (12.14) for the product
of inertia, where we pass over from axes yOz to y\Ozu angle a  is re
placed by a«; then axes Oyi and 0 zt coincide with the principal axes, 
and the product of inertia of the section vanishes:

at a = a n J yz — J UaZ* — 00«Z»
or

J  =• — 4  sin 2a0 (Jx~~ Ju) +  Jyt cos 2a,,= 0

wherefrom

tan2a0= 7^2~- (12.17)Jz Jy

This equation is satisfied by two values of 2a 9 differing by 180°, 
or two values of a 0 differing by 90°. Thus, equation (12.17) determines 
the location of two axes at right angles to each other. These are the 
principal central axes of inertia Oyt and Oz0  for which Jy^ 0 =0.

Using formula (12.17) and knowing Jy, JZi and Jyz we may°obtain 
formulas for the principal moments of inertia Jya and JZa. For this 
we shall again use formulas (12.13); they give us the values of JVt
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and JZt if we replace a  by cc0:
Jy, =  J u cos*a„ +  J , sin*a0—./ff2 sin 2a0 1 
JZv = Jvsin1 ad +  cos1 a0 -\-Jyzsin2afl j (12.18)

These formulas along with formulas (12.17) may be used in solving 
problems. We shall show in §70 that one of the principal moments 
of inertia is Jmi. and the other is Jmla.

Formulas (12.18) can be modified into a form which does not con
tain a 0. Expressing cos1̂  and sin*a0 in terms of cos 2a0, putting their 
values in the first formula in (12.18) and simultaneously substituting 
the value of from formula (12.17), we get

” 2 ' 2 COS/<Xo +  2 cos 2a,
, Jp—Jt 1

—  2 "» 2 cos 2a ,

From formula (12.17), replacing the fraction

S S Z  b* ± / l  + ta-2a0= ± / l + J £ ^ ,
we get

+  (12.18')m hi •

We would have obtained the same result by a similar transformation 
of the second formula in (12.18).

Instead of Otj and Oz we may lake the principal axes Oy0  and 0t„ 
as the basic system of the central axes of inertia from which we can 
pass over to any other system. Then the product of inertia of the 
section will not appear in formulas of the type (12.13) (Jyotf>=0). 
Let us denote by p the angle that axis Oyx makes with the principal 
axis Oy0  (Fig. 169). In calculating J'y, J ’z, and Jyt, angle a  in for
mulas (12.13) and (12.14) should be replaced by |5 ana J„, J t, and 
Ju. should be replaced by Jy<>t JSo, and We find that

Jy =  cos1 p-M*o sin1 p 1

Jyz sin 2p
(12.19)

The above formulas are exactly the same as the formulas for normal 
stresses <ra and shearing stresses x0 (6.5) and (6.6) acting in two mu
tually perpendicular planes in an element subjected to tension in 
two directions (§ 30). Therefore Mohr’s circle can be used in this case 
also. The axial moment of inertia should be laid off along the hori-
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zontal axis, and the product of inertia of the section along vertical 
axis. It is proposed that the reader should himself plot and analyze 
the Mohr’s circle in this case. We shall only give the formula which 
enables us to select that value among the two values of a# (formula
(12.17)), which corresponds to deviation of the first principal axis 
(giving maximum J) from the original position of the ^-axis:

lana0 = ^ t<i (12.17')

This formula is exactly similar to formula (6.11).
We can finally state the law by which the moment of inertia of a 

complex figure about an arbitrary axis can be found in the simplest 
possible manner. It is essential to draw axes Oy and Oz through the 
centre of gravity of the figure so that to divide the figure in simple 
parts for which J t and J VI can be easily calculated. Then we de
termine <xo from formula (12.17) and calculate the principal central 
moments of inertia JVo and J ^ according to formulas (12.18).

We can calculate the moment of 
inertia about an arbitrary central 
axis Oyi (Fig. 169), inclined at an 
angle P to Oy0> according to formu
la (12.19):

Jy =  J y, cos1 p +  sin1 p
Knowing the central moment of 

inertia J,/, we can calculate the 
moment of inertia about any paral
lel axis y  located at a distance a 
(Fig. 169) from the centre of gravity 
by formula (12.7):

J ^ J v  +  a'A
In a number of cases the princi

pal axes of a figure can be drawn 
straightaway. If the figure has an axis of symmetry, then this axis 
will be one of the principal axes. Actually, while deriving the for
mula o = ~ ,  we came across the integral ^yzdA , which represents

the product of inertia of the section about the axes Oy and Oz. It 
was proved that if Oz is the axis of symmetry, then this integral be
comes zero.

This implies that in the present case Oy and Oz represent the prin
cipal central axes of inertia of the section. Hence, the axis of symmetry 
is always a principal axis, and the second principal central axis passes 
through the centre of gravity at right angles to the axis of symmetry.
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§ 70. The Maximum and Minimum Values 
of the Central Moments of Inertia

We already know that the central moments of inertia are the mi
nimum of all moments about a number of parallel axes.

Let us now determine the extreme (maximum and minimum) 
values of the central moments of inertia. If we start rotating axis 
Ot/i, i.e. changing the value of a, there is the change in the value of

Jv = Ju cos*a + J* sin2 a — Juz sin 2a

The maximum and minimum values of this moment of inertia cor
respond to angle at for which dJf/da vanishes. This derivative is

dJ *-3 * =  — cosa sin a 4-2 sina cosa—2Jyz cos 2a

Putting a = a , in the above equation and equating it to zero, we get 
(Jg— Jy) sin 20*— 2 JyZ cos 2at =  0

wherefrom
2j

tan2a1 =  -?-:g - « t a n 2 a B (see (12.17))

Thus, the axes about which the central moments of inertia are maxi
mum or minimum are the principal central axes of inertia. When 
these axes are rotated, the sum of the corresponding moments of iner
tia does not change; therefore

When one of the central moments of inertia is maximum, the other 
must be minimum, i.e. if

«fy* =  «/jnax> then =

Thus, the principal central axes of inertia are mutually perpendicu
lar axes passing through the centre of gravity of the section, about 
which the product of inertia of the section is zero and the axial mo
ments of inertia have the maximum and minimum values.

In future we shall denote the principal axes of inertia by Oy and Oz 
and the principal moments of inertia by Jv and Jz. We shall continue 
to denote the axis of the beam by the x-axis as before.

§ 71. Application of the Formula for Determining
Normal Stresses to Beams of Non-symmetrical 
Sections

By equating to zero the product of inertia of section about the prin
cipal axes, we can show that the formulas given in § 63 are valid under 
certain conditions for non-symmetrical sections as well.



Ch. 12} Moments of Inertia of Plane Figures 255

While deriving the formula for normal stresses (§ 63) we introduced 
the limitation that the beam should be symmetrical about the plane 
of action of the external forces, xOz, with the primary aim of (1) es
tablishing that the neutral axis Off is perpendicular to the plane zOx, 
and (2) proving that the sum of the moments of elementary forces 
dN about the axis Oz is zero:

Mt =  0, -^^xydA=>0t J zydA—Q (11.6)
A A

However, the conditions that the z• and «/-axes be at right angles 
and the integral \z y d A  be equal to zero may also be fulfilled for

A
a non-symmetrical section. For this it is sufficient that the z-axis 
lying in the plane of action of the external forces and the neutral 
y-axis be the principal central axes of inertia of the beam’s cross sec
tion. The perpendicularity is then satisfied and the integral J zy dA

representing the product of inertia of the section about the principal 
axes is also equal to zero.

Hence, the condition that the plane of action of the external forces 
should coincide with the plane of symmetry may be replaced by an
other condition: the plane of action of the external forces should coin
cide with one of the two planes containing the principal axes of iner
tia of the cross section. In a beam 
these two planes are called the 
principal planes of inertia.

The second principal axis, which 
is perpendicular to the plane of 
action of the external forces, repre
sents the neutral axis, and the con
dition ^zydA = 0  is automatically

satisfied.
Since we can always find the 

principal central axes of inertia for 
a beam of any shape, formulas 
(11.9) and (11.13)

n — ̂ L  and a —u j  ana om,x ^

may be used for beams of any cross section, provided the external 
forces lie in one of the principal planes of inertia of the beam and J 
and W are taken about the other principal axis, which is perpendi
cular to the plane of action of the external forces and represents the 
neutral axis.

Fig. 170
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A Z-shaped beam (Fig. 170) with principal axes Oz and Oy may be 
taken as an example. The formulas given above are applicable to this 
beam only if the external forces lie in plane xOz or xOy. In the first 
case the ^-axis will be neutral, in the second the 2-axis. As in this 
case too the neutral axes of the section are perpendicular to the plane 
of action of the external forces, the axis of the beam remains in this 
plane even after deformation. Thus, if the external forces lie in one 
of the principal planes of inertia, this will be the general case of uni- 
planar bending.

Beams of Z-section are often employed as purlins, which are laid 
over rusters. Under vertical pressure of the roof weight and snow the 
purlins bend in the plane of action of the externa! forces (for corres
ponding roof slope), i.e. they experience uni-planar bending.

It should be noted that in some cases additional normal and shear
ing stresses connected with extra twisting of beam are set up in beams 
of non-symmetrical (about the axis lying in the plane of action of 
external forces) sections.

§ 72. Radii of Inertia.
Concept of the Momental Ellipse

We shall now introduce one more geometrical characteristic of sec
tion which correlates the moment of inertia of the section, J, with 
its area A by the following formulas:

Jv =  i3vA and Js =  i\A (12.20)

Quantities i„ and iz are known as radii of inertia and are respec
tively equal to

and (i2.2i)

If J„ and represent the principal moments of inertia, iy and /, 
are known as the principal radii of inertia. For example, for a rectan
gular section we find with the help of formulas (12.1) and (12.3)

^ T m  lg~  l2Wi =  y H  (12.22)

For a circular section formula (12.4) yields

<l2-23>

The values of principal radii of inertia for rolled profiles are given 
in standard normal profile tables (see Appendix).
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The ellipse plotted on the principal radii of inertia as its major and 
minor axes is known as momental ellipse. To plot the momenta! el
lipse we lay off from the centre of gravity of the section the radii of 
inertia: iy is normal to the central 
y-axis, i.e. along the z-axis, and iz 
is normal to the z-axis (along the 
y-axis). If Jv= Jmax, the major axis 
of the ellipse 2L  will lie along the 
z-axis (Fig. 171).

The momenta] ellipse has the fol
lowing remarkable property: the 
radius of inertia about an arbitrary 
axis Ox drawn through the centre 
of gravity of the section is equal to 
the normal dropped from the centre 
of ellipse to the tangent parallel to 
the above axis. Hence, with the 
help of the momental ellipse we 
can graphically find the radius of 
inertia ix for an arbitrary axis Ox 
making an angle P with the princi
pal axis Oy. For this it is sufficient to draw a tangent to the ellipse 
parallel to the x-axis and measure distance ix between the axis and 
tangent (Fig. 171). Knowing the measured radius of inertia ix, we 
calculate the moment of inertia about the x-axis by formula

Jx =i$A (12.24)

Some sections like circle, square, etc. (Fig. 172), which are com
monly used in engineering practice, have equal moments of inertia 
about the two principal axes of inertia. Consequently, the principal

Fig. 172

radii of inertia are also equal (iu—i*), and the momental ellipse chan
ges to the momental circle. For such sections every central axis rep
resents a principal central axis of inertia; this is also evident from 
formula (12.19) for the product of inertia of section, which vanishes 
for every value of (5 if Jv—Jz (see § 69).
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A bar of such a section displays equal resistance to bending in all 
directions, which is particularly important in axial compression of 
long bars (Chapter 27).

§ 73. Strength Check, Choice of Section and Deter
mination of Permissible Load in Bending

Formulas (11.15), (11.16), and (11.17) derived in Chapter 11 for 
expressing the strength condition in bending, combined with the abil
ity to calculate the moments of inertia and section moduli (Chap

ter 12), enable us to solve the fun
damental problems of strength of 
materials in bending (§4), name
ly:

(a) check the beam strength when 
the beam dimensions and the forces 
acting on it are known;

(b) determine the required cross- 
sectional dimensions if the axial 
dimensions of the beam and the 
forces acting on it are known;

(c) determine the permissible load 
which the beam can withstand if 
its axial and cross-sectional dimen
sions are known.

It is assumed that the permissible 
stresses are known in all the above 
cases.

We shall illustrate with examples how to apply the strength con
ditions for solving the above problems.
A. Suppose it is required to check the strength of a rectangular 60X

------ ■   >f d

h- 1 0 0

Fig. 173

X 100 mm steel bar weakened by two symmetrical holes o? diameter 
d=10 mm (Fig. 173), if the bending moment in the critical section 
Mmax^l-S tf-m and the permissible stress [o]=1600 kgf/cm2.

Let us calculate the moment of inertia of the section about neutral 
axis Oy:

J , - 2  ( Mfl* +  £ )  =  ̂ - 2  («X I X3» +  ̂ ) = 3 9 1  cm*

The section modulus is

78.2 cm3
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The maximum stress in critical section is

° » . X - % 2=  l37| r~  =  1660 kgf/cm* >  1600 kgf/cm*

Overstressing of — X100—3.75% is permissible.
B. Let us now solve a problem on selecting a section. Let a hinged 
I-beam of span 1=4 m be loaded along its length by a uniformly 
distributed force q = 2 tf/m and a concentrated force P = 6 tf at the 
centre of the span. It is required to select a section for the beam if 
the permissible stress kl=1600 kgf/cma.

The maximum bending moment at the middle of the span can be 
calculated by applying the principle of superposition of forces (§ 61).

Bending moment due to the distributed load q according to for
mula (10.11) is

The maximum total bending moment in the critical section is 
Mmx==M4-f Af^=4 +  6 =  10tf-m>= 10 x  lO'kgf-cm

According to strength condition (11.16) the required section modulus

From standard tables (see Appendix) we find the profile No. which 
satisfies this condition: I-section No. 33 having section modulus 
1F=597 cm3 (overstressing of about 5% is permissible).
C. Let us now consider an example in which we have to determine 
the permissible uniformly distributed load which may be safely ap
plied to a hinged jib beam of span /=10 m. The beam has 1-section 
No. 60 strengthened by two 200 x  20 mm plates welded to it (Fig. 174). 
Permissible stress loj=!400 kgf/cm8.

The moment of inertia of the section will be found as the sum of 
moments of inertia of the I-section and the two plates about the neut
ral axis (as per standards) and it will be calculated with the help 
of formula for moment of inertia about parallel axes (12.7):

Bending moment due to concentrated force P (10.100 is

=625 cm3

76 806 +  2 [■ ^ ^ ■ + 2 0  x  2 x  (3 0 + 1)4] « 153700 cm4
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Section modulus
4820 cm’

2 ro»x

According to strength condition (11.16) the maximum bending mo
ment yWm-x=  must not exceed [a] IF, wherefrom

8X  H00 X 4840-. ,r. __
1<7J ^  i r  *■ — i^  ]< loo4" " *  54 kg*/crn

or 5400 kgf/m.
If the dead weight of the beam is taken into account, then we should 

subtract the distributed load due to the weight of two plates, 2x

X20X 2X 100 x  0.007 85=63 kgf/m, and the weight of the I-beam 
(see Appendix) 108 kgf/m (</#=63+108=171 kgf/m in all).

Hence, the beam may be loaded by a service load
<? =  [<?]—ft “  5400— 171 »  5230 kgf/m

D. Finally, we shall now discuss the analysis of a composite beam of 
non-symmetrical section. Suppose it is required to determine the per
missible bending moment for a beam fixed rigidly at one end in a 
wall, if a force couple is applied at the other end in the principal 
plane of inertia. The dimensions of the section are given in Fig. 175. 
The span of the beam is 7=0.6 m. The permissible stress is [ol= 
=  1600 kgf/cma.

First of all it is necessary to locate the centre of gravity of the sec
tion. For this we select an arbitrary system of coordinate axes yiOzi.
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It is convenient if the whole figure lies in the first quadrant. The dis
tances of the centre of gravity from these axes may be determined by 
the formulas

- f -  and

where and S2| are static moments of the area about axes Oyt 
and 0 zL, respectively.

To determine the static moments we divide the area into two rec
tangles, vertical / and horizontal / / .  The area of the figure is A =  
=  1x1247x1=19.0 cm3. The static moments* are

Sty =  ^ 101,14 - 1 2  x  0.54-7(1 +3.5) =37.5 cm3 
Syi = AzZu te= 12 x  6.0 +  7 x  11.5= 152.5cm8

The coordinates of the centre of gravity are

yc =  1.97 cm »  2.0 cm

2f= ! ^ « 8 . 0 0 c m

Let us now choose the coordinate system of the central axes of iner
tia Oy0  and Oz<>. The simplest way is to direct these axes parallel to 
the arms of the figure; this will be helpful in calculating the moments 
of inertia of the section about these axes.

The moments of inertia of individual rectangles about axes Oy0  

and Ozo can be calculated from the formulas of parallel axes 112.7) 
and (12.8), and the moments of inertia of the rectangles about their 
own axes from formula (12.1).

Table 12 (see Fig. 175) contains the plan of computations with the 
help of which we can determine the angles between the principal 
axes and axis Oy9:

tan!&.r-= 2x97   * <jnlan z/Xq yo_ ju — 100—278 ”  1 *oy
2a; =  —47*40' and a ;= -2 3 °5 0 '

The minus sign shows that angle should be laid off In the clock
wise direction:
sinaj = —0.404, cosa;=0.915, sin2a; =  —0.74, cos2a; =  0.673

• In the indices of the coordinates the first subscript denotes the axes tty, or 
(fej, and the second subscript denotes ttie area.
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Table 12
Determination of the Moment of Inertia

CbArdinafaf * Moments of inertia of the areas (cm4)

so. I«
of the areas (cm) 4 Azl TT + A«\ V**= Ayyt,

owOJ.0E92

J9
wOide<c

*# bh>
IT At* 4

fcft»
IT Aul ± J°V*

l 12 -1.5 -2.0 144 48 192 1.0 27 28 + 36

2 7 2.5 3.5 0.6 85.6 86 28.6 43.8 72 + 61

2 19 144.6 133.6 278 29.6 70.8 too + 97

The principal moments of inertia are
Jy=Jy cos4 a„ +  J\ sin* (X*—7^ sin 2a0  

=  278 x  0.915*+ 100 x  0.404*+ 97 x  0.74 =  320 cm*
Jx — 7I sin* oc0+ J% cos* a 0+ 7 ^  sin 2a0 

=  278 x  0.404*+ 100 x  0.915*—97 x  0.74 =  58 cm*

Let us check whether the results obtained are correct:

1. 7„ +  7, =  320 +  58 =  378cm‘ =  7 2 + /“= 278+100 =  378cm‘
2. 7yr= y ( 7 “—7®)sin2a+722COs2a

=  — *5* (278—100) 0.74 +  97 x  0.673 =  0

It is clear from the calculations that 7„=7m,x, and 7*=7min. 
Hence, it is advantageous to apply the bending couple in the plane 
xOz so that axis Oy becomes the neutral axis (Fig. 176).

Let us now find the section modulus. For this it is necessary to 
determine the distance of the farthest fibre from the neutral 
axis Oy. This can easily be done by drawing the section to a certain 
scale and marking the principal axes * on it. For the section under 
consideration the measured distance was found to be zmiu=8.1 cm. 
Therefore the section modulus about the i/-axis is

lFtf= A  =  f ?  =  39.5cm»
Zfliax

Formulas (12.10) may be used for analytical determination of 2max or ym n'



ck. m Shearing and Principal Stresses 263

We determine the maximum permissible bending moment from the 
strength condition *:

wv
wherefrom

max [M ]<[o] Wy 
M0 =  max [Af] <  1600 x  39.5 =  63 200 kgf *cm «  0.63 tf • m

If the bending moment is applied in plane xOy, then the distance 
of the outer fibre from the axis Oz being yma,t=4.12 cm, the section

Fig. 176

J  58modulus will be Wz=  ==14-1 cn,3« and the magnitude of the
moment which can be applied safely will be

Af?=m ax[M ,]<1600 x  14.1 =22 560kgf• cm« 0 .2 2 6 tf-m

which is three times less than the moment which can be applied in 
plane xOz.

Let us note that if the moment is located in a plane other than the 
principal plane, for example, parallel to the flange of the angle sec
tion, then the bending of the beam will not be uni-planar, and the 
strength condition will be different (§ 120).

C H A PTER 13

Shearing and Principal Stresses in Beams
§ 74. Shearing Stresses in a Beam of Rectangular 

Section

Let us try to determine, first of all, the shearing stresses in sections 
perpendicular to the beam axis when the sections are rectangles 
(Fig. 177).

* in this example we do not account for the additional normal stresses which 
appear due to restrained torsion.
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Suppose a positive shearing force Q acts in a section when the beam 
is subjected to bending. Let us make the following assumptions re
garding shearing stresses x in this section:

(I) alt shearing stresses in the section act parallel to the shearing 
force Q, which is the resultant of the former;

(2) shearing stresses acting in planes which are located at the same 
distance z from the neutral axis are equal in magnitude.

Both these assumptions were put forward by D. I. Zhuravskii. 
The theory of elasticity reveals that the assumptions are valid for 
rectangular beams if the height of the beam is greater than its width.

We shall now try to calculate the shearing stresses and ascertain 
the law of distribution of shearing stresses along the height of section.

Let us consider a beam loaded by a number of forces (Fig. 178). 
Let us isolate a part of length dx cut out by sections /-/ and 2-2. It 
will be assumed that section 2 - 2  on the right side of the cutout portion 
experiences shearing stresses x, which give resultant shearing force Q 
acting downwards, then on the other side section /-/ will experience 
shearing stresses acting upwards, which also give a resultant shearing
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force Q. It is quite natural that in the absence of distributed load on 
the isolated part of the beam, the shearing forces should be equal in 
magnitude. Sections /-/ and 2 - 2  will also experience normal stresses 
which, however, are not shown here.

According to the law of complementary shearing stresses (Chap* 
ter 6, formula (6.8)), similar shearing stresses should be expected to 
act in planes parallel to the neutral layer. Therefore, if we take two 
horizontal sections of the beam at dis
tances z and z+dz front the neutral axis 
and isolate an element of sides b, dx, 
and dz (Fig. 179), then the vertical faces 
of this element will experience shear
ing stresses x, whereas the horizon
tal faces will be acted upon by equal 
but opposite shearing stresses t \

As the fibres parallel to the axis of 
the beam do not press on each other 
in the process of deformation, the sec
tions of the beam parallel to the neut
ral layer do not experience any normal 
stresses. Therefore, instead of determin
ing the shearing stresses x  over the 
beam cross section, we shall determine 
equal stresses t '  acting in a plane pa
rallel to the neutral layer (Fig. 180).

At first it seems strange that shear
ing stresses appear in planes paral
lel to the neutral layer. However, we 
can explain this phenomenon with the 
following example.

Let us suppose that the beam con
sists of two identical rectangular rods 
placed over one another (Fig. 181(a)); 
the friction between the rods may oe 
ignored, it is assumed that the beam 
bends under the action of at least one force P acting in the middle or 
the span. The bent beam is shown in Fig. 181(6) in a highly magni
fied scale. The lower fibres of the upper beam AiBy stretch, where
as the upper fibres of the lower beam A 2 B2  shorten as compared 
to their initial length AB.

If the beam were a single rod, it would have bent as shown in Fig. 
181(c). Fibres AB would be in the neutral layer and would not have 
changed their lengths. Therefore in bending of a solid beam, shearing 
stresses r / preventing the upper and lower halves of the beam from 
shear along the neutral layer are transmitted from the upper half to 
the lower through the neutral layer, and vice versa (Fig. 181(d)).



266 Bending. Strength of Beam [Part IV

Figure 182 shows a part of the facade of a rectangular beam sub
jected to uni-planar bending. Let us draw two very close sections 
/- / and 2 - 2  at a distance dx from each other. Let us also draw a hori
zontal section at a distance z from the neutral layer.

Thus, we shall be able to isolate from the beam an element ABCD 
having sides dx, h/2 —z, and b. An axonometric projection of the ele
ment is shown in Fig. 182. Let M be the bending moment in section

Fig. 182

I ‘I, and M+dM  in tf|e adjacent section 2-2. The side faces of the 
element will be acted upon by normal stresses a which are lower to 
the left and greater to the right. The horizontal section will experience 
shearing stresses x'=x.

We have not shown in the diagram the shearing stresses x acting 
in sections 1 - 1  and 2 - 2  because they do not enter the condition of 
equilibrium of the isolated element, which is obtained by equating 
to zero the sum of the projections of ail the forces on the axis of the 
beam.

To obtain the condition of equilibrium of the isolated element, we 
must calculate all those forces acting on it which are parallel to the 
axis of the beam. The elementary shearing force dT  on the elementary 
area bdx  is

dT = xbdx
The normal stresses acting on an infinitely small area dA of the side 

face at a height Zi from the neutral axis are
Me.

The force dNt acting on this area is

d N ,= ^ - d A
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The whole of the side face AD is acted upon by a force Nx (Fig. 183):

At Ai

Integral $ zxdA is the static moment about the neutral y-axis of

the part of section GFAD enclosed between the section at a height h 
and the edge of the beam (Fig. 184). Let us denote it by S£. Thus,

a ;  m s V / i o  nNi ~ - j f "  03.1)

Identically face BC of the element is acted upon by a force

AV (M+dM)S% (13.2)

The difference of the normal forces

Nt - N x dM S«

when projected on axis Ox (Fig. 183) is balanced by the shearing force 
dT. Therefore

But therefore

(13.3)

implying thereby that this formula represents the shearing stress at 
height z in a section perpendicular to the axis of the beam.

V C 
Fig. 183

k ____ k
t
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Fig. 184

Let us derive the formula for Sj} for a rectangular beam (Fig. 184) 
of height h and width b. The static moment of area GFAD about axis 
OiOt is equal to the area multiplied by distance zh of its centre of gra-
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vity from axis OiOi. The area of GFAD is equal to

and distance z* is 

Hence

SS = K t - z) t (t + j)= T 1(1-|? -)  03.4>
While computing the static moment of the area of a section it is 

immaterial whether we take the portion of section which is below the 
level 2 or the bigger portion, because both the static moments are

Fig. 185

equal in magnitude. Generally, we take the static moment of the 
portion which is easier to compute. Since for a rectangle *///= -jy» 
formula (13.3) lakes the form

Q W i 2 /  42* \  3 Q / .  4z» \
M F ¥ \  h* 2WT\ ~Kr ) * 13‘5)

Hence, shearing stress t  changes along the height of the rectangular 
section according to a parabolic law. The shearing stress vanishes at
the lower and upper ends of the. section where z = ±  ; this is in strict
conformity with the law of complementary shearing stresses. It at
tains maximum value on the neutral axis (where the normal stress is 
zero) where z = 0, and in the section where Q(A)=Qm, x:

r  — -,na* — 2 ~ W (13 .G )
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Thus, the maximum shearing stress in a rectangular section is 1.5 
times greater than its average value. Figure 185 shows the distribution 
of shearing stresses when the shearing force is positive.

Shearing stresses somewhat distort the accepted picture of defor
mation of a beam. We had assumed that under the action of bending 
moments the cross sections of a beam turn w.r.t. each other, although 
they continue to remain planes (Fig. 186(a)). Due to shearing stresses 
the elements of the material enclosed between two sections warp.

nr n?

ri
m  *  B< *  

Fig. 186

In accordance with the variation in the value of the shearing stress, 
the warping increases from the edges of the beam towards the neutral 
axis. Therefore the sections are deformed (Fig. 186(6)). However, 
warping has almost no effect on the deformation of the fibres along
the beam, therefore formula cr= ^  can be used even if a shearing
force is acting on the beam.

Thus, in addition to the strength check for maximum normal stres
ses (11.15)

a*., = -> *■ <  l«J

we must check the strength of the material for maximum shearing 
stresses

T „ „ = 2 5 ^ < [ t J (13.7)

We shall solve a numerical example to get an idea of the order of 
the magnitude of x in rectangular beams.

Let us determine the maximum normal and shearing stresses for 
a rectangular beam with the following data: the beam lies on two 
supports and over its total length 1 = 4 m takes a uniform load of in
tensity <7=1.2 If/in; Afmax—2.4 tf-m; <?max=2.4 tf; /i=27 cm; 6=



— 18 cm; [a]=110 kgf/cm*; lr]=22 kgf/cm*.

oOTtx =» —109-5 kgf/cm* <  110 kgf/cm*

W = ^ = s ! i f - T 3 = 7 . 5 k g f / c m ’ <  22kgf/cm>
We see that a rectangular beam designed to take the maximum nor

mal stress equal to the permissible remains highly understressed as 
far as the shearing stresses are concerned.

However, in practice we may come across just the reverse case; it 
may occur when the shearing force is large whereas the bending mo
ment is small. In such cases of loading, even in a rectangular section 
the decisive part in determining the dimensions of the beam is played 
by the shearing stresses.

The formula for shearing stresses in a rectangular section was first 
derived by the Russian engineer D. I. Zhuravskii when he was de
signing wooden bridges for the St. Petersburg-Moscow railway line 
in 1885. Zhuravskii employed a slightly different and more compli
cated method in obtaining this formula without using the relation 
AM
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§ 75. Shearing Stresses In I-beams
As the sections of I- and T-beams may be considered as consisting 

of rectangles, then with a certain degree of approximation the for
mulas derived for rectangular sections in § 74 may be applied to these 
sections too. The shearing stresses in a point at a distance z from the 
neutral axis may, for an I-section (Fig. 187), be expressed by the 
same formula

x = ^ L  n s  si

Here Sf is the static moment of the area enclosed between level z 
and the edge of the beam about the neutral y-axis. As for the quantity 
b(z), the width of the section, it has been written as a function of z 
to emphasize that in the denominator of formula (13.3) the width 
at level z should be used. If we examine the derivation of formula
(13.3), we see that b is the multiplier in the term t b dx, i.e. it is the 
lateral dimension of the area which is being acted upon by the stress x \ 
Thus b is the width of the beam at level z. Therefore, when applying 
formula (13.3) to an I-section for calculating the shearing stresses in 
web sections, instead of b(z) web thickness bw should be used. Static 
moment may be computed as the sum of static moments of the two 
rectangles hatched in Fig. 187(a). Upon computation we get

*w
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It is evident from the formula that along the web height the shear
ing stresses vary by a parabolic law (Fig. 187(6)) and become maxi
mum on the neutral axis of the section.

Formula (13.3) cannot be used for calculating shearing stresses in 
the portions lying in the flanges of the I-section, because these stresses 
are far from being equal along the flange width. In the area around 
the z-axis they may be assumed to vary approximately as shown by 
dotted lines in Fig. 187(6). However, in the remaining area of the

Fig. 187 Fig. 188

flange, i.e. along almost the whole of flange width, they vary as shown 
in Fig. 188 and do not achieve large magnitudes due to the conditions 
on the flange surface and the law of complementary shearing stresses.

Knowing now the laws of distribution of normal and shearing 
stresses along the height of I-section, we can draw the following con
clusion about the working of an I-section.

The flanges of an I-section, being located at a considerable distance 
from the neutral axis, experience over their whole area normal stresses 
that are maximum or close to maximum. Shearing stresses in the 
flanges of an I-section are negligible.

As we move towards the neutral axis, the normal stresses in the 
web of the I-section tend to zero. Within web limits the static moment 
S£ does not change much for various values of z. Therefore shearing 
stresses along the web height are sufficiently large (see the curve in 
Fig. 187(6)). In short, it may be summarized that the flanges of an 
I-section bear normal stresses, and the web bears shearing stresses.

Let us check the shear strength of a beam acted upon by a shearing 
fpree Q=2A If, assuming the permissible shearing stress 1x1=1000 
kgf/cma. The section is shown in Fig. 189. From Table I of Appendix 
we find 7=1290 cm4. The static moment of half of the section is 

81*4 cm3= S 3. For calculating the stresses at point 2  the static 
moment can be found by subtracting the static moment of half of 
the web from Smax:

$2 =  81.4—0.5x0.51 x8.19* =  81.4— 17.1 =64.3 cm3
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The shearing stresses are

t j  =  0, t 8 =  =3 236 kgf/cma

t ,  « ^  »  297 kgf/cm*

The diagram of distribution of shearing stresses along the I-section 
height is shown in Fig. 189. It can be seen from the diagram that the

maximum shearing stress is con
siderably less than the permis
sible which may be attributed to 
the large thickness of the web in 
the rolled profile. Much belter 
utilization of metal can be 
achieved in composite beams 
(see § 80), riveted and welded.

Let us determine that fraction 
of the shearing force which is 
taken up by the web. For this we 
multiply theordinatesof theshear- 
ing-stress diagram by the area of 
the web of I-section: 236x0.51 X 
X 16.38 -f (297 — 236) X 0.51 X

X l6 .3 8 x y  =2312 kgf, which comprises 96% of the total shearing
force.

The method of determining shearing stresses in an I-beam which 
has been explained here may also be used for other sections made of 
rectangles: hollow rectangular section, T-section, etc.

§ 76. Shearing Stresses in Beams of Circular 
and Ring Sections

Let us consider a beam of circular section. In this beam the shear
ing stresses can no more be parallel to the shearing force. If there 
are no forces acting on the side surface of the beam, the shearing 
stresses on elementary areas t  and 2  in the vicinity of section contour 
must act along the tangent to the section contour (Fig. 190(a)). These 
tangents will intersect the line of action of the shearing force at 
point C. Since shearing force <? is the resultant of shearing stresses 
(Fig. 190), the shearing stresses on arbitrary elementary areas 3 and 4 
at the same distance z  from the horizontal diameter act along the line 
passing through the same point C. Each of these shearing stresses x 
may be broken into two components: vertical x* and horizontal xt. 
The horizontal components in the left and right halves of the section 
balance each other, whereas the vertical components add up into

Fig. 189
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shearing force Q. Hence, in round beams vertical stress components 
play the same role as the total stresses t  in rectangular beams. 
We can thus apply formula (13.3) to round sections too, but it will

give us only the vertical component of shearing stress at an arbitrary 
point. In subsequent discussion we shall write x instead of

Here, as in the previous case, S® is the static moment of the area 
between the edge of the section and level z and is expressed by the 
formula

It is more convenient to introduce a new variable, angle q>,j, in 
computing the static moment; if r is the radius of the section, then

z — r sin <p„ a, =  r sin <pzl, b fo) =  2 r cos 
dzx= r cos<pzl d<pzl, b (a) =  2rcos<p*

We shall limit ourselves to determining x^,*:

Fig 190

Sy ~  $ z\ dA =  J zxb fo) dzx
A A

T“a*
n/2

(13.7)

^rnax* $ 2r cos q>zlr sin cpzlr cos <pzl dyti
o

2r*
T

tO—3310

(13.9)
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Since J=  and bz=0 = d= 2 r, we get
Q X 2ra X 4 4Q 
3 X 2rnr* = 3 n rI

Thus, for a circular section
-  . 1  Q

max 3 nr* (13.10)

i.e. Tmax 's *-33 times greater than the mean value of r.
Even in rectangular sections, where Tmax is i.5 times greater than 

the mean value, check for shear strength is often not required and this 
is all the more so for circular sections. It should, however, be noted 
that shearing stresses may be of a considerably higher magnitude in 
pipe-section beams.

Example. Find the maximum shearing stress in an iron pipe of 
external diameter d=*10 cm and wall thickness f= l  cm; Qn>ax= 2  tf.

Maximum shearing stress occurs in points of the neutral layer and 
is expressed by the formula

"̂ aiax 0 .max*-1 max 
Jyb (13.7)

here J y is the moment of inertia of the pipe section; Sma!{ is the static 
moment of the semicircular ring, b—'2 t is the double thickness of the 
pipe wall.

'» =  “ " V ( '  + - £ r ) «  " ' l l  (1S.U)

where r9  is the mean pipe radius.
The static moment of a semicircular ring is equal to the difference 

of the static moments about the diameter of the inner and outer semi
circles; the static moment of a semicircle is expressed by the formula

S ( r ) = ^ ~  (13.9)

The required static moment of the semicircular ring is

[ (r . +  4 - ) * - ( r ,— f  )*] = 2 rV  [l + ^ > ] « 2 r * (  (13.12)

Therefore
Qx2r\t 

2/ x  Jirit
Q

nr ft
20 _  2 X 2000 

n  X 9 x  1 =  141.4 kgf/cm9

The maximum shearing stress in a semicircular ring is twice the 
mean stress. Let us recapitulate that this ratio is 1.5 for a rectangular 
section and 1.33 for a solid circular section.
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§ 77. Strength Check for Principal Stresses
In the previous discussion we worked out two criteria for checking 

the strength of beams under bending under normal stresses (11.15) 
and shearing stresses (13.7):

We shall consider the elements of beams whose strength may be 
checked by these formulas.

Figure 191 shows a part of the front view of the beam being analyzed 
in the sections of maximum bending moment and maximum shearing 
force. The diagram shows the elements whose strength is checked by

conditions (11.15) and (13.7). The first formula is used for elements 
located near the top and bottom edges of the section with Afmax. These 
elements are subjected to simple tension or compression. The second 
condition, (13.7), applies to an element located near the neutral axis 
with Qmax; this element experiences pure shear.

Thus, when checking the strength of the beam under normal and 
shearing stresses according to the universally accepted method of 
stress analysis, we actually check the strength of material in three 
elements shown in Fig. 191.

Generally speaking, it cannot be said with certainty that these 
three elements are the maximally loaded. Therefore, we must learn 
how to check the strength of every element of the beam taken in an 
arbitrary section at a distance z from the neutral axis. Only then can 
we be sure of defining the maximally loaded element and eheck its 
strength.

(11.15)

(13.7)

&mox

Fig. 191 Fig. 192

10*
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Let us take an element of the material (Fig. 192) in an arbitrary 
section at a distance z from the neutral layer. The faces of this element 
perpendicular to the axis of the beam will be acted upon by normal 
stresses a, whereas shearing stresses x will act on all the four side 
faces. The front faces of the element will be free of stresses.

Stresses a and t  may be expressed by the following formulas:
a-HHi

J  ’ U T

where M is the bending moment, and Q the shearing force in the isolat
ed element.

Let us consider the case when both a and t  are positive. We shall 
have to take recourse to the theories of strength to check the strength 
of the element because it is in a compound stressed state; the computa
tions must be started by calculating the principal stresses.

As the front face A BCD of the element (Fig. 192) and faces parallel 
to it do not experience shearing stresses, they must lie in one of the 
principal planes. The principal stress acting in this plane is zero, 
because the plane is free of normal stresses. Thus, we are to study a 
problem of plane stressed state.

Our aim now is to determine the remaining two principal stresses 
knowing the normal and shearing stresses in two mutually perpendi
cular planes, one of which is parallel and the other perpendicular to 
the axis of the beam (Fig. 191). We solved an identical problem in 
§32 by plotting the stress circle. There the method was applied to 
the more general case of a stressed state, where two mutually perpen
dicular planes with normals a and p are acted upon by stresses ca , 

anc  ̂ Tp==—T<*- this Pr°klern we shall attribute index a
to the face of the element perpendicular to the axis of the beam, and 
index f) to the face parallel to the axis (Fig. 193).

Let u$ lay off from point 0  the segment OKat representing c^-rr, 
in the positive direction and another segment KaDa equal to x on
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the perpendicular to the o-axis at point Point Da on the stress 
circle corresponds to the plane perpendicular to Ihe axis of the beam.

In a plane parallel to the axis of the beam Op=0; this means that 
point Kf, coincides with point 0. Segment KpDfi laid off downwards 
represents the shearing stress xp=—x and gives the second point on 
the circle, Dp. Joining the two points we get the centre of the circle, 
point C, and the radii CDa and CDp. After plotting the circle we get 
segments OA and OB representing the principal stresses, which re
main to be determined. It is evident from the drawing that these 
stresses have different signs. Therefore, the numbering of principal 
stresses may be done as follows:

a l = ' 0 A >  0, cr2 — 0, a3 — O B < 0

Making use of formula (6.13) given in §32, we get

V o‘ +  4t* =4-1° +  y ^ + T F I  

a, —f V 4- 4t* ■= i  I(-o -  V o* +  4t*| 
a8= 0

The formulas for <r, and <r3 may be written in an integrated form as 

5  } = 4 |0 ± V o *  +  ‘l f |  (13.13)

We have plotted the stress circle and computed the stresses on the 
assumption that both o and x are positive. If any of Ihe stresses is 
negative, then the corresponding sign in formula (13.13) should be 
changed. A similar change would also have been essential in graphic 
determination of <r, and or3 by plotting the stress circle.

Knowing all the three principal stresses, we can write down the 
conditions of analysis for all the theories of strength.

According to the first theory, the theory of maximum normal 
stresses,

® ,<[o]. or | [ a  +  | / o-- +  4 i< |< [o] (13.14)

According to the second theory, the theory of maximum strain,
[c1-i»(fft + (ji)K [ff]

Putting the values of <rx, or*, and a, we gel

[ y  (<r +  ]/ o2 +  4x2) —y  p (<r—V o* +  4x4)] <  [o]

Assuming )i=0.3, wre find
[0.35o +  0.65 y V + 4 t» ]  ^  [a] (13.15)
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According to the third theory, the theory of maximum shearing 
stresses,

[oi—o3]< [a ]
or

4  |o +  V o* +  4t« _ o +  (/<!* +  4t*J <  [o]

which yields
/< j24-4x*<[a] (13.16)

Finally, according to the fourth theory, the theory of maximum po
tential energy’ of distortion, we have

[<«i—og* +  (of,—o,)* +  (<J3—o,)*J <  2 [a]1
wherefrom

V  a * + 4 t* ) ’ -f(o  — V ^  +  W )'  4- (21/o*  +  4t*)*] <  2 [<j]‘

After simplification we get
[o* +  3t*K {>J4, |/<r2 +  3Ta < fc )  (13 17)

Now we shall try to find the points of the beam in which its strength 
for principal stresses should be checked.

As the reduced stress depends both upon a and t ,  the strength check 
should be carried out for those elements of the beam which simulta

neously experience maximum cr and t. This is possible if the following 
two conditions are fulfilled for the element:

(1) Bending moment and shearing force are maximum in the same 
section.

(2) Beam width changes sharply near the edges of the section (for 
example in an I- or a box section). The bending-moment and shearing- 
force diagrams for such a section (Fig. 194) reveal that the shearing 
and normal stresses near the region where the flange becomes the web 
are close to maximum (points a and b).
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Thus, the two above conditions determine whether an additional 
strength check is necessary and also determine the element where 
this check should be carried out. In the cases where these conditions 
are not satisfied, we limit ourselves to selecting a few points where 
the maximum reduced stresses can occur. As for selecting lhe proper 
formula for analysis, the best, of course, is the one based on the theory 
of maximum distortion energy (13.17).

Fig. 195 Fig. 196

In practice, however, the theory of maximum normal stresses 
(13.14) is still used in the analysis of beams, because it often gives 
smaller dimensions of the section.

Example. A simply supported beam AB (Fig. 195) is loaded by 
symmetrically acting forces P = 6.4 tf located at distances n=50 cm 
from the supports; the permissible stress is lol=1400 kgf/cma. Select 
an I-section and check its strength in the region of transition from 
flange to web.

The maximum values of Af and Q occur in the same section under 
the load:

Mmax = P a ~ 0 .5x6.4=»3.2 tf-m 
QW*X = P = 6.4 tf

The required section modulus is
r _ A W - 320 000 220

[oj 1400 m

We should take an I-beam No. 22 having 1F=232 cm3; /=2550cm4. 
The dimensions of the c f o s s  section have been schematically shown 
in Fig. 196. For the selected section

320000
232 =  1380 kgf/cm*232
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An additional strength check should be carried out for z—10.13 cm; 
at this height

<r 320000x10.13 
2850 =  1271 kgfcm*

The static moment of the flange is
S ' -  11 x 0.87 X 10.565= 101 cm*

The shearing stress is
0400x  101 k c m 2
0.54x 2530 W  KgI

The strength condition according to the first theory of strength (13.14) 
is

i f 1271 -f-F 1271*-f- 4x469* | =  1426 kgf/cm* >  1400 kgf/cm*

The strength condition according to the fourth theory of strength
(13.17) is

Y  12719 -|- 3 X469s •= 1510 kgf/cm* >  1400 kgf.cm2
As the reduced stress according to the fourth theory is 8ao greater 

than the permissible stress, the dimensions of the I-scction should 
be increased by taking an l-beam No. 22a. After computations we 
get for this section om,ix=1260 kgfcm®, and for 2= 10.11 cm, a— 
=  1158 kgf cm* and t=442 kgf cm*. The reduced stress according to 
the first theory is 1329 kgf cm®, and according to the fourth theory of 
strength, 1423 kgf/cm-.

§ 78. Directions of the Principal Stresses
In the preceding section we determined only the magnitude of the 

principal stresses for an arbitrarily selected element without con
cerning ourselves with their direction. The results obtained were good

Fig. 197
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enough for materials which have equal resistance to tension and 
compression. For materials like reinforced concrete, however, it is 
extremely important to know the direction of tensile stresses in every 
point so that we can place the reinforcement rods in this direction.

The direction of the principal stresses may be determined with 
the hetp of the stress circle (Fig. 197). Suppose a« and t*. acting in 
a plane perpendicular to the axis of the beam, are positive;
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and

After plotting the stress circle we see that the relative position of 
the lines of action of stress <ra and the maximum (algebraically) prin
cipal stress Oj is the same as the relative position of line BDa and 
the x-axis; the latter two make an angle a  in the stress circle (Fig. 197). 
To mark the direction of Oi on the drawing we must lay off angle a  
from the direction of <ra clockwise.

The principal stresses change their direction within the limits of 
the section. Near the edges of the beam one of the principal stresses

is zero, whereas the other is directed parallel to the axis of the beam; 
at the neutral layer the principal stresses make an angle of 45° with 
the axis of the beam.

Figure 198 shows the stress circles and directions of the principal 
stresses in various points of the section. It is assumed that the bending 
moment and shearing force in the section are positive.

Having obtained the directions of the principal stresses in an ar
bitrary point of the given section, we continue one of the lines till 
it intersects the adjacent section. We determine the direction of the 
principal stress in this new point and continue the line till it inter
sects the next section. We thus obtain a broken line which in the limit 
changes into a curve the tangent to which coincides with the direc
tion of the principal stress in the point under consideration. This 
curve is known as the trajectory of the principal stress. The directions 
of the trajectories of principal stresses depend upon the type of load
ing and the working conditions of the beam. We can draw two tra
jectories of principal stresses through every point of the beam—one 
for the tensile stresses and the other for compressive stresses. The tra-

Fig. 199
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jectories for compressive stresses are shown by dotted lines and those 
for the tensile stresses by solid lines (Fig. 199, the middle drawing).

The reinforcement in reinforced concrete beams should be placed 
in such a way that it is located approximately in the direction of 
the trajectory of the principal tensile stresses (Fig. 199, the lower 
drawing).

Theoretical investigations on principal stresses in bending that give 
the present-day design formulas were first carried out by N. A. Bele- 
lyubskii in connection with the design of bridge beams (his results 
were published in 1870-76). In his works principal stresses were called 
“oblique stresses".

CHAPTER 14

Shear Centre. Composite Beams

§ 79. Shearing Stresses Parallel to the Neutral Axis.
Concept of Shear Centre

A. Beams of thin-walled sections experience shearing stresses parallel 
to the //-axis in addition to shearing stresses parallel to shearing force 
Q, i.e. perpendicular to the neutral axis (y) that were discussed in 
§§74-76. The validity of this statement can be easily confirmed by 
considering the parallelepiped having sides AH —y, AB=tf and 
BC=dx (Fig. 200(a) and (6)) which is isolated from, say, the flange 
of an I-sectioii by sections 1-1 and 2-2 and plane ABCD parallel to 
plane xz.

Let us assume that bending moment M X-=M in section 1-1 is less 
than the bending moment M2=M+dAf in section 2-2. The resultant 
Ni of internal normal forces acting on the front face (ABGH) of the 
parallelepiped will be less than the resultant /V2of the normal forces 
on the rear face (Fig. 200(c)). The difference between N 2 and A'i (see 
formulas (13.1) and (13.2)) is calculated by the formula

dN — N.l— N l (14.1)

where 5^ is the static moment about the neutral axis of area ABGH 
of the front face or a similar rear face where the internal normal 
stresses are summed up. The difference between Nt and Af, can be ba
lanced only by internal shearing stresses acting on face ABCD because 
the top, bottom and side faces of the parallelepiped, being external 
surfaces, are free from forces and there is no possibility of any addition
al forces appearing on the front and rear faces which could counter
balance the difference (Fig. 200(6) and (c)).
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Hence, on face ABCD of the parallelepiped we have shearing stres
ses and in accordance with the law of complementary shearing 
stresses similar stresses x, appear on face ABGH, j,e. in the cross 
section of the beam (Fig. 200(6) and (c)). On account of the fact that 
flange thickness tf and length dx of the isolated element are small 
quantities, these shearing stresses can be considered to be uniformly

distributed over the area of face ABCD. Consequently, the sura of 
elementary internal shearing forces acting here will be

dT —Xfljdx
The equilibrium condition of the isolated parallelepiped can be 

written as follows:
=  N t + d T —  N t = d T — <W«=0

or

wherefrom

Thus, Zhuravskii’s formula (13.3) can also b§ employed for shear
ing stresses parallel to the neutral axis in thin-wallcd sections if 
quantity b in the denominator is taken as the width of the layer in 
which shearing stress is calculated, irrespective of whether the thin- 
wailed section is assumed to be cut parallel or perpendicular to the 
neutral axis.
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In our case (with the assumption that N£>Ni) shearing stresses x t 
in the left half of the top flange act in the cross section from left to 
right. It can be easily seen that in the left half of the lower flange, 
where the normal stresses are compressive and as before la2|> |O i |,  
shearing stresses xf act in the opposite direction (Fig. 200(d)); in the 
right half of the top flange they act from right to left (Fig. 200(e)), 
whereas in the right half of the lower flange from left to right.

Fig. 201

rf -diagram

tei (W
Fig. 202

The shearing stresses in the flanges and web ol ihe thin-walled sec
tion form the so-called shearing stress “streaml,lies'', the streamlines 
for an 1-section are depicted in Fig. 201,

Let us write the expression for shearing stresses x t. One of the qu
antities in formula (14.2) is the static moment of the flange area 
hatched in Fig. 201:

h—~tf
= 'V o , =  ytj

Therefore
QSl <?(*—/ / ) * (14.3)

i.e. shearing stress x, varies linearly along the flange length (in for
mula (14.3) the ^-coordinate is to the first power). This stress becomes 
maximum when y —bi:

Q(h— t f)bi 
Vfflax — 2 J„ (14.4)

When &!<</<&!+/«:, the whole web of the I-section lies in the vertical 
section. The shearing stress is not distributed uniformly along the web 
height, therefore Zhuravskii’s formula cannot be employed for its 
calculation. The shearing-stress (xr ) diagram for I-section is shown 
in Fig. 201. The diagrams of shearing-stress distribution in the flan
ges and web of a channel section are depicted in Fig. 202(a); for a
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C-section, in Fig. 202(b). The shearing-stress streamlines are shown 
in the cross section for each of these profiles.

When the shearing stresses have to be determined in the flange 
of a closed thin-walled profile symmetrical about the axis of loading 
(a-axis), for instance, at point K of the flange of a box section (Fig. 203), 
then one imaginary section must pass through point K and the

other through a symmetrically lo
cated (with respect to the axis of 
loading) point /(,. In the numera
tor of formula (14.2) we introduce 
the static moment of the area of 
flange bounded by these two sections 
(the area is hatched in Fig. 203), 
and in the denominator the double 
thickness of the web (due to two 
sections). We obtain a formula for 
determining t , which is similar to 
formula (14.3). Figure 203 shows the 
shearing-stress diagrams in the flan
ge and the web and also the shear
ing-stress streamlines in the profile.

If the web or flange of the thin- 
walled section is inclined to the 

plane of loading at an angle a, then this circumstance must be taken 
into account while computing shearing stress by formulas (13.3) 
and/or (14.2) by introducing a factor cos a  in the denominator of these 
formulas. Let us assume that an equal leg angle section beam is loa
ded in the plane of symmetry zOx (Fig. 204). The sum of projections 
on the 2-axis of internal shearing forces, replaced in Fig. 204(a) by 
forces T, will be equal to 2T  cos a. As this sum of projections of the 
internal forces is equal to the shearing force Q,

Hence, shearing stress xf , which may be considered uniformly dis
tributed over the flange thickness, may be determined at some point 
K of the angle flange by the formula

T QSj _
f  J y t f  cos a  J y i j cosa  J y

where SJ is the static moment of the hatched area of the flange. Shear
ing stress xf is maximum at point N on the #-axis where u=umM=*
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/ >
= b-- 2 a — - f :

(H.5)

B. If we consider Figs. 201*203, we note that when the I- and box beams 
are loaded in the plane coinciding with the principal central plane 
of inertia xOy for xOz), which is also the plane of symmetry of the 
beam, the internal shearing forces give a resultant equal to shearing 
force Q and directed along the axis of symmetry of the section (the 
shearing-stress streamlines are, so to say, in equilibrium).

Fig. 204

However, if we consider channel, C- (Fig. 202(a) and (b))t T- (Fig. 
207), equal leg and unequal leg angle (Figs. 208 and 209) sections also 
loaded in the plane coinciding with the principal central plane of 
inertia, xOzt but which is not the plane of symmetry of the beam, 
the internal shearing forces in the sections give the aforementioned 
resultant and a force couple about the x-axis of the beam. This implies 
that the resultant of internal shearing forces of the section equal to 
the shearing force Q passes not through the centre of gravity C along 
the principal central axis of inertia Oz, but parallel to this axis 
through some other point in the section. The beam consequently 
experiences torsion in addition to uni-planar bending.

The point through which the resultant of all internal shearing for
ces of the section passes (the moment of all internal shearing forces 
of the section about this point is zero) is known as shear centre or 
flexural centre, and the line parallel to the x-axis and joining the shear 
centres of all sections of the beam is called the shear-centre line. Ob
viously, for the beam to experience only uni-planar bending without 
torsion of the thin-walled section, the plane of application of exter
nal forces must pass through the shear-centre line parallel to one of 
the principal central planes of inertia of the beam. This ensures ful
filment of the condition of equilibrium according to which the product
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f a

1

of inertia of the section about the line of loading and a perpendicular 
neutral line must be zero, i.e. the beam experiences uni-planar bend
ing. At the same time, the moment of external forces as well as the 
moment of internal shearing forces about the shear centre will be zero,

i.e. the beam will not be subjected 
to torsion.

Let us take the channel section 
(Fig. 205 and 206) as an example and 
explain how to determine the shear 
centre, point A. Neglecting the 
shearing stresses parallel to the axis 
in the flanges, we assume that in
ternal shearing forces in the walls 
of a channel section give a resul
tant approximately equal to shear
ing force Q and directed along the 
middle line of the wall. The resul
tants of internal shearing forces in 
the flanges, acting parallel to the 
neutral line of the section, will be 
denoted by T  and assumed to be ap
plied at the middle of flange thick

ness. Keeping in mind that shearing stress T/ in the flange varies li
nearly, with a maximum value according to formula (14.4) equal to

Say
ifL . H ,y r

JsM*
Fig. 205

Tfttax —‘
Q (h -if)bx

2/„

we may write the following expression for resultant Tz
T/ m a x  | - 0

Mi
Q<h-t/ibV/ 

4T„

The condition according to which the moment of all internal shear
ing forces in the channel section about the shear centre is equal to 
zero may be written as follows:

Q e - T { h — lf) = Q
wherefrom

T{h—tf) (h -tfp  b*t, 
3  “  4 y„ (14.6)

In the more complex cases the shear centre location can be deter
mined by special methods which are discussed in the theory of bend- 
in* and torsional deformations of thin-walled bars.
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Let us note that the shear centre coincides with the centre of grav
ity of the section if the latter has two axes of symmetry (Figs. 201, 
203). If the section has one axis of symmetry, the shear centre lies 
on this axis (Figs. 202, 207, 208). If the section consists of rectangles

whose middle lines intersect at one point, the shear centre lies at 
this point (Figs. 207, 208, 209). In these figures the shear centre is 
denoted by A, while / and U show the directions along which the 
loading leads to uni-planar bending of the beam without torsion.

§ 80. Riveted and Welded Beams

3

C

In the examples of selection of cross-sectional dimensions of beams 
which were discussed in preceding sections the required values of 
section moduli of I-beams were such that we were able to select 
rolled profiles in all the cases. The biggest rolled profile manufactured 
in the Soviet Union, the 1 section 
No. 60, has a section modulus of 
about 2560 cm’.

In practice, however, we often re
quire profiles of considerably bigger 
size. In such cases we use composite 
beam sections by riveting plates and 
angles or by welding plates.

A riveted beam (Fig, 210) consists 
of a vertical plate /, a number 
of pairs of horizontal plates 2  and 
angles 3. The angles and plates 
are joined by rivets. A welded 
beam (Fig. 211) consists of vertical 
and horizontal plates joined by
w elds. Fig. 210 Fig. 2U

1
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The design of welded and riveted beams is treated in the courses 
on metal structures. There it is pointed out how to determine beam 
dimensions if the maximum bending moment is known.* Given 
below is an example on checking the strength of a welded beam.

A schematic diagram of the beam, the forces acting on it, and the 
bending-moment and shearing-force diagrams are shown in Fig. 212.

r o o t ,  VM IP-IOtf
Htmnmmnnimmimmi

Fig. 212

The cross-sectional dimensions of the beam are given in Fig. 213. 
We have to check the strength of the beam as a whole and of the welded 
joints.

Let us calculate the moment of inertia of the whole section, working 
as a rigid one, about the principal x-axis:

I V 1943
/*  =  t  -1- 2 x 35 x 2 x 633 =  159 000 +  555 600=714 600 cm*

The section modulus
714600

64 — 11 160 cm8

The maximum normal stress in the beam at the middle of its span
-   Mmax
u inax

177.6x10*
i i 160 —1592 kgf/cm*

is less than the permissible stress which is 1600 kgf/cma.
The shearing stresses at the upper or lower ends of the web

• - 94xl08x  35 x2 x  63 
714600x1 =  580 kgf/cm*

* The design of riveied and welded beams has been treated in detail in the pre
vious editions of this book. See N. M. Belyaev, Strength of Materials, Nauka, Edi
tions 7-14 (in Russian).
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These shearing stresses will be taken up by a pair of welded seams 
(one on each side of the web) along planes /- / of dimension m each 
(Fig. 214). Therefore^ while calculating shearing stresses in the seams, 
thickness 2m of the two seams must be substituted in the denominator 
of the formula instead of bw . The minimum design thickness of the 
seams is taken equal to 0.4 cm. For this value of m the shearing 
stresses in the seams are

94xl0:,x35x2x63 
714600 x  2 X 0.4 =  725 kgf/cm*

or, what is the same

t, =  58o| |  =  580 ̂  =  725 kgf/cm*

These stresses do not exceed the permissible shearing stress for 
welded joints.

The joint may also be made by intermittent seams (Fig. 215). 
The shearing force acts over length a and is taken up by seams of

length c. Therefore, everything else remaining the same, the stresse
in intermittent seams (welded keys) will be times greater than
stresses in continuous seams of the same size. Now automatic welding 
of parts with continuous seams is generally used. Therefore, joints 
made with the help of intermittent seams are gradually becoming 
obsolete. The intermittent seams have the additional shortcoming 
that the beginning and end of each seam are pockets of local stress 
concentration, which is not taken into account by the design formulas.

The strength of the web should be checked against principal stresses 
at the base of the weld seam. This area will experience normal stresses 
of a considerable magnitude (from Af«= 174.2 t fm)  and shearing 
stresses which are just slightly less than 580 kgf/cm*. The combina
tion of these two stresses may considerably raise the principal and 
reduced stresses at this level.



PART V
Deformation of Beams 

Due to Bending

C H A PTER IS

Analytical Method 
of Determining Deformations

§ 81. Deflection and Rotation of Beam Sections
When external forces act in one of the principal planes of inertia 

of a beam, its axis is observed to bend in the same plane and uni- 
planar bending occurs.

In Fig. 216 the deformation of a beam rigidly fixed at one end and 
loaded at the other by a concentrated force is shown in an enlarged 
scale. The centre of gravity 0  of a section having abscissa x moves 
to Oi.

Displacement 0 0 { of the centre of gravity of a section in a direc
tion perpendicular to the axis of the beam is called the deflection of 
beam in the particular section or the deflection of the particular section 
of the beam. We shall denote deflection by y.

Strictly speaking, since the beam axis lies in the neutral layer it 
does not change its length and the displaced point 0, must be slightly

to a side from the perpendicular to the beam axis. However, deflection 
y is usually small as compared to the length of the beam and the dis
placement of the perpendicular to a side represents a small quantity 
in comparison with deflections; it is therefore neglected.

During deformation sections of the beam remain plane and turn 
w.r.t. their original position. In Fig. 217 sections O-Oi and B-Bi 
are shown before and after deformation.
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Angle 0 by which each section turns w.r.t. its original position 
is called the angle of rotation of Ute section. We must learn to calculate 
the deflection and angle of rotation in each section for practical ap- 
pi ication.

Maximum deflection can serve as a measure of the degree of distor
tion of the structure when it is acted upon by external forces. Gene
rally, to prevent the beam joints from loosening and to reduce vib
rations under a dynamic load the value of maximum deflection is 
restricted for a loaded beam. Thus, in steel beams, depending upon 
their designation, the maximum deflection should not exceed 1/1000- 
1/250 of the span.

Besides, we also require the value of deformation when solving 
statically indeterminate problems, in which the number of reactions 
is more than the number of equations of statics. The additional equa
tions can be written only by studying the deformation of the struc
ture. We must know how to calculate deflection y  and angle of rota
tion fl for every section in order to be able to determine the deforma
tion completely. Both y  and 0 are functions of x— Ihe distance of 
the section from the centre of coordinates; there is a definite relation 
between y and 0 in each section.

Let us decide upon a coordinate system, which we shall use in fu
ture. The centre of coordinates will be a point on the original posi
tion of the beam axis, which we shall always select as the A'-axis, 
and the y-axis shall be directed upwards, perpendicular to the beam 
axis before deformation. Under these conditions the equation

represents the equation of a curve along which the beam bends when 
it is loaded; it is the equation of ihe deflected axis of the beam.

The tangent to the deflected axis of the beam (Fig. 217) at point Oi 
makes an angle 0 with the x-axis, i.e. an angle equal to the angle of 
rotation of the section about its original position. On the other hand 
we know that Ihe tangent of the angle between the tangent to the 
curve y= f(x) and the x-axis is

Since in actual practice the deflection of a beam is generally small 
as compared to its span, angle 0 is also very small and generally does 
not exceed 1°. For such a small value of the angle we may consider 
that the tangent of the angle is equal to the angle expressed in radians. 
It ensues that

y = f(x ) (15.1)

(15.2)

(153)
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i.e. the angle of rotation of a section Is equal to the first derivative 
of the deflection in this section w.r.t. x.

Thus, the problem of studying the deformation of a beam narrows 
down to obtaining the equation of the deflected axis y~f(x); knowing 
the equation, we can calculate the angle of rotation in any section 
by differentiation.

§ 82. Differential Equation of the Deflected Axis

In order to obtain y as a function of x, we must establish a relation 
between the deformation of a beam due to external forces and its 
size and material. We had obtained such a relation before in § 63.

Let us make use of formula (11.10), which we had obtained while 
studying pure bending. Extending the formula over the general case 
of bending, i.e. neglecting the effect of the shearing force on defor
mation, we get the relation

I M ix)
<>1*5 e j

where p(x) is the radius of curvature of the deflected axis between two 
adjacent sections at a distance x from the centre of coordinates, M (x) 
is the bending moment in the same section, and EJ is the rigidity of 
the beam. Generally, the effect of Q(x) on the deformation of beam 
is not large; the method of taking into account its effect is given 
in § 108.

Figure 218 depicts the change in the radii of curvature as the bend
ing moment is increased. In order to obtain the equation of the de
flected axis we shall employ the mathematical relation between the 
radius of curvature of the axis and its coordinates x and y:

i
pt*> (15.4)

Putting this value of curvature in formula (11.10), we get 
a differential equation which relates y, x, M(x) and EJ:

1 2 M  (* )

Y
i - i “» y

3 EJ (15.5)

This is known as the differential equation of the deflected axis or 
quite often differential equation of the elastic curve.
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In a vast majority of practical cases we find that , represent
ing the angle of rotation of a section of the beam, is a very small 
quantity. Therefore, its square may be neglected in comparison to 
unity; consequently, equation (15.5) may be written in a simpler 
way:

or 05.6)

This relation is known as the approximate differential equation 
of the deflected axis.

The convention for the sign of bending moments is decided irres
pective of the direction of the coordinate axes; it is known that the 
second differential is positive if the concave side of the curve faces

Fig. 218 Fig. 219

the positive direction of the 0 -axis and negative if the convex side 
faces it (Fig. 219). Hence, the sign of the bending moment does not 
depend upon the location of the coordinate axes but the sign of the 
second differential does.

If the 0 -axis is directed upwards, then the positive sign should be 
used in equation (15.6); the negative sign should be used if the 0-axis 
is directed downwards.

In the future we shall always direct the 0 -axis upwards, and the 
differential equation (15.6) may be written as:

£ / g = M ( x )  (15.7)

The sign of the bending moment shall be selected according to the 
above convention.
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The deflection may be obtained from the differential equation of 
the deflected axis by integrating equation (15.7). Bending moment 
M (x) is a function of x\ therefore, upon integration we get

£7 jj* =  J  Af (x)dx-\-C

Integrating once again,
EJy =  J dx J At ix) d x ± C x ± D

Thus we get the following equation for the angle of rotation:

e “ C = Z 7 [ f M W ‘f c + C] (15.8)

and the following equation for deflection:

y = -gj \d x  JiVf (x )d x+ C x± D \ (15-9)

These equations have two constants of integration C and D. The 
method of calculating these constants will be shown in examples 
below.

Before we take up practical problems, we deem it necessary once 
again to emphasize that equation (15.7) is approximate; the error
that we allow by neglecting the quantity ( ^ j  in comparison to
unity is small only in those cases when the deformation of the beam is 
small in comparison with its size. If this condition is not satisfied, 
then the angles of rotation are found to be large enough so that their 
square cannot be ignored anymore; in such cases it becomes essential 
to integrate the whole of equation (15.5).

Examples of such cases are the deformation of thin springs and 
thin veneer and, generally, bending of flexible beams.

§ 83. Integration of the Differential Equation 
of the Deflected Axis of a Beam Fixed at 
One End

Consider a beam fixed at end A and loaded by a concentrated force 
P at the other end and a uniformly distributed force q along the whole 
length of the beam (Fig. 220); let I be the span of the beam. We shall 
designate point A as the centre of coordinates, direct the i/-axis up
wards and the x-axis towards the right. The differential equation 
of the deflected axis is:

EJy” = M (x)
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The bending moment in an arbitrary section at a distance x  from 
the centre of coordinates is

(JC)----- P ( l - x ) - q i = f £ -  (15.10)

£ ; / = - P ( < - * ) - < ?  (15.11)
We integrate this equation twice:

£ / » ' - - P  ( / * - £ ) —| ( f * * - « , +  y )  +  C (15.12)

W - - p { $ - r ) W { ¥ - J T + !t t ) + Cx + D <I3 I3 >
To determine C and D we must locate such sections of the beam 

where the deflection as well as the angle of rotation are known. One 
of these sections lies over support A\ in this section at x=0, 0
and y= 0. Putting these values first 
in equation (15.12) and then in 
(15.13), we get C=0 and D =0. It 
is evident from the expressions of 
deflection and angle of rotation that 
constants C and £>, when divided 
by rigidity EJ of the beam, give 
the corresponding values of angle 
of rotation and deflection in a sec
tion which lies at the origin of coor
dinates A. The constants C and D 
have the following dimensions:

[C] =  force x  (length)4 and 
|D] =  force X (length)3

The fact that the constants of 
integration are found to be zero is
a direct outcome of selecting the fixed end of the beam as the origin 
of coordinates. In plotting bending moment and shearing force diag
rams we measured abscissa x from the loaded end of the beam; here it 
is more expedient to measure x  from the fixed end to reduce the 
amount of calculations required to determine C and D\ this somewhat 
complicates the expression for M (x) but simplifies the determination 
of deformations. Having determined C and D, we can now transform 
the expressions for y  and 0 in such a manner so that the brackets con
tain only dimensionless numbers, which is helpful in calculating the 
deflection and angle of rotation:

(15.14)

(15.15)
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With the help of these expressions we can determine the maximum 
values of y  and 6. From the designer’s point of view the maximum 
absolute value of deflection y  is of greater interest; therefore, besides
the analytical maximum of function y  at 0=-^j--=O, we must also
And its value at the ends of the span. In the example under considera
tion the maximum deflection y  occurs at point B , where 0 is not zero. 
The analytical maximum of function y  is equal to zero at point A .

We shall denote the deflections in various sections by letter f  with 
an index showing the section in which it occurs. Thus at x = l

h — m ~ &  <l5-l6>
The minus sign shows that the deflection is in the downward direc
tion. Obviously, the maximum angle of rotation wilt occur in the 
same section; it will be

Pi* ql* 
2EJ 6 EJ (15.17)

The minus sign indicates that the section turns in the clockwise di
rection.

Both expressions (15.16) and (15.17) show the separate effect of P 
and q on the deflection and angle of rotation, respectively. When one 
of the forces is absent, the corresponding part of expression becomes 
zero.

To have an idea about the magnitude of deformation let us take 
P= 2 tf, <7=0.5 tf/m, 1=2 m, £=2x10° kgf/cm2, permissible stress 
[at—1400 kgf/cm2, and select an 1-beam from the specification table. 
The strength condition for the beam may be written as:

T  (2x2+0-5¥ )
W  [cr| MOO

10®
— =  357 cm8

From the standard table for I-beams (see Appendix) we And I-beam 
No. 27 having W = V \ cm8, 7=5010 cm4. The angle of rotation and 
deflection may be calculated as

-------

/* =  -

/2x2*
V 2
/ 2x 2s 
I  3

0.5
23’ 107
T 2 x l0 4 X 5010 

10*
radian

2xl0*x5010

215

— —0.G3 cm

The maximum deflection constitutes (0.63/200)=^ of the beam

span, while the square of the maximum angle of rotation
=  I '46 000, i.e. it is negligibly small as compared to unity in for
mula (15.5).
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§ 84. Integrating the Differential Equation of the 
Deflected Axis of a Simply Supported Beam

Let us find the deformation of a simply supported beam, loaded uni
formly by a continuous force q (Fig. 221). The origin of coordinates 
lies at the left support and the x-axis is directed towards the right. 
A distinguishing feature of this problem as compared to the previous

one is that the support reactions must be determined in order to find 
an expression for M (x).

From symmetry A = B = a n d  HA=0. We calculate In the fol
lowing order:

We know the following values of deflection: at support A , i.e. at 
x=0, deflection y = 0 , and at support £, i.e. at x= l, deflection y= 0. 

Applying formula (15.19) to section A first, we get:

Then applying it to section B, we get the following equation:

Fig. 221

B J%  = M{x), M(x) =  +  ^ x --2 |L  =  +  |( /x - x > )

D = 0

wherefrom
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The formulas for y  and may now be written as follows:

(*5.20)

In order to find the maximum deflection we must determine the 
section in which 0=0; from symmetry this must be the middle sec
tion. By p u ttin g y = y  in formula (15.20) we find that 0 =  -^  becomes 
zero; under these conditions:

r Sql*
/m a x  -  3 8 4 £ y

The maximum values of 0 occur at x=0 and x=l:

0 =  =n j £ _°max f  24CJ

In this example also we find that is the deflection of the beam
Q

at the origin of coordinates and -gj is the angle of rotation of the sec
tion at support A, which coincides with the origin of coordinates.

In all the above examples, if we direct the //-axis upwards and the 
X-axis towards the right, then a negative value of U corresponds to

F i g .  2 2 2

clockwise and a positive value corresponds to anticlockwise rotation 
of the section.

Let us determine the deformation in one more case of a simply sup
ported beam. Assume that the beam is acted upon by a moment Af 
at the right-hand support (Fig. 222). Reactions A and B give a mo
ment M and are equal to

, „ .Vf
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We assume the left-hand support to be the origin of coordinates; 
therefore

EJ  ̂ £5 =  M (x) — -f- Ax — + y  x

E J y ^ ^ + C x  +  D

The constants of integration are determined from the condition 
that the deflection at supports A and B is zero: al *=0 deflection

Mly= 0 , wherefrom D—0; at x= l deflection 0, wherefrom C = — g-. 
Therefore

• “ £ — <15-22>
Mix ( ,  *2\
GEJ \ l 10

The maximum deflection occurs in the section where ^  *=0, therefore

l _ 3 - j |  =  0

The abscissa of this section is

*„ =  y i  =  0.577I (15.23)

Maximum deflection is

f -  Mlxl / i  \ ______ Ml* Mt*
' g K T  E J \  3f* )  9 Y z  EJ ~  ~  M.6EJ

and deflection at the middle of the span is
£ Ml* r .  /a l  Ail*
" /* ~ “ T2e7L , “ 4PJ5“ “ TCE7

The deviation from the maximum deflection is of the order of 2.5%; 
thus even for such a highly unsymmetric loading as this we can with 
sufficient accuracy assume that'the maximum deflection in a simply 
supported beam occurs at the middle of the span.

§ 85. Method of Equating the Constants o! Integration 
of Differentia! Equations When the Beam Has a 
Number of Differently Loaded Portions

In the examples discussed above the beams were identically loaded 
along the whole length and there were two constants of integration, 
C and D. Every portion of new loading adds two constants of integra-
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tion and complicates solution of the problem if we do not follow Ihe 
rules which reduce the number of constants of integration to two, ir
respective of the number of differently loaded portions.

Let us consider a beam with three differently loaded portions 
(Fig. 223). Let us decide to have a common origin of coordinates for

,
A-

. i __>
( f r  B\ilium iiiiimmimrrntmTr

-ajj  ̂ ^  I 1 ft 7r/RTeH \11 1
---------------  S i ------------
*-----------------— / -------

* 1 —̂  1 -----------H
Fig. 223

all the port ions—at the left or right end of the beam—and while writ
ing the bending moment expression consider that portion which in
cludes the origin of coordinates.

Let F be the origin of coordinates. We write the equation of the 
deflected beam axis in the first portion and integrate it twice:

EJy\ = — Pxl

EJy[ = ~ Z f + C i  (15.24)

EJyi =  “  ̂ + Cxxt + Di (15.25)

The bending moment expression for the second portion should be 
written in such a way so that summands EJy", EJy ' and EJy coin
cide with identical quantities of the equations of the first portion in 
the boundary section (over support A). This will take place if (x—a), 
which represents the arm of the force that is absent in the first portion, 
is integrated with respect to d(x—a) or, in other words, without 
opening the brackets. Let us point out that x  is the abscissa of an ar
bitrary section of the portion under consideration; a  is the abscissa 
of the starting point of this portion.

Let us now write three equations for the second portion:

EJij, =  — Px, + A U , - a , ) _ ! I S jp E

= +  (15.26)

EJy, —  +C ,*, +  P , (15 27)

In the section at support A the angles of rotation computed from 
equations (15.24) and (15.26) must be equal, i.e. the beam axis must
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bend smoothly over support A. The deflections at the support, ca!* 
culated from equations (15.25) and (15.27), must also be equal. In 
other words, y\=y\ and yx=y 2  when Xi=x3 =at. From these conditions 
we find C1 —C2 —C and Dl=Da=D.

Let us now pass over to the third portion. There is no distributed 
load on this portion. In order to retain the bending moment expres
sions due to distributed load in their previous form, it is necessary 
to extend the distributed load of the second portion to the end of 
the beam and for compensating this extra load apply an identical 
load of opposite sign. These transformations will not disturb the equi
librium of the beam nor will they change the support reactions.

To ensure that the new load in the form of a concentrated moment 
M does not change the structure of the three equations of the third 
portion as compared to the second, moment M should be multiplied 
by (x~~a) to the power zero; this affects neither the units of the force, 
nor the conditions of equilibrium.

In the light of the above, let us now write the equation of the de
flected beam axis and integrate it twice:

E jy ;=  — P x ,+ A  + " ‘V **+ M (x .-a ,)"
*?»..»_ . A(Xy-at)* q{xa—axY
E Jy*= -----2— I-------2--------------6—

+  T (o -« J , + A ) f e _ a |)+ c>  (15.28)

c t  Pxl | .d(X»—fll)3 <?(xa- g | )4
CJ yt — g 1 G 24

+  M O r ,- - , ) ’ +  c A  +  D a (15.29)

At the boundary section (where M is applied) we have the following 
conditions for equating the constants of integration: y3 *=y* and y%—y 3  

when Xa=xa= a 4. Substituting the first of these conditions in equations 
(15.26) and (15.28), we find that Cs=Ca=C. Substituting the second 
condition in equations (15.27) and (15.29) we find Dt—D*=D.

The constants of integration are reduced to two: C and D. For 
determining these constants we employ the following conditions: 
deflection of beam at supports A and B is equal to zero, i.e. at xx=au 
i/i=0 and at x3 —l, y*=0. After substituting these conditions in equa
tions (15.25) and (15.29) we get the following two equations:

+  4 -0  =  0 (15.30)
Pi8 , A V -a i)*  4 f / - o i )«

<1 (1 - at)* .
24 r  2 fC / +  D =  0 (15.31)
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The values of C and D are obtained by simultaneous solution of equa
tions (15.30) and (15.31).

We considered all the three portions and wrote three equal ions for 
each of them to show how to reduce the number of constants of integ
ration to two: C and D. While solving other problems it is not at all 
necessary to again write all equations for each portion, it is sufficient 
to write three equations only for the portion which is farthest from 
the origin of coordinates. All summands of the right-hand side of 
the equations will pertain to this portion. At th:s stage it <s desirable 
to mark the summands which pertain to the previous portions. One 
of the ways of marking is shown in the next lines:

EJy'

E J y

2 Til.
, £*)" 

f>
i4(x—Q|P q jx — g,)4!

G T

M ix—na)| -f-C
i ■ 13

(15.32)

f ~ I  + C x+  D (15.33)
_____  la

Here C and D pertain to all the portions. Sometimes C, Cx and D 
are written in the beginning of the right-hand side of equations (15.32) 
and (15.33).

The method of equating the constants of integration was first pro
posed by R.F.A. Ciebsch.

§ 86. Method of Initial Parameters for Determining 
Displacements in Beams

If we take a careful look at the equations for angle of rotation (15.32) 
and deflection (15.33), obtained by Ciebsch’s method and discussed 
in the preceding section, we can note that load in the form of concent
rated moment M was respectively reflected in these equations as

Af (x—«) and M ~~c-a

The significance of the parentheses was earlier explained in §85. 
Let us recall that x is the abscissa of an arbitnry section in the por
tion of beam under consideration and a is the abscissa of the starting 
point of this portion.

Concentrated force P and support reaction A were reflected fn the 
same equations as

P(A---g)3
2

P(x— o)-» 
6and
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Uniformly distributed Force <7 entered the equations as
Q (*-<*)* an>i Pjx—a)*

6 a n a  24

It was mentioned in § S3 that the constants of integration C and D 
are angle of rotation (60) and deflection (y0)  at the origin of coordi
nates, respectively, multiplied by EJ. We may, therefore, write 
C—EJQ0 and D —EJyn.

Keeping in mind that in a beam having a number of differently 
loaded portions there may be a number of concentrated moments M, 
a number of concentrated Torces P and the .uniformly distributed force 
q may be acting on a number of portions, the equations for angle of 
rotation (15.32) and deflection (15.33) may be written in the following 
general form:

£./y' =  £ y e , + £ M ( * — +  +  (15.34)

(15.35)

This method of writing the displacement equations is known as 
the method of initial parameters, while the equations are called the 
general equations of the method of initial parameters.

This method was first mentioned in the works of Prof. N. P. Puzy- 
revskii and Academician A. N. Krvlov.

The application of this method will be illustrated in an example in 
the next section.

§ 87. Simply Supported Beam Unsymmetrically 
Loaded by a Force

Let us write the displacement equations (15.34) and (15.35) for the 
beam shown in Fig. 224 by the method of initial parameters:

EJy' -  £70, +  A P (15.36)

EJy  =  EJy 0 +  EJ% x+ A  (15.37)

According to the fhrst condition (at *=0, i/A=0) equation (15.37) 
changes into an identity: 0 -0 . The second condition (at x= l, </$=0) 
applied to equation (15.37) yields the following:

E je Ai +  A ^ - P ^  = 0

t l —3310
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After substituting A =  ~  and (/—a)s=b, we obtain the following 
expression for the initial parameter, the angle of rotation at support A:

Pb
QEJt ('*-*>*)

Knowing now the angle of rotation and deflection at the origin of 
coordinates and keeping in mind the above two substitutions, we re
write equations (15.36) and (15.37) in the final form:

W — f - I P - t ’l + x - - (15.38)

EJy = b') - f  t  (15.39)

As it has been assumed in Fig. 224 that a>b, the maximum deflec
tion will occur in the first portion between the middle of beam and 
point of application of force/*. Weshall therefore not include in further

calculations the last summands having the factor (x—a) as they per
tain to the second portion.

The angle of rotation is zero in the section of maximum deflection 
(at x—xc); therefore

E Jy '— t £ - < ( '- 6’) + - ^ = 0

wherefrom

(15.40)

Let us now calculate the maximum deflection in this section; 

6/ 6 1 3max

f Pb y j  Pbl* ^  Y
27E7l — 27EJ (15.41)
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If force P is shifted to the centre of the beam, i.e. if we take a= 6 =  
=*0-5/, the deflection in the section of application of force P becomes

,  Pi* / i c o n
------- h l x s -------!-TSB 7 <I5*42)

If, on the other hand, force P is shifted towards the right support 
so that in the limit b tends to zero, then for b-+Q

Xr  —  — 4 s r  =  0.577/ c VT

Thus, when force P is shifted from the middle of the beam to sup
port B, the point of maximum deflection changes its abscissa merely 
from 0.5/ to 0.577/ (Fig. 225) (see also formula (15.23)).

If force P acts as shown in Fig. 224, the deflection at the middle 
of span is

h i t— m r  <15-43>

By substituting the numerical values of ail the quantities in for
mulas (15.41) and (15.43) we can confirm that the difference between 
the magnitudes of the two deflections is very small, which makes it

Fig. 225

*1
I
I

possible to calculate the deflection for practical purposes at the middle 
of span without determining the location and magnitude of maximum 
deflection. This is valid in all those cases in which the bending mo
ment diagram is unique.

§ 88. Integrating the Differential Equation 
for a Hinged Beam

In the preceding examples the portions into which the beam was 
divided for writing the equation of the deflected axis corresponded 
to similar portions of the bending moment diagram. The continuity of 
the beam axis is broken by the hinge. Therefore, while integrating 
the equation of the deflected axis, the portion containing the hinge 
should be divided into two, although the bending moment equation 
is the same on both sides of the hinge. Only the deflections of the de

li*
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ments joined by a hinge are equal at the joint; the angles of rotation 
of the sections are different. Therefore the equation of the deflected 
axis is different for parts of the beam which are joined by a hinge.

Let us consider the beam shown in Fig. 226; there is a hinge in sec
tion C. To keep the calculations simple we shall load the beam only 
by a moment M acting in section B. The reaction B can be found

easily by equating to zero the sum of the moments of all forces (i.e B
and M) to the right of the hinge with respect to point C. We get B= ~ .

Reaction A may be determined by taking the projection on the ver
tical axis of all the forces acting on beam AC& (i.e. forces A and B).
We get A =  ~ . The reactive moment MA is equal to the sum of mo
ments of forces M and B about point A:

Let us select point A as the origin of coordinates. The bending mo
ment in any section of the beam between A and B can be expressed 
by the formula:

To obtain the equation of the deflected axis we must consider two 
portions, AC and CB. The differential equations and their integrals 
may be written as follows:

Fig. 226

First Portion Second Portion

+ C lX +  D. -{-CjX-j-Dj
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We have the following four conditions from which to determine the 
constants of integration:

in section A: ^ - = 0  and at **=0
in section C: y t = y 3 at x=~a 
in section B : y2  =  0 at x = a + l

From the first two conditions we gel:
C , *=i0, O 1 =  0

From the last two conditions we get:

( * -
iLi

M  r (rt-MF
/ l - i r -

<r>_\
2  ) -  I VO ) +  Cia +  

a (d I) “t~ Eit =  ®

wherefrom
^  M (a +  / ) * ( / - 2a) „  M(a+f )Ht-2a)o

0/2 • u z=‘

We shall explain the outlines of the solution for determining the 
deflection of the beam shown in Fig. 227.

The beam has six portions, therefore we get 12 constants of integra
tion when w’e write down equations for determining the deformations.

Fig. 227

It is evident that sections separating the different loaded portions, 
the supports and the hinges will give us the required 12 equations. 
The fixed end A gives two equations: the deflection equal to zero and 
angle of rotation equal to zero. The hinged end Ogives oneequation: 
deflection equal to zero. Hinges B and D give one equation each: 
the portions to the left and right of the hinge have equal deflection 
at the hinge.

Sections separating the differently loaded portions (section C, 
where the distributed load finishes, and section F, where the concent
rated force P is applied) give two equations each: the deflections of 
portions to the left and right of the section are equal and the angles 
of rotation of these portions are also equal. The hinged intermediate 
support E gives three equations: equality of the deflections, equality



of the angles of rotation and that both the deflections are zero in this 
section.

In Fig. 227 the number of equations that each section gives has been 
circumscribed.
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§ 89. Superposition of Forces

Hooke’s law is true not only for the beam materia! but for the beam 
as a whole; the deflections and angles of rotation are directly propor
tional to the external forces. This is a direct outcome of the linear 
relation between the bending moment and load, and the curvature 
and the bending moment. For a beam fixed rigidly at one end and 
loaded with a distributed force q and a concentrated force P acting 
at the free end the bending moment in a section at a distance x from 
the fixed end can be written as a function of force according to the 
following formula:

jM(x) =  — P (t— x)— q {±=££  (15.10)

The relationship between curvature and bending moment is also li
near:

E J $ £  =  M ( x ) ~ - [ P ( l - X) + 2 l ! - (15.11)

Therefore upon integration w.r.t. x  we get an expression for y  as a li
near function of external forces:

_  P ^ r  x l ql*x* r  4* v*l
QEJ / J~~24£7 T +  7r J

In cases of compound loading this result enables us to obtain the 
equation of the deflected axis by adding the ordinates of curves cor
responding to individual forces. This simplifies the computation of 
maximum deflection in some cases.

Let us study the application of the method of superposition of for
ces in determining the deformation of a cantilever’s end A of a single
span beam ABC (Fig. 228). By replacing the effect of the distributed
force q of cantilever AB on portion BC by a moment Af0—— ~ t
we can calculate the angle of rotation of the beam in section B by 
using formula (15.22) given in § 84:

ft _  Mpl qazl 
B ~  3£7 ~  U£7
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When section B rotates, the straight axis of cantilever AB  also bends 
by an angle 0fl and the deflection of the cantilever’s end A will be

f'A =  AA, =  —QBa= Mpla_ gto8
3EJ ~~ OCJ

Under the action of distributed force q  the cantilever does not re
main straight; it bends and acquires position AtJB (without, however, 
changing the angle of rotation 0B in section £), and the deflection at

Ai
h

Fig. 228 Fig. 229

end A of the cantilever can be expressed by the same formula which 
is employed for deflection of cantilever beams under bending (see 
§83, formula (15.16))

the total deflection of cantilever end A will be:
r _  t' j f "   Qlai <1°* _
lA lA - r /A  -ggy 8 f y 24 EJ

The displacements of hinged beams can also be determined by 
using the method of superposition of forces. For this the beam should 
be divided into the number of beams comprising it, each of these 
beams should be studied separately and then the individual dis
placements should be added up.

Thus, for example, the schematic diagram of the beam discussed 
In § 88 (Fig. 229(a)) may be replaced by the diagram shown in Fig. 
229(b). In this diagram the “suspended” beam CB is supported at its 
left end C by the right end C of the main beam >1C. The effect of the 
hinge may be replaced by forces C (Ffg. 229(a) and (d)).
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Force C can be determined by studying the equilibrium of beam 
CB; for this beam, force C is a passive force as it is the reaction of 
beam AC. An active force C of the same magnitude will act on beam 
j4C—this force is the pressure of beam CB on beam AC.

The deflection of beam CBy shown separately in Fig. 229(c), can be 
determined at any point. The deflection of beam AC may be deter
mined as shown in Fig. 229(d). Both these cases were discussed in 
§§ 83 and 84.

The deformation of beam ACB is shown in Fig. 229(c). Portion AC 
of beam ACB experiences the same deflection over its whole length, 
as beam A'C separately. The deflection of portion CB of beam ACB 
consists of two deflections: deflection fXl which is a component of 
deflection fc (directly proportional to the distance from point £),

and deflection f a, calculated for beam CB 
according to the schematic diagram in 
Fig. 229(c).

§ 90. Differential Relations in Bending

In §§ 57 and 82 we obtained differen
tial relations for continuous load q{x), 
shearing force Q(x), bending moment 
M (x), angle of rotation 0 and deflec
tion y:

m inim
UHLJ (11|W

Mm

i/itiiif.. Ilk

......... ....

dx

dy
dx£2 =  0

Fig. 230

After certain 
relations can be 
ing -sequence:

transformations these 
written in the follow-

dx*37 (EJy) =  EJ&

-  i f r ( £ ' e> = !  M t o = Q to  

=  «  W = 4 t o

From the equations it is evident that knowing force q (£) and the 
types of supports, we can obtain Q(x), M (x), EJQ and EJy  by succes
sive integration: conversely, knowing the equation of the deflected
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axis, by successive differentiation of EJy w.r.t. x we can obtain 
EJ.Q, M (a-), Q(x) and <?(*). In graphic representation of these relations 
we shajl lay off the positive values of the above quantities upwards 
and the negative values downwards; the positive direction of thex-axis 
will be towards the right, rotation; of the section in the clockwise di
rection will be considered negative and in the anticlockwise direction 
positive. Figure 230 contains diagrams depicting the taw of variation 
of all quantities, which characterize the bending of a hinged beam 
loaded with a non-uniform distributed force q (x) (the load is negative 
as it is acting downwards).

CHAPTER 16

Graph-analytic Method of Calculating 
Displacement in Bending

§ 91. Graph-analytic Method

The method, of integrating the differential equation of the deflected 
axis gives us equations of deflections and angles of rotation, with the 
help of which we can calculate the deflection and angle of rotation 
in any section of the beam..

In a number of problems (statically indeterminate beams, determi
nation of maximum deflection) it is sufficient to determine the de
flection and angle of rotation for a 
few definite sections. In such cases 
it is more appropriate to use the 
graph-analytic method. This method 
is based on the resemblance of differ
ential relations between deflection, 
bending moment and intensity of 
continuous load.

Imagine a beam with an arbitra
rily loading (Fig. 231). The differ
ential equation of the deflected 
axis of this beam may be written 
($82) as:

(16.1)

Below the beam we draw another 
beam of the same length loaded 
by an, as yet unknown, continuous force qj, the positive direction 
of which is taken upwards; we shall refrain from specifying the type 
of supports also and shall only point out that the support reactions 
must balance the external force qr. The second beam will be hereafter

m r

0 »

f i a k J
t 1 i

(,• T’T 'TvJ

Fig. 231
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mentioned as the fictitious beam; all quantities relating to this beam 
will be denoted with a symbol f. For this fictitious beam we shall de
termine the bending moment Mf in each section by integration, using 
the differential equation that correlates the bending moment with the 
intensity of the continuous force (§§ 57 and 90):

s r = < t / (16.2)

Let us compare equations (16.1) and (16.2). If we assume that
qf  = M(x)

i.e. if we load the fictitious beam with a fictitious force, which changes 
according to the bending moment of the real beam, then

d3 (EJy) (PM f  
dx* =  dxi

If in integration we can achieve equality of the constants of inte
gration on the left- and right-hand sides of the equation, i.e. Ct=Cr 
and £>*=£>„ we shall obtain

d(EJy) dMf  
dx 1=1 dx ' EJy — My

dMf
Considering that and solving these equations for y

and 6, we get the following formulas:

Sf =  | f  (16.3)

8 =  | f  (16.4)

Thus, deflection in the section of the real beam (due to the given 
load) is equal to the bending moment in the same sect ion of the ficti
tious beam (from the fictitious load), divided by the rigidity of the real 
beam. Similarly, the angle of rotation of the real beam (due to the 
given load) is equal to the shearing force in the same section of the 
fictitious beam (from the fictitious load), divided by the rigidity of 
the real beam.

In the analytical method of determining deformations, the constants 
of integration were found from boundary conditions, i.e. by equating 
to zero the deflections at the supports and equating the deformations in 
sections common to two adjoining portions of the beam.

In the method under discussion the equality of constants of integra
tion, while integrating equations (16.1) and (16.2), can be achieved 
by fixing the ends (or intermediate sections) of the fictitious beam in
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such a way so as to satisfy the following conditions, which directly 
ensue from expressions (16.3) and (16.4):

(1) if deflection f  of the real beam is zero, then the bending moment 
in the corresponding section of the fictitious beam must be zero;

(2) if the angle of rotation 0 of the real beam is zero, then the shearing 
force in the corresponding section of the fictitious beam must be zero;

(3) if the deflection and angle of rotation of the real beam are not 
equal to zero, then the corresponding bending moment Mf and shear
ing force Qf must also not be zero.

Table 13 contains conditions for all types of supports of the real beam 
and gives the constraints in corresponding sections of the fictitious 
beam, which satisfy the conditions of constraint of the real beam. 
In Fig. 232 are depicted the widely prevalent combinations of real 
and fictitious beams for statically determinate structures. In each 
pair any beam may be taken as the real, then the second automatically 
becomes fictitious; this can be easily checked with the help of Table 13.

Tabic 13
Conditions for Obtaining the Proper Fictitious Beam

Real beam F i c t i t i o u s  beam

Type of support Conditions 
for y  and 6

Required 
conditions 
for and
o ,

Constraints of the ficti
tious beam satisfying 
these conditions

Hinged support (no deflec
tion; rotation of section 
is possible)

# = o
0 * 0

M , = 0  
Q / f  0

Hinged support (no mo
ment; support reaction 
is possible)

Fixed end of the beam 
(no deflection and no 
rotation)

p = 0
0 = 0

A f,= 0
Q /= 0

Free end of the beam (no 
moment and no concen
trated force)

Free end of the beam 
(both deflection and ro
tation are possible)

y  -f 0 
8 * 0

Af; # 0
Q/j^O

Fixed end of the beam 
(both support reaction 
and reactive moment 
occur)

Intermediate support (no 
deflection; rotation of 
section is possible)

0 = 0
0 * 0

M , = 0  
Q j  £  0

Intermediate hinge (no 
moment; hinge trans
mits force)

Intermediate hinge (both 
deflection and rotation 
of section is possible)

0 9̂  0 
0 * 0

Af ̂  *  0 
Q/ 5*0

Intermediate support (both 
moment and support 
reaction are possible)
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In multispan beams with intermediate hinges the fictitious beam may 
bo selected according to the method explained for the beam in Fig. 233. 

It must be noted that the fictitious beam corresponding to a stati-
. caliy determinate real beam must also be 

•m* statically determinate.
J Thus, in order to determine deflection y

X and angle of rotation 0 in a section of the 
given (real) beam, we must follow the proce
dure explained below:

\  (a) draw the given beam alongwith the
§ ) forces;

Fig. 232

}
(b) draw the bending moment diagram 

M(x)\
(c) assume the zero axis of the bending 

moment diagram as the axis of the fictitious 
beam and the bending moment diagram M (x) 
as the fictitious load q,; if the bending mo
ment is positive the ordinates of force qj

1 must be directed upwards, if it is negative 
s j  qt must be directed downwards;
" (d) draw the supports of the fictitious

beam in accordance with the conditions given 
in Table 13 and Figs. 232 or 233:

(e) calculate the read ions of the fictitious beam due to the fictitious 
load (i.e. the fictitious support reactions); for cantilever beams this 
step may be bypassed;

(f) calculate bending moment M } in that section of the fictitious 
beam which has the same abscissa as the section of the real beam in 
which deflection f  is required to be determined;

S ft

Fig 233

fg) calculate shearing force Q/ in that section of Ihe fictitious beam 
which has the same, abscissa as the section of the real beam in which 
the angle of rotation 0 is required to be determined;

(h) calculate /  and 0 according to formulas (J6.3) and (16.4).
The graph-analytic method of determining deformations relieves 

us from calculating the constants of integration in each particular 
case and with the help of data given in Table 13 and Figs. 232 or233 
offers a direct solution, which is in agreement with the given initial 
conditions.
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Fictitious moments have the dimensions of force X (length)*, 
fictitious shearing forces have the dimensions of force x (length)1, 
and intensity of the fictitious load is measured in units of force X length.

§ 92. Examples of Determining Deformations by the 
Graph-analytic Method

Let us find the deflection at point B of beam AB  shown in Fig. 234. 
The bending moment diagram for the above beam is a triangle with 
the maximum ordinate in section A equal to PI. We shall take the axis 
of the bending-moment diagram as the axis of the fictitious beam and

consider the bending-moment diagram as the fictitious load (this can 
be done by putting downward arrows at the ends of the ordinates as 
the ordinates are negative).

Following the instructions given in Table 13 we take point B  as 
the rigidly fixed end of the fictitious beam and point A as its free end.

Now we have to calculate the bending moment in section B of the 
fictitious beam. The moment of the triangular load about point B 
will be equal to the product of the area of the load, to, with the dis
tance of its centre of gravity from section B:

Dividing this expression by EJ we get the deflection at point B\

The formula is exactly similar to the result obtained in § 83.
The shearing force in section J3 of the fictitious beam is numerically 

equal to the area of the triangle:

r

Fig. 234 Fig. 235
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Therefore the angle of rotation in section B of the real beam is

0*= S l
ej

Pit
2 EJ

Let us find the deflection at the point of application of the force for a 
simply supported beam loaded in the middle of the span by force P 
(Fig. 235).

The bending-moment diagram of the real beam is a triangle with the 
ordinate at the point of application of the force equal to +  Con
sider the bending-moment diagram as the fictitious load, with the 
arrows pointing upwards, as the ordinates of the diagram are positive 
in this example.

The supports of the fictitious beam can be determined according to 
Table 13 so as to satisfy the conditions of constraint of the real beam. 
From symmetry the reactions of the fictitious beam must be equal, 
and each must be equal to half of the total load:

Af  tf/ ~ 2 x 2 x 4 x * 'nr

Bending moment in section C is equal to the sum of the moment of 
reaction (with a minus sign) and the moment of half of the triangular 
lead (with arm //6):

M/ c  = — A / X  y + y  X y  x X  x l x  i
_  />/* l p i * t p p

16 x  7  +  ic x  6 48

wherefrom

fc
p p  

48 EJ

The angle of rotation at the left support is
a _Q/ A Af  PP

•4 EJ “  EJ “  16EJ

because the shearing force at the support is equal to the support reac
tion (in this example with a minus sign because A f is directed down
wards). At support B

It is evident from the above examples that for the convention of 
signs of fictitious load, bending moment and shearing force decided 
earlier, the minus sign in the formula for deflection corresponds, as 
before, to deflection downwards and in the formula for the angle of
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rotation to rotation in a clockwise direction; positive sign corresponds 
to the reverse directions.

Let us find by the graph-analytic method the deflection in the mid
dle of the span and at the ends of cantilevers for the beam shown in 
Fig. 236.

The bending-moment diagram is a trapezium with maximum ordi
nates M = —Pa. Let us change the bending-moment diagram to a ficti
tious load acting downwards. The fictitious beam consists of two small

i
Pa

Fig. 23G

cantilevers supporting the suspended beam AB. Deflection in the mid
dle of the span (point F) is equal to the fictitious moment at this point 
due to the distributed load divided by the rigidity of the beam:

_  Pafi 
' F~~ 8EJ — 8EJ

The deflection at point C can be determined by first calculating the 
fictitious bending moment in the section; the deflection is caused by 
the triangular force acting on beam CA and the reaction of the suspen
ded beam equal to A f—^ ~  (Fig. 236):

Mj r - Aja P a xa  2 
2 3 a  = Pa9 1 

~ T
Pa*

3

wherefrom the deflection in section C is

ic -~ B T “  <557-(3* +  2a)
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In the last example we shall determine deflection in section. Dof 
the beam shown in Fig. 237.

Let us first draw the bending moment diagram. The moment is 
+Af in section C and 2eF0 in section B>. The moment changes linearly 
over the whole length of the beam. We change the bending moment 
diagram to the fictitious load and draw the fictitious beam according 
to the conditions given in Table 1'3. Considering the cantilever AB, 
we determine the fictitious bending moment at point B:

§ 93. The Graph-analytic Method Applied
to Curvilinear Bending-moment Diagrams

The bending-moment diagram of a uniformly distributed load is a 
parabola.

The convex parabola (Fig. 238) is characteristic of simply supported 
beams. The ordinates of this parabola are given by the expression

The corresponding deflection is
£ AH*£ JYIl

'* 1E7

>
Fig. 238 Fig. 239

M (x) = -Q x— j X 3

The area of this parabola can be found from the expression
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This.area may also be found* as two-thirds of the area of the circum
scribed rectangle:

Abscissa jc0 of the centre of gravity of half of the parabola area 
{Fig. 239) is calculated as follows:

//2

.  1 “  A « "  9 .

* ~  ^ = l 6

The distance between the centre of gravity of half of the parabola 
area and the centre of the whole parabola is

The concave parabola represents the bending moment diagram of a 
beam rigidly fixed at one end (Fig. 240). The ordinate of any point 
on this parabola is found from 
the expression Af (x)——qx%i2.

The area of the parabola 
found as

=  ̂  M (x) =  ^  dx ~
q o

This area is also equal to one- 
third of the circumscribed rec
tangle

1 3  2  1 G

iS *1 >' r i* ’' i r ■i ' ■ 1

U ---------------/ — !-------------►

Ordinate x0  of the centre of gravity of the parabola is

*̂0 ~~
•qlx

i " 1'

The distance between the centre of gravity of the parabola and the 
section of maximum bending moment (rigidly fixed end) is equal to 
one-fourth of the beam span.

Let us solve the following examples using the relations derived here,
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Find the deflection at the middle of the beam shown in Fig. 238. The 
area of the bending-moment diagram is taken as the fictitious load. 
The diagram is positive, therefore the fictitious load is directed up
wards. The fictitious support reactions are

Af
© qP—  -as
2 24

These reactions are directed downwards (Fig. 238).
The fictitious bending moment in the middle of the span is equal

to the sum of static moments of the fictitious forces located on one side
of the middle section, say, on the left-hand side. The forces located
to the left of the section are A f and the left half of the parabola. The
arm of force A } is equal to half of the span; arm of the half parabola is 
3/•g*. Therefore, the fictitious bending moment in the middle of the 
span is

M J =  —  A / x  4 - + - y  X -j| /

x  T + 1 T  x  T§/ =  -3S4?/4 

and the deflection in the middle of the span is

Consider a beam rigidly fixed at one end and loaded by a uniformly 
distributed force q (Fig. 240(a)). Let us find the deflection of the free 
end. The bending-moment diagram of the real and the fictitious beams 
is shown in Fig. 240(6).

The bending moment at the fixed end A of the fictitious beam is 
equal to the product of the area «o of the complete diagram with the dis
tance between A and its centre of gravity, i.e.

qP
8

and the deflection in section A is

t' A~  W T

Consider beam ABC with one cantilever as shown in Fig. 241(a). 
Using the method of breaking the diagrams and the method of super
position of forces, find the deflection and angle of rotation in section C. 
The beam is loaded all along its length by a uniformly distributed force.
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The possible bending moment diagram is in Fig. 241(6). Replace this 
diagram by its components: from force q over length I (Fig. 241(c)) 
and from force q on the cantilever of length a (Fig. 241(d)). The ordi
nates of the last two diagrams can be taken from the problems solved 
earlier. The important ordinates have been written in Fig. 241(c) 
and (d). The fictitious beam is g
shown in Fig. 241(c).

Let us isolate the fictitious 
beam BC: it is acted upon by 
pressure B f from the suspended 
beam AB and the parabolic
force of maximum ordinate ~ -
(Fig. 241(f)).

In the fictitious beam AB, 
taking the sum of moments of 
all fictitious forces about sup
port A, we find (Fig. 241(g)) 
that

, _ H  ga* , I qP 
t ~  3 2 T *  1 2 12

qP
24"

Returning to Fig. 241(/) we 
calculate

Q /c----- 4
qan 
6

M/c ----- B,a—

Fig. 241

The required values of deflection and angle of rotation in section C 
are:

8C_ Q/c
~eT

fc = ~ w f =  —  t ’ + S a 1)
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C H A PTER 17

Non-uniform Beams
§ 94. Selecting the Section in Beams 

of Uniform Strength
All preceding discussions were on beams of uniform section. In prac

tice, however, we often have to deal with beams in which the cross- 
sectional dimensions change either gradually or sharply.

We give below a few examples on selecting the dimensions of the 
cross section and determining the deformation of non-uniform beams.

We know that bending moment usually varies along the length of 
the beam; therefore, by determining the cross-sectional dimensions 
from the condition of maximum bending moment we provide an extra 
margin in all sections of the beam except the one which corresponds 
to M -a„. Beams of uniform strength are used to achieve greater economy 
of inelal and in some cases also to increase flexibility. Under this term 
come beams in which the maximum normal stress is the same in all 
sections and equal to the permissible stress (or less than it).

The dimensions of such a beam are calculated for the following con
dition:

and
=  ̂  (17.2)

Here Mix) and ^(x) are the bending moment and section modulus 
in any arbitrary section of the beam; in each section WP(x) must vary 
in direct proportion to the bending moment.

Conditions (17.1) and (17.2) are true also for the section with the 
maximum bending moment; if we denote the section modulus in the 
section of maximum bending moment Afmax by fl?d, then

Afflux Mix)
=  l*| (17.3)

We shall explain the order of computations with Ihe help of the 
following example. Consider a beam of span / rigidly fixed at end A 
and loaded at the other end by a force P (Figs. 242 and 243). Assume 
the beam to be of rectangular section. The problem of obtaining a 
varying section modulus can be solved by changing either the height 
or the width of the beam or both simultaneously.

Suppose the height of the beam is fixed, h=lu, and the width varies, 
b—b{x). The section modulus at a distance x  from the free end will
be BP(*)= , and the bending moment will b e— Px\ the section
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modulus in the support section is W0~  M l , and the maximum
bending moment at the support is A i^^-fP /j. Only the absolute va
lues of M (.v) and A1WiS are required for computations. From formula
(17.3) we get

PI x  G Px x  6 
bch2 ** b {x) ft*

wherefrom
b {x )^b n±  (17.4)

i.e. width varies linearly as a function of x. At x= l the width is be.
The front view and plan of the beam are shown in Fig. 242. This 

shape is obtained if we consider the strength of the beam only w.r.t. 
the normal stresses; in section B the width of the beam is zero.

However, we must ensure sufficient strength of the beam under 
shearing stresses also. The minimum width of the beam according 
to this condition is determined from the following equation

X —  3<?n,ax . .  »

wix ^mi«» 11
and, since Qmnx**P,

u  _  3P  
ro,n ~  2/i It]

The corrected shape of the beam is shown in Fig. 243.

§ 95. Practical Examples of Beams of Uniform 
Strength

The example discussed above finds practical application in design 
of springs. If we ignore its small curvature, a spring may be looked upon 
as a simply supported beam (Fig. 244(a)) loaded with a force P in
the middle of its span and having reactions -y at its ends.

We design such a bar by the same principles as a beam of uniform
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strength of constant height /i0 and variable width b(x)-, as the loading 
is symmetric it is sufficient to study just one half of the span.

The section moduli W (*) and W0  can be expressed by the same for*
mules as in the preceding example. 
The maximum bending moment in 
the middle of the span is:

Pi
4

Bending moment in any arbitrary 
section is:

Solving, as in the preceding exam
ple, we get:

»(*)“ &. •r  (17.5)

The maximum width required to 
successfully resist the shearing force
y  can be determined from the fol
lowing formula:

b  -  3 p"min “  4 A(| [tj

The front and top views of the 
spring are shown in Fig. 244(6) and 

(c). However, such a shape of the spring is highly inconvenient from 
the practical point of view; therefore the shape is slightly modified 
without affecting the performance of the spring. Imagine that the spring 
is divided into thin strips when seen front the top, as shown in 
Fig. 244(d). If we place these strips not adjacent to each other but 
one over the other and neglect the friction between them, then without 
affecting its working the spring may be given a shape the top and front 
views of which are shown in Fig. 244(e) and (/), respectively.

Obviously, in actual practice each spring plate, the 1st, 2nd, etc., 
is manufactured in one piece and not in two halves.

Non-uniform beams are often used in mechanical engineering For 
example, shafts are often designed as beams of uniform strength.

Fig. 244

§ 96. Displacements in Non-uniform Beams
When determining the deflection and angle of rotation of a non- 

uniform beam, it should be borne in mind that the rigidity of such a 
beam is a function of x. Therefore, the differential equation of the de-



C h . 1 7 ) Non-unifortn Beams 327

fleeted axis may be written as

where J (x) is the variable moment of inertia in different beam sec
tions.

Before integrating this equation we must express J  (x) in terms of 
/ ,  i.e. the moment of inertia of the section in which the maximum bend
ing moment acts. Having done this, we can carry out the computa
tions in the same manner as for a beam of uniform section (§ 82).

Let us show this through the example discussed earlier. We shall 
determine the deflection in a beam of uniform strength (Fig. 242), which 
is fixed at one end, loaded at the other by a force P and has a fixed 
height. Let the free end of the beam be the origin of coordinates. Then

M { x ) ~ - P x ,  J ( =  (17.6)

The differential equation may be written as
p j  & y  _  Pxl _

dx3 ~  x  ~ PI (17.7)

Integrating twice,

EJ =  — P lx+ C , E J y = —

We have the following conditions for determining the constants of 
integration: at point A (x=l) deflection y —0 and angle of rotation
4^ =0. Therefore dx

0 =  — P ia-f C and 0 =  + C /+ D

wherefrom
C = PP and D =  —

The expressions for y  and 0 may be written as follows: 
dy P i .. . Pi* P t1
dx EJ EJ

y= PI 
2 EJ

P P
EJ

EJ 
PP

2EJ ~

0- t )
- - S H '-* 4 +*)

Maximum deflection at the free end is obtained by putting x=0:

/max
PP  
2 EJ
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If we had a beam of uniform section with a moment of inertia «/, 
then the maximum deflection would be

3L7
or two-thirds greater.

Hence, non-uniform beams are more flexible than beams of uniform 
section of the same strength. It is because of this property and not 
due to saving of metal that non-uniform strength beams are used in the 
manufacture of elements such as springs.

Equation <17.7) indicates that in this example the curvature of the 
beam is constant, i.e. the beam axis deflects along a circle. Bui upon 
integration the equation obtained was that of a parabola. It is sug
gested that the Feader should explain, the reason for this.

When the graph-analytic method is used for determining the de
formation qf non-uniform beams, it does not present any difficulties. 
Instead of dividing the bending moment and shearing force in the 
fictitious beam by EJ to compute / and A, we obtain Ihe fictitious load 
by dividing the ordinates of the bending moment diagram of the real 
beam by rigidity EJ. Then

an<J [ - M i ,  e = Qi

When applying this method to non-uniform beams, we assume that

4i=
Mix)  
FJ (x)

Then we load the fictitious beam by this force and obtain the required 
deflection and angle of rotation as the bending moment and shearing 
force in sections of the ficlitious beam.

Pxl PIIn Ihe example discussed above i.e. the
fictitious beam should be loaded not by a triangular force but by a 
uniformly distributed force (Fig. 245). The deflection of section B, 
which is equal to the bending moment in the fixed end of the fictitious 
beam, can be expressed by the formula

f - M } pp
2£7

We could have obtained the same result by assuming that the beam 
has constant rigidity EJ and its bending moment diagram is obtained
by multiplying each ordinate by the ratio- /  ; Ihe ordinates of theJ (Jtj
bending moment diagram thus obtained are

J n Jt
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(Fig. 246). Thai according to tihe general principle of the graph-ana* 
lytic method

Mj — — P lx l - j  — ■— and y= p p  
2 EJ

Thus, deformation of non-uniform beams can be calculated by the 
same method as that for beams of uniform rigidity. The only differ
ence is that the bending moment diagram used in this case is obtained
by multiplying with the ratio -J-..

It
l l l l l i i l l H I
M-

la
I --------

4^ ' — I ,

1
A

ri

[J 4 H

PI 1

Fig. 245 Fig. 246

Let us determine by thegraph^analytic method the deflection under 
force P for a simply supported beam loaded at the middle of the span 
by the above force P (Fig. 247(c))k The moment of inertia of the sec

tion is J in the left half and 0.5J in the right half. Let us obtain the 
new bending moment diagram by multiplying the ordinates of the 
right half of the real bending moment diagram (Fig. 247(d)) with the 
ratio y/0.5y=2; the fictitious beam with the new loading is shown
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in Fig. 247(c). The reaction of the left-hand fictitious support is: 
* _  i p i i 2  , i p i i l pi*

A t  1 4  2 3 +  2 2 T 3 13 12

The fictitious bending moment in section C and the deflection of point 
C are:

M  ~  A ± 4 -  1 1 — L  m/c ----- T ~ i ~ T T ~ T

and

pn . Pi* PP
24 +  96 “  33

/c =
pp 

32 PJ

Let us determine the deflection of a beam rigidly fixed at one end 
and loaded at the other by a concentrated force (Fig. 248(a)). The cross- 
sectional area of one half of the beam is greater, and J£> h. In order 
to transform the bending moment diagram (Fig. 248(6)) into the ficti
tious load, we must multiply the ordinates of the left-hand portion
of the diagram by ~  (Fig. 248(c)).

Deflection under force P may be calculated as follows (for J^= 2 J^\

M, l p l l 2  l D, 2 i l
' ~ T P T T  T T " ~ WT T P I*

3 P P
w j ;



PART VI
Potential Energy. 

Statically Indeterminate Beams

C H A PT E R  18

Application of the Concept of Potential 
Energy in Determining Displacements

§ 97. Statement of the Problem
Besides the methods of determining deflection and angle of rotation 

discussed above, there is a more general method, which can be used 
for determining deformation of any elastic structure. It is based on 
the law of conservation of energy.

When a static tensile or compressive force is applied to an elastic 
bar, transformation of potential energy from one form to another 
takes place; a part of the potential energy of the force acting on the bar 
changes into potential energy of strain. If we load the bar by successive 
addition of small loads dP at its end (Fig. 249), then each addition will 
be accompanied by a decrease in the level of the load and the potential 
energy of strain will correspondingly increase.

This phenomenon is true for all types of deformation of an elastic 
structure provided the loading is static. Such a construction may be 
looked upon as a machine which converts one type of potential energy 
into another.

We have agreed (§ 2) that a load will be called static if it increases 
gradually, so that acceleration in the elements may be ignored; trans
mission of pressure (force) from one part of the structure to another 
does not affect the motion of these parts, i.e. their velocity remains 
constant and acceleration is zero.

Under these conditions deformation of the structure is not accompa
nied by any change in kinetic energy of the system; only conversion 
of one form of potential energy into another takes place. In making 
this statement we neglect the magnetic, electric and thermal effects, 
which do not alter the deformation considerably.

As the motion of the elements of the structure does not change with 
time, at each instant every part of the structure will be in equilibrium 
under the action of external forces and forces of reaction, and each 
element of a part will be in equilibrium under the external forces
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and stresses acting on it. Deformation of the structure, stresses in the 
various parts, and reactions transferred from one part to another, ail 
follow the increase in load. r

Thus, we may say that total conversion of one form of potential 
energy into another takes place if deformation occurs without violating 
the equilibrium of the system. Work done by the forces acting on the 
structure serves as a measure of the energy transformed into another 
form.

Let us denote the accumulated potential energy of strain by U and 
the decrease in potential energy of the external forces by UP. The quan
tity Up is determined as the positive work \VP done by Ihese forces; 
on the other hand, the accumulated potential energy of strain U is 
equal to the negative work W done by the internal intermolecular for

ces (negative because the direction 
of displacement of points of the 
body due to deformation is opposite 
to the internal forces).

The law of conservation of energy 
for elastic systems may be expressed 
as follows:

UP = U (18.1)
In this formula, replacing Up and 
U by the corresponding values of 
work Wp and W, we get a modified 
form of the same law:
Wp= — W or lF/, +  F  =  0 (18.2)

This formulation of the law of con
servation of energy coincides with 

the principle of virtual work as applied to elastic systems: equation
(18.2) states that the sum of work of all forces acting on a body is 
zero if deformation of the body occurs without violating the equilib
rium of the system.

Thus, the principle of virtual work as applied to elastic systems is 
a corollary of the law of conservation of energy.

It ensues from formula (18.1) that the potential energy of strain U 
is numerically equal to work Wp done by the external forces in causing 
this strain:

iP

Fig. 249

U ^ W p  (18.3)

The following interpretation of this equation sometimes given in 
books on structurat mechanics is erroneous: "Work done by the exter
nal forces in deforming a body changes into potential energy of strain.” 
Actually, only a different form of energy can change into potential
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energy of strain. As a rule, this is the potential energy of the external 
forces. Work done by the external forces during this conversion is 
only a numerical measure of the converted energy.

§ 98. Potential Energy in the Simplest Cases 
of Loading

We have already derived the expressions for computing potential 
energy in tension and compression (§ 10), shear (§ 36), torsion (§ 52), 
and also in pure bending (§ 63(D)).

Let us write all the above-mentioned formulas in Table 14.
Table 14

Potential Energy ot Strain in Simplest Cases

Type o» drform al Ion P o ten tia l energy of deform ation

Tension or compression 1 a K I _ P * t  -V*£ A 
T p s l  2Wa  5 T

Shear X v 20 A 2a

Torsion I API %*GJy
—  Mi<f‘~ 2 a T = ^ i r

Ppre bending 1 . ,ii 0 *EJ
t *  — a -

Let us have a look at the contents of the right half of the table. 
The potential energy of strain is equal to half of the product of force 
or moment of force couple with the displacement of the section in 
which the force or force couple is applied. Let us use the term general
ized force for every load that causes displacement, i.e. it may be a con
centrated force or the moment of a force couple. The displacement 
corresponding to the generalized force will be known as generalized 
displacement. The word “corresponding” implies that we are talking 
of displacement of the section in which the force under consideration 
is acting. Elaborating further, we are talking of displacement which 
when multiplied by the force gives us the work done. For a concentrat
ed force this displacement will be linear in the direction of the force 
(deflection, or elongation). For the moment of a force couple it will be 
the angle of rotation of the section in the direction of the moment. 
The formulas in the first column may be stated in a general manner as 
follows: the potential energy of strain is numerically equal to half 
of the product of the generalized force with the generalized displace
ment.
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The second column in these formulas shows that the potential energy 
of strain is a second order function of the independent external forces. 
Potential energy is always positive.

The third column shows that the potential energy of strain is a sec
ond order function of the finite values of generalized displacements— 
elongations, angles of rotation, deflections—and is completely deter
mined by the latter.

Consequently, although these formulas have been derived on the 
assumption that the load increases statically without violating the equi
librium of the structure during the process of loading, they are valid 
for all types of forces provided the force and displacement are linearly 
related and are considered at an instant when the structure has at
tained equilibrium.

§ 99. Potential Energy for the Case 
of Several Forces

Imagine a beam acted upon by several forces: Pu Ps, P*, . . .  . 
Let 6], §i, fi3, • . . denote the displacements of the beam in the sec
tions of application of the forces and in the direction of their action. 
In Fig. 2o0 the solid line shows the straight axis of the beam while 
the dotted line shows it after deflection. We will assume that the fol
lowing conditions are satisfied: (a) all forces are applied statically (their 
magnitude increases gradually from zero to a finite value P(); (b) 
all deformations are within the elastic limit and are linearly related 
to the external forces; and (c) a decrease in the potential energy of the 
applied force is accompanied by an increase in the potential energy 
of strain of the beam.

Any of the forces Pt shown in Fig. 250 can be considered a general
ized force. Here, the generalized force P, will not be just the active 
force but a balanced force system (including support reactions) which 
produces displacement 6 { at the point of application of the force in 
the direction of its action.

All the forces and displacements are related to each other by the fol
lowing expressions:

Here, a denotes constants and the subscripts must be interpreted as 
follows: the first is the serial number of the displacement, or the “point 
of displacement’’ (for instance, number 1 as “the first subscript denotes 
the displacement in the section of application of force Pi)\ the second 
is the serial number of the force causing the displacement, or the "cause
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of displacement” {number 2 as the second subscript denotes lhat the 
displacement has been caused by force P*).

The system of equations (18.4) is known as ihe generalized Hooke's 
law for a deformable body. The basic idea behind each line is that any 
displacement represents the sum of displacements of the given point 
due to each of forces Pt.

The generalized Hooke’s law (18.4) may also be called the law of 
cumulative action of forces, or the law (principle) of superposition of

Fig. 250 Fig. 251

forces. We have used these formulas on more than one occasion for 
deriving design equations (for example, equations (6.18) in § 33).

When a number of forces are acting, the potential energy should 
be calculated by Clapeyron's theorem:

y = r = | 1 p , s a . . .  (i8.5)

the notations here are the same as in formula (18.4).
Clapeyron’s theorem may be stated as follows: the strain energy of 

an elastic system due to a number of generalized forces is equal to 
one-half of the sum of the products of the generalized forces and gener
alized displacements caused by the simultaneous action of the former.

In conclusion, it should be pointed out lhat in principle anv group 
of acting force factors that can be defined by one parameter can be 
taken as the generalized force. However, from the practical point of 
view, it is convenient to partition the complicated load acting on 
the structure into simple generalized forces.

Let us consider an example. A beam that is rigidly fixed at one end 
is loaded at the free end by a concentrated force P and a force couple 
of moment M (Fig, 251). We shall calculate the potential energy of 
strain of the beam.

Clapeyron’s theorem in this case can be written thus:

t/ =  r  = ! ( /> /„ + m „ ) (18.6)
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The displacements may be taken from examples solved earlier or 
from a handbook:

PI* Ml* A Ml PI*
/ » ~  3EJ 2EJ ’ ** EJ T e T (18.7)

The minus sign shows that the direction of displacement does not 
coincide with that of the corresponding force. Let tis substitute the 
displacements into dapeyron's theorem

u ~ w  * £ . U ±  -VIu  w  2 M  3IV 2 EJ 2 ^ EJ 2 EJ )
P*l* , M*l PM P  

~  6£7 +  2 EJ 2EJ (18.8)

The leader’s attention is drawn to the fact that while calculating 
potential energy due to a number of forces it is wrong to calculate the 
potential energy due to each force separately and then sum them up.

§ 100. Calculating Bending Energy Using 
Internal Forces

In general, the bending moment M (x) is a variable quantity. It 
has a corresponding shearing force Qf*) in every section. Therefore, 
it is expedient to consider the equilibrium of a small element of length

A,

Bat

Qo)

r i  * :r / I S  jrdd ■ 

B(x)
r /

Mffl titx) /  ! V
!__ L j
Of 4

&___&
g  C¥(X) / 
w \

i  i
Fig. 252

4L
. dx -*■ 
Fig. 253

\i

Fig. 254

dx instead of the whole beam (Fig. 252). Due to the bending action of 
forces, the sections of the clement turn and make an angle 40 with 
one another (Fig. 253). The shearing forces tend to shear (Fig. 254) 
the element; thus the displacement due to the normal stresses is per
pendicular to the direction of the shearing stresses, and vice versa. This 
enables us to calculate independently the work done by the normal and 
shearing forces.

Usually the work done by the shearing forces is small in comparison 
to the work done by the normal forces; therefore, we shall not take it 
into consideration for the time being. Elementary work done by the
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normal forces (as in simple bending) is:
clWf ^ d U  =  j M ( x ) d ^ ^ ^ M ( , x ) - ^ § ~  (18.9)

or dU -  M>-$ r X (18.10)

Total potential energy of bending can be obtained by integrating 
this expression over the whole length of the beam:

u  = ̂ M ^ L =  ̂ M Hx)dx  (18.n )

The limit of integration indicates that integration should cover the 
whole length of the beam; if there are a number of zones for M (x), 
then integral (18.11) must be divided into a sum of integrals.

We ena this section by calculating the potential energy of a simply 
supported beam loaded by force P 
(Fig. 266).. The bending moment di
agram has two zones; therefore

(* Mldx , C M\dx 
J 2EJ 1 A 2 EJ (18.12)

Dh

p kd

Mx — +  Axl ---- h - VI *1*
p /l

A M \ “ 2L
h - f A  'Mt — -f B x 2 =  -f Pa xI u ---------- /  — —

§ 101. Casttgliano’s Theorem
Let us now explain the method of determining displacements via the 

potential energy of strain. We shall determine the displacement of the 
points of an elastic system in the direction of the forces acting on it.

We shall solve this problem in a number of stages, starting with the 
simple case (Fig. 256) when concentrated forces Pu  P a, P*. . . . act 
in sections 1 ,2 ,3 , .  . . of the beam. Due to these forces the beam bends 
into curve /  and there retains its equilibrium.

Let us denote by yu ya, y9, . . . the deflection of sections 1, 2 ,3 , .  . .  
in which forces Pi, P 2, P3, . . . are acting. We shall calculate one of 
these deflections, say, yi (the deflection of the section in which force 
Pi is acting).
12-3310
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Let us shift the beam from position I into an adjacent portion / / ,  
shown in Fig. 256 by a dotted line, without disturbing its equilibrium. 
This may be achieved by various methods: by adding a new force, by 
increasing the existing forces, etc.

Let us assume that an infinitesimal increment dPi {Fig. 256) is 
applied, in addition to force Pi, to shift the beam from position /  
to deformed state / / .  In order to retain the equilibrium of the beam

Fig. 258 Fig. 257

during this sliift we assume that the increment is applied statically, 
i.e. increases from zero to the final value slowly and gradually.

As the beam shifts from position I to position II  all forces fall in 
level, meaning thereby that the potential energy decreases. Since Ihe 
equilibrium of the beam remains undisturbed, the decrease in potential 
energy d(Jp of the forces may be considered to be completely transformed 
into the potential energy of strain dU of the beam; dUp is measured 
by the work of the external forces in shifting the beam from position 
I to position II:

dU = dW r  (18.13)

The change in the potential energy of strain, the energy being a 
function of Torces Pu P2, P9, . . occurred due to an infinitesimal 
increment in one of the independently applied forces, Pi. Therefore, 
the differential of this composite function will be

Quantity dWp, in its turn, represents the difference in the work done 
by all the forces in position II  and in position I:

dWP= W a— Wi

If all the forces increase simultaneously and gradually, then work 
Wi can be calculated as follows:

= y  P ilh  4- y  +  y  P*ys +  • • •

While calculating W2  we must consider that it depends entirely upon 
the final shape of the deformed beam (§ 100) and not upon the order 
in which the forces are applied.
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Suppose we first load the beam by force dPi, the beam bends slightly 
(Fig. 257, position III) and its deflections in sections 1, 2, 3 are dylt 
dye, dys, respectively. The work accomplished by the static force
dPi is - j  dPidyt. We now start loading the beam gradually and simul
taneously by increasing forces Pi, P«, P«.

Deflections yu y9, y 3  will be added to the original deflections dyu 
dy2t and dy9  (Fig. 257). In this stage of loading, forces P u Pa* Pa will ac
complish work ^ P iy A -  y P ^ r l - y  ̂ 8= ^ 1- In addition, force
dPJt which is already acting on the beam, will also accomplish work 
(it traverses a distance y t\ since it remains constant during the second 
stage of loading, the work done is dPxyi). The beam occupies position 
II  shown in Fig. 257 by a dotted line.

Hence, the total work done by the external forces in shifting the 
beam from the undeformed state into position / / i s  (Fig. 257):

ir,= i.dPid!,1+ r 1+dp1x !,1

Now we can calculate

dU =  dWP «  Wt -  Wt = dPxdyt + dPt x  yt

Neglecting the second-order term, we get
dWP = dPiLX yi (18.15)

Putting the values of dU (18.14) and dWp (18.15) in equation (18.13), 
we get

or

Hence, in this example the deflection at the point of application of 
the concentrated force Pi is equal to the partial derivative of the poten
tial energy of strain with respect to this force.

The result obtained above can be generalized. Suppose moments M 
act in various sections of the beam besides the concentrated forces 
(Fig. 258). We may repeat the preceding discussion for the case when 
the beam is shifted from position I to position II due to the addition 
of an infinitesimally small moment dMk to the original moment Mi. 
The reasoning remains unchanged. However, when calculating the 
work done by the moments, the Tatter should be multiplied not by the 
deflections but by the angles of rotation Oj, 0a, . . etc. of the sections.
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where the above moments are applied. ThendU will be equal t o ^ -  x
xdM t, dWp will be equal to dMi and formula (18.16) will take 
the form

(18.17)

As tfi is the displacement corresponding to force Pi and 0, the dis
placement corresponding to moment Afj, the conclusions arrived at can

Fig. 25a

be formulated more broadly as follows: the derivative of strain energy 
with respect to a generalized force is equal to the generalized dis
placement.

This result is known as Castigliano's theorem. It was published in 
1875.

We note that if the beam were acted upon by a distributed force, the 
preceding derivations would still remain valid because every distrib
uted force can be considered as consisting of a large number of con
centrated forces.

The above discussion pertains to a beam, but it should be absolutely 
clear that it can be repeated for any structure in which deformation 
follows Hooke’s law.

For bending we obtained a formula which correlates the potential 
energy with the bending moment:

y  =  (18.H)

Let us calculate the partial derivative of U w.r.t. one of the external 
forces, for example, Pt:

We have to deal in this case with differentiation of a definite integral 
w.r.t. parameter, as M (*) is a function of both Pi and jr; we integrate 
w.r.t. x  and differentiate w.r.t. P t-. We know also that if the limits of 
integration are constant, then it is sufficient to differentiate the func
tion under the sign of integration.
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Thus, deflection at the point of application of concentrated force 
Pi will be:

dU (* M(x)dx dM (x) / io io \
^ = 'Sp7 =  3 — e7-------- W T  (l818)

l
and the angle of rotation in the section under moment Mi will be: 

n dU P M (x)dx a.M(x)
=  W  ------ omT  (l8,19)

The limit of integration, /, shows that integration is over the whole 
length of the beam.

§ 102. Examples of Application of 
Castigliano's Theorem

Let us calculate (Fig. 259) the deflection of the free end B of a beam 
which is rigidly fixed at Its other end A. The beam is loaded by a con
centrated force acting at point B. In this case we can directly apply

— H

B

, 8

Fig. 269 Fig. 260

I
B\ ^ in j r r iT r fn T i i i i i i i i i i  

— , - - - - - - 1

Castigliano’s theorem, because we are required to find the deflection 
of the section where concentrated force P is applied:

dU p M(x)dx  dM(x)  /,Q  io \
y* dP J El dP (18.18)

The origin for abscissa x may be selected arbitrarily, the only consid
eration to be kept in mind being that the formula for M (x) should 
be as simple as possible. Measuring x  from point B, we gel the follow
ing expression for the bending moment in an arbitrary section:

Af (jf) = — Px and =  — x

Substituting these values in the formula for yB and integrating 
over the whole length of the beam from 0 to I, we obtain:

„ P ( - P x ) d x ,  v P f  . .  . p i *
Vh =  3 E l  f EJ j  x  dx  — +  3£y

o o
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We have obtained the same formula as before, with the only differ
ence that y B is positive. We have determined the displacement corre
sponding to the force with respect to which the equation was differen
tiated. By the term “corresponding” we mean that the product of the 
force and corresponding displacement gives us the work done by the 
above force. If the displacement is positive, the work will also be po
sitive, which implies that the displacement is in the direction of the 
force. If, however, the deflection or angle of rotation is negative, then 
displacement occurs in a direction opposite to that of the force. Thus, 
in this problem point B deflects downwards.

Let us consider an example in which it is essential to calculate the 
reactions prior to calculating the bending moment M(x).

Let us calculate the angle of rotation at support B of a simply sup
ported beam of span I (Fig. 260) loaded with a moment M acting at the. 
above support and a uniformly distributed force<7 over its whole length.

The required angle of rotation is:
q ... dU C M (x)d x  OM (x)

i ~ E i -------m ~

Bending moment (Fig. 260) is expressed by the equation

M ( x ) - + A x — 2 f

When we calculate the derivative of M  (x) w.r.t. M the expression 
for M (x) must contain only the independent external forces, which 
are considered in Castigliano’s theorem. Therefore, reaction A must 
be expressed through Af and q; if this is not done there is a chance 
of making a mistake during differentiation by overlooking the fact 
that A is a function of M and q. Reaction A is:

A ~ l L 4 . lL
A  2 +  I

Therefore
M ( x ) ^ x - ! £ + 1 £  

and the derivative is:
dM (x) , X

~ s r = + T

The limits of integration are determined from the condition that 
the formula for the bending moment must be valid for the total length 
of the beam. The required angle of rotation can be calculated as follows: 

1
OU C \ f  ql qx3 , /Wx \  x  . qP . M l

0» = T j r = ) - E r ( - § - * - - r - + — ) 7 dA= 2 f e r + w
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If the bending moment is expressed by different functions of x 
in different portions, then the integral should be divided inio separate 
integrals for each portion. The total displacement will then be equal 
to the sum of all the integrals, which will be equal in number to the 
number of different portions in the beam. When solving such a problem 
it is extremely important to select the proper limits of integration.

I

Fig. 261

P

II
4

Let us consider a beam of span I rigidly fixed at one end (Fig. 261), 
loaded by moment M acting at point C at a distance a from the support, 
and a force P acting at the free end. We have to determine the angle 
of rotation in section C.

The point of application of moment Af divides the beam into two 
portions; BC and AC. Therefore the angle of rotation of section C is:

a  _  9U _  p Mtdx dM^ , r AM* 3A*S 
c  dM J  E J dM M ~

where Afi and are bending moments in the sections of the first 
and second portions, respectively. The limits of integration can be 
written only after we decide the point of reference from which to mea
sure abscissa x  for each section in the two portions.

Let us consider an arbitrary section in the first portion at a distance 
x  from the free end B. The bending moment in this section is:

Mi — -— Px and ~  ^

the limits of integration in this portion being 0 and I—a.
When calculating the bending moment in sections of the second por

tion, we shall continue to measure x  from the free end B\ then

A f , - — P x+ M  and ^ . =  +  1

the limits of integration being I — a and L However, it is better to 
measure x for the second portion in such a way that the lower limit 
becomes zero (this simplifies calculations). Obviously, point C—the 
initial point of the second portion—should be taken as the origin. 
In this case we get:

Mt = - P ( x + l - a ) + M  and - ^ - =  +  1 

the limits of integration being 0 and a.
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Considering the second version, we get:

A , f °  M t dx dMr , c  M id x  0Afa
] iJ  ' 'M  + ) - i r S M 

The first integral is zero; therefore

Oc~-gj- j  [ - P ( x + l - a )  +  M ]d x= ----f(22^ ° )° + ~E r

The required angle of rotation is the sum of two terms: one due to 
force P in the clockwise direction (against the direction of M) and the 
other due to moment M in the anticlockwise direction.

§ 103. Method of Introducing an External Force

Let us consider a beam of span I fixed rigidly at end A and loaded 
at the free end B by a force P. Our aim is to determine the angle of 
rotation of section B.

Direct application of Casligliano’s theorem is not possible, because 
in this case the force does not correspond to the nature of deformation.

Fig. 262 Fig. 263

We have a concentrated force acting in section B instead of a moment. 
To solve the problem we apply an additional moment at point B 
(Fig. 262) in an arbitrary direction, say, for example, in the anticlock
wise direction. For a beam loaded in this manner the angle of rotation 
of section B can now be found by applying Cast igliano’s theorem.

The angle of rotation can be expressed by a formula consisting of two 
terms: one depending on P ahd the other on Ma. This formula is true 
for all numerical values of P and Ma including Afft=0. Therefore, by 
assuming that Afa*=0 in the final expression, we obtain the expression 
for angle of rotation due only to force P. The calculations are as follows:

a  OU c M d x  dM 
B ~ d M a = ,J EJ ~5M7

M — -f Ma— Px and — -f-1dM
TMZ



Ch. t8\ Potential Energy in Determining Displacements 345

The limits of integration are 0 and I; therefore

(18.20)

We may put Afa=*0 after integrating the above expression. But the 
result will be the same if we put Afa= 0  in equation (18.20) and then 
integrate. We require the additional force only to calculate, the partial 
derivative of the bending moment w.r.t. this additional force. Having 
found the partial derivative* we can safely equate the additional force 
to zero.

Hence, the angle of rotation of section B due to force P is:

e = T T ^ ~ ' Px^dx==- ‘w ro
The minus sign indicates that rotation occurs against the direction of 
moment M<,, i.e. in the clockwise direction.

If it is required to calculate the deflection in a section of the beam 
where no concentrated force is acting, we must similarly apply an addi
tional force Pa in the above section and after obtaining the expression 
for deflection equate the force to zero.

Let us determine the deflection of free end B of the cantilever shown 
in Fig. 263. The beam is loaded by a uniformly distributed force. We 
apply an additional force Pa in section B in order to calculate its de
flection. The beam has two distinct portions: BC and CA. The de
flection of B will be a sum of two integrals:

.. _  <>V _ f  Mi dx dMi , r  M-idx dMa 
J b dPa \ EJ dPa - r j  ~ E J  W Z

The reactions at the supports will be
n O . a)

I ~r 2 1

B P g-H . c)a 
a l 2 1

V (/*-<**) 
2 1

The additional force should in no case be ignored while calculating 
the reactions. We solve the problem by considering the additional 
force as one of the active forces.

The way x  coordinates are measured is shown in Fig. 263 for both 
the portions.

In the first portion:
Af, — — Pax <l**

2 ’
dMt
OPa

the limits of integration being x=0 and x —a.
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In the second portion:

M ,=  + A X~ l f ----- p j s  +  S l S f U z - J *

OMt __ a
SE T ------7  x

the limits of integration being x=0 and *■=/. Hence
a

~-p **— *£-) (—*) &
o

+ - e r j  [ ~ p «T-t +  x~ i£ ]  ( — t x ) i x

Assuming Ptt=0, we get

The first factor represents the deflection due to the load on the canti
lever and the second the deflection due to the load between the supports.

§ 104. Theorem of Reciprocity of Works

With the help of the concept of potential energy we may derive the 
following relation between deformations in various sections of a beam.

If we apply a static force P% in section 2 of a beam already loaded 
by force Pu then to deflection yn of the point of application of force 
P̂  due to this force will be added a deflection yu  due to force 
Pt (Fig. 264). The first number in the subscript of y  indicates the point 
the deflection of which is required to be determined; the second num
ber indicates the force causing this deflection.

The total work done by the external forces will consist of three terms:
work done by force Pi in causing deflection ylu i.e. - j Piyu \ work
done by force P 2  in deflecting the point of its application by y 22i i.e.

F*yi2; and, finally, work done by force P, over deflection yn  caused
by the force P8, i.e. P\yi2.

Therefore, the total accumulated energy due to the two forces is:

^ ==y F 1yu - |-y P ^ „ - l-P 1y13 (18.21)
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(the potential energy of strain depends only upon the final values of 
forces and deflections and not upon the order of applying the external 
forces).

Now, if we apply force Px to a beam already loaded by force Pt, 
then reasoning in the same way we obtain

U = T  p &M+'jp iyu + p # n  (18-22)

Comparing the two expressions for U, we get
(18.23)

i.e. the work done by force P, (or the first group of forces) over dis
placements caused by force Ps (the second group of forces) is equal to 
the work done by force Pa over displacements caused by force Pi.

i
Fig. 264

This is known as the theorem of reciprocity of works. It can be slated 
in another way: work done by the first force (Pi) under the action of 
the second force (P9) is equal to the work done by the second force un
der the action of the first.

By taking a particular case when Pt=Pt, we obtain the theorem of 
reciprocity of displacements: yii=un, i.e. deflection of point 1  due to 
the force acting at point 2 , is equal to the deflection of point 2  due to the 
force acting at point 1 .

§ 105. The Theorem of Maxwell and Mohr
Deflection of a beam at the point of application of concentrated force 

P is:
.. CM{x)dxdM(x)
y  jj EJ dP (18.18)

a similar expression can be obtained for the angle of rotation by re
placing with Let us elucidate the physical meaning of
these derivatives.

If a beam is acted upon by an arbitrary number of concentrated 
forces Pi, P i , . .  ., moments Mi, M t......... and distributed forces qt.
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qt, . . then moment M (x) in any section of the beam is a linear 
function of all these factors:
M(x) = uJPl + aiPi +  . . .  . . .  +£,<7i+ c 2<72 . . .

(1&.24)
Coefficients au as.........bx, bit . . ., cx, c*t . . . are functions of the

beam span, the distances of the points of application of the various 
forces and moments from the supports, and the abscissa x  of the section 
in which the bending moment is required to be calculated. Suppose

(a)I
(b)

A

Pig. 265

we have to find the deflection of the point of application of force Pi. 
dMThen =au because in this differentiation P2, P3, . . Mr, M t,

. . <71, <?., . . .. a,, a2, . . ., bu  Cu c........... are all constant
quantities. However, at may be taken as the numerical value of moment 
M in an arbitrary section due to a unit force, i.e. P ,= l:  it is evident 
that by putting P i= l and equating all other forces to zero in equatiort
(18.24) we get M —ax.

For example, for the beam shown in Fig. 265(a) the bending moment 
is:

M( x ) ~  — Px — ?y

The derivative = —x, which is also the expression of the bend
ing moment for the beam, if we load it by a unit force acting at point 
B—the point of application of force P (Fig. 265(b))—in the same direc
tion.

Similarly, the derivative of M (x) w.r.t. force couple Aft is numeri
cally equal to the bending moment due to a unit force couple acting 
in the same section as Mx.

Hence the calculation of derivatives of a bending moment may be 
replaced by the calculation of the bending moment due to a unit force. 
We shall denote such moments by M°.

Thus, to determine displacement 6 (deflection or angle of rotation) 
of an arbitrary section, irrespective of whether the corresponding force 
acts in this section or not, we must write down the expressions Tor the 
bending moment M (x) due to the given load (we shall denote it simply
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by M) and for M9 due to a corresponding unit force acting in the sec
tion in which displacement 6 is required to be found. Then this dis
placement will be given by the formula

&=l * T T dx (18.25)
U

This formula was first derived by J. C. Maxwell in 1864 and applied 
in design practice by 0. Mohr in 1874.

If in formula (18.25) we want to define deflection as 6, then moment 
M °  should be calculated for a unit concentrated force applied in the 
section where the deflection is required. If, however, we want to calcu
late the angle of rotation, then a unit moment should be applied.

For the example considered in Fig. 265 we have:

— Px— %y  (Fig. 265(a))

Af*= -  l x x = - x  (Fig. 265(b))

o

The plus sign indicates that the direction of displacement coincides 
with the direction of the unit force; a minus sign would indicate the 
opposite direction.

If the beam has to be divided into a number of portions to calculate 
the bending moment in a section, then the integral in formula (18.25) 
will also break into a sum of the respective integrals.

§106. Vereshchagin’s Method

Pirlet and A. N. Vereshchagin and before them H.F.B. Miilier-Bres- 
lau proposed a simplification in calculations according to formula 
(18.25). As the unit load is usually either a concentrated force or a 
force couple (moment), Ihe Af#-diagram is bounded by straight lines. 
In such cases, for any shape of the bending moment diagram, integral 
 ̂MM°dx can be calculated as follows. Suppose the bending moment

diagram (Fig. 266) is represented by a curve, whereas the diagram for 
M9 is a straight line. The product Af dx may be considered as the area 
element dto, which is shaded on the bending moment diagram.

As the ordinate M°=x tan a, the product M dx Af°=d© x tan a.
Hence integral J MM 9  d*=tan a ^xd ®  represents the static moment
of the area of the bending moment diagram about point A  multiplied 
by tan a. However, the static moment is equal to the total area co
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of the bending moment diagram multiplied by the d istance^  of its 
centre of gravity from point A. Therefore

 ̂MM* dx =  (oxc ta n  a

But xc tan a  is the ordinate of the Af0-diagram under the centre 
of gravity of the bending moment diagram. Therefore

J MM* dx =  (oMh 

and the required displacement is

6 = - ^  (18 26)

Hence, in order to determine displacement 6, we must calculate area 
© of the bending moment diagram, multiply it by ordinate Af?; of 
the unit bending moment diagram under the centre of gravity of area 
co, and divide it by the rigidity of the beam, E J .

(ai

m

(d

Fig. 267

Let us determine by this method the angle of rotation of section D 
of the beam shown in Fig. 267(a). The beam is loaded by a moment M 
acting at the end B of the cantilever AB. The bending moment dia
gram is shown in Fig. 267(6). Let us apply a unit moment in section D 
in an arbitrary direction (Fig. 267(c)). The bending moment diagram 
due to the unit load is shown in Fig. 267(d). As M is zero in portions 
DC and CB, we are left with only one integral for portion AB.

Area © is equal to -FM/, and the ordinate of the M°-diagram under
the centre of gravity of area © is equal to -f  ̂ . Therefore the required
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angle of rotation 0o is:

=  e j (  +  MI) ( +2?) *  + lS c j

The plus sign indicates that rotation is in the direction of the unit 
moment, i.e. in the clockwise direction.

§ 107. Displacements in Frames
Let us calculate the angle of rotation 0 of section C and horizontal 

displacement A of point D of the frame shown in Fig. 268(a) with the 
help of Mohr’s theorem.

Let us calculate the reactions and bending moments for all the three 
states in Fig. 268(a), (b), and (c), respectively;

(a) due to the given load:

W = 0, D = £ = A ,  M,= + g x „  M . - + M ,  M, = 0
(b) due to unit force:
H — D = \ = A, A?J= -fx,, A + x 3

(c) due to unit moment:

=  0, D = ̂ = A ,  « } = '+ g ,  /WS=0, MS=0

The deformations are: 
(a) and (b)

MtM$dx+

a

^ 4 d x + \ M { a + x t)dx
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(a) and (c)

.JLf *Sr £idx
EJ )  2aX i2aa x

2 Ma 
ZEJ

In solving the same problem by Vereshchagin’s method we must plot 
bending moment diagrams for all the three loading arrangements in

Fig. 268. The diagrams, which are shown in Fig. 269(a), (6), and (c), 
enable us to determine the following quantities:

©i =  Ma, o)a =  Ma, <o5 =  0 (a)
M ^ ± a , Mc* = Y a (b)

. % = | . Met =  0. Met =  0 (c)

If there are three zones of loading, formula (18.26) can be written as 

6 =  ̂ 7  K Mc i + +  co3M%z)

The required displacements are:

A - r 7 ( * » T ‘ + * 4 « ) - ? £
* = 4 jM a 2 2 Ma

3 3 EJ
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§ 108. Deflection of Beams Due to Shearing Force
In calculating deformations we have considered only the bending 

moment. However, shearing forces also cause deflection. The Russian 
scientist Prof. I.G. Bubnov was the first to determine the deformation 
of a beam by considering the shearing forces.

Let us consider a beam rigidly fixed at one end and loaded at the 
olher by a force P. Due to shearing stresses two adjacent sections 
a,b\ and a*ba (Fig- 270(a)) separated by a distance dx will warp. 
Maximum distortion will occur near the neutral axis; elements locat

ed at the top and bottom surfaces of the beam will not warp. 
The planes will occupy certain intermediate positions (dotted lines 
c M i  and c20 2dt) making an angle y 0 with the original (Fig. 270(b)). 
As in this case the shearing stresses are the same in all sections, they 
will all turn by the same angley0 and due to exclusive effect of shearing 
stresses occupy the position shown in Fig. 270(b); end B will lower 
w.r.t. support A. The deformation due io bending moment, which is 
in the form of rotation of adjacent sections, is not shown in the figure.

Absolute deflection of the second section w.r.t. the first will be equal 
to segment 0*0-1, i.e.

\dtjQ\ = 0 , 0 ,  (18.27)

In the general case, when the shearing force Q (x) is not constant but 
varies along the length of the beam, angle y, will also vary. However, 
the overall picture of deformation will remain unaffected; only dyQ 
will be different for different elements of length dx.

Absolute deflection of the second section w.r.t. the first, \dyQ\. 
may be calculated from the condition that potential energy' of strain 
accumulated in the element of length dx during shearing is equal to 
the work of external forces acting on the element: dUQ—dWp.

For the beam under consideration the external forces will be the 
shearing stresses (the shearing force Q(x)). If the increase in load and 
deformation is gradual, then the work done by these forces over a rela-
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tive displacement [ dyQ | is

3 W |d s ,,| (18.28)

As the shearing stresses are not uniformly distributed over the sec
tion, we have to take recourse to the method of differentiation in order 
to determine the potential energy accumulated by the beam due to 
these stresses.

Let us cut a small element of dimensions dx, dz, b(z) at a distance 
x  from the origin of coordinates and at a distance z from the neutral 
axis (Fig. 270(a)) out of a rectangular beam (or a beam made of rec
tangular beams), in addition to the normal stresses, the sides of tills 
element will also be subjected to shearing stresses

For this element the potential energy of shear will be expressed by 
the formula

Integration is carried out w.r.t. z, and the limits of integration are 
selected so as to cover the whole section.

The above expression may be modified by multiplying and dividing 
it with the cross-sectional area A:

where k  is a dimensionless number which depends only upon the shape 
and size of the beam and is:

_ Q{x)S(z)  
Jb\z)

Energy in the element of length dx and height A will be

(18.30)

Equating the values of dllQ and dWp, we get

wherefrom
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The sign of deflection may be determined as follows. If the shearing 
force Q (x) is positive and the y-axis is positive upwards, then the re
lative deflection dyQ will be negative if we move from the left-hand 
section towards the right (Fig. 270(b)). Consequently,

iy Q------(18.31)

Total deflection of any section having abscissa x  is obtained by in
tegrating expression (18.31):

yq =*—J  k (18.32)

The constant of integration CQ depends upon the type of constraints. 
Since Q(x)=*dM {x)!dxt we have

(18.33)

i.e. the deflection of the beam due to the shearing force is directly pro
portional to the ordinate of the bending moment diagram with the 
opposite sign; the ordinates are measured from a definite axis of abscis
sas.

Constant k  may be calculated for all types of sections. For a rectan
gular section

' - f i .  * w - * .
Therefore

/i/2 h/2
u A c S * (z )d z_  9 r  < V

} - ? w — a j  v ~ I T r z s-h/2 0
Let us use the above result in determining the deflection of a beam 

of span I, fixed at its left end A and loaded at the free end B by a con
centrated force P. Assuming point A as the origin of coordinates, we 
get:
M (x )------;> (/_ * ) and ( , ,=  + * q ^ + C « = S £ ^ + C <,

6 pi
At x = 0  the deflection yA=0; therefore CQ= — . Deflection^ 
may be written as

6 Px
# Q ~  5 GA

Maximum deflection occurs at point B, i.e. at the end of the beam 
(where *=/):
'  , 6  PI

IQ =  8GA
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Total deflection of point B  is:
f Pi3 6 Pi p p / ,  i 18EJ \
•**  3F7 S CA** 3 1 7 V 1

1  /l*As =* f°r a rectangular section, we get
/ ____ PP / i  . 3 A* E \

a E 5Assuming -y equal to y  for metals and 20 for wood, we obtain:

f“ - J R  ( 1 +7 7*) (for meta,s)
/ “» (1 +  6 y ) (for wood)

Thus we see that additional deflection due to the shearing force depends 
upon . Therefore in comparatively short beams, especially in

wooden beams, it may acquire a high value. For example, if y « = y ,

then for a wooden beam 1+6^- =  1.375, i.e. deflection due to the
shearing force is 37.5% of the deflection due to the bending moment.

It should be noted that in a number of courses k  is taken as 1.5 and 
not as 1.2 (for a rectangular section). This result is obtained by as
suming that the deflection of the beam due to a shearing force depends 
upon the shearing strain at the neutral surface, but this assumption 
is erroneous.

It should be further noted that the displacements described above 
Will not occur over some length near the fixed end (Fig. 270), but this 
reduces the calculated deflection of the beam by a very small amount.

CHAPTER 19

Statically Indeterminate Beams
§ 109. Fundamental Concepts

Until now we have been considering only statically determinate 
beams, in which the three support reactions can be determined from 
equations of equilibrium. Very often the conditions in which the struc
ture works require that the number of supports be increased; the beams 
in these cases become statically indeterminate.

For example, to decrease the span of a simply supported beam 
(Fig. 271(n)), we may put an additional support at the middle
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(Fig. 271(6))', to reduce the deflection of the beam rigidly fixed at one 
end (Fig. 272(a)), we may prop its free end (Fig. 272(6)).

The cross-sectional dimensions of these beams, as of tne beams dis
cussed earlier, are obtained by plotting the shearing force and bending 
moment diagrams (obviously after determining the support reactions).

A 0 B
f a W

A c 8
f a i

(b) 

Fig. 271 Fig. 272

In all such cases the number of possible support reactions exceeds 
the number of static equations.

If the number of support reactions exceeds the number of static equa
tions by one, the beam is known as single-degree statically indeterminate. 
If the difference is greater, the beam becomes statically indeterminate by 
two degrees, three degrees and so on. In this book we have considered 
mostly single-degree statically indeterminate beams and also multiple- 
degree statically indeterminate continuous beams.

The basic method employed for removing the static indeterminacy 
of beams was proposed by C.-L.-M. Navier in 1826 and is based 
upon integration of the differential equation of the deflected beam axis. 
This method will be discussed in the next section.

§ 110. Removing Static Indeterminacy Via
the Differential Equation of the Deflected Beam Axis

If one hinged support is added to a statically determinate beam, it 
makes the bpam single-degree statically indeterminate and simulta
neously creates one new condition for determining the unknowns: 
the deflection of the beam at the support is equal to zero. Therefore, 
when the differential equation of the deflected beam axis is integrated 
twice, the overall number of equations and unknowns is found to be 
equal.

Lei us consider the beam shown in Fig. 273. The static equations for
the beam are: HA—0 (1), A + B —ql (2); and Bl—q ^  0 (3).
One reaction is immediately known. We are left with two equations, 
(2) and (3), and three unknown support reactions: A, B, and MA. 
The beam is thus single-degree statically indeterminate.
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Let us now write the differential equation of the deflected beam axis 
and integrate it twice:

E J f - B x - q Z (19.1)

E Jy 'B a B y— q ̂ -+ C <19.2)

E J y - i r - j f + c x + D (19.3)

On account of C and D the number of unknowns has increased to 
five, but now the two static equations are supplemented by three con
straint conditions: (1) y = 0 at x= 0 , (2) ^ = 0  at x= l, and (3) «=>0 at 
x=l.

Fig. 273

It ensues from (1) that 0 = 0 . Conditions (2) and (3) when substituted 
into equations (19.2) and (19.3), respectively, give

T T - £ + c  =  0 (19-4)

T - U  +  C, =  °  <19-5)

Dividing (19.5) by / and subtracting (19.5) from (19.4)
BP qP BP  . qP A
T “ 6— T + 2?,= 0 

From this equation we find

‘ (19.6)

From theequation of statics (2) we find A —^ q l.  Next we determine

from equation (3) the moment in the rigidly fixed end,
The fact that the support reactions are positive indicates that their 
directions shown in Fig. 273 are correct.

Substituting B in expression (19.4), we obtain

C ----- _______________ £8 v* 2 T  v § 48
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Now, substituting B and C in equations (19.2) and (19.3) we get the 
final equations for angles of rotation and deflections:

(19.7)

< 1 9 '8 >

Having determined support reactions 5 , A, and MA, we can now 
plot the bending moment and shearing force diagrams by the usual 
method.

With the help of equations (19.7) and (19.8) we can determine the 
angle of rotation and vertical displacement of an arbitrary section of 
the beam in the same manner as for statically determinate beams.

If the beam has a number of differently loaded zones, the static inde
terminacy may be removed either by using the method of equating 
the integration constants (Clebsch’s method, § 85) or by the general 
equations of the method of initial parameters (§ 86).

§111. Concepts of Redundant Unknown and Base Beam

After considering the beam shown in Fig. 273 we established that 
the number of equations of statics was one less than the number of the 
unknown support reactions. One of the reactions is a superfluous or, 
as it is sometimes called, a “redundant” unknown. This term has taken 
deep roots in technical literature although it can be applied only with 
certain reservations. Obviously, the extra reaction and the correspond
ing support constraint are redundant only from the point of view 
of their necessity in the equilibrium of the beam as one rigid body. 
From the engineer’s point of view in a number of cases the extra sup
port is not redundant but is actually a helpful tool in designing 
structures.

In a number of methods employed for removing static indeterminacy 
of beams, we write down conditions expressing the compatibility of 
displacements in that section, where the “redundant” reaction is acting. 
These conditions along with the usual equations of statics enable us 
to determine all the unknown support reactions.

In § 110 for the beam shown in Fig. 273 we had two equations of 
statics for determining three unknown support reactions A, B, and MA. 
Any of the three can be taken as the redundant reaction. Let us choose 
the reaction of support B as redundant. In this case we can argue that 
the given beam is obtained from the statically determinate beam AB 
with end A rigidly fixed (Fig. 274); end B is later propped up by an 
additional support.

The statically determinate beam obtained from the statically inde
terminate beam by removing the “redundant” constraint is known as the
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base beam. By selecting one of the reactions as redundant we at the 
same time select the base beam.

Let us now try to transform the base beam (Fig. 274) into a beam 
which is completely indentical to the given statically indeterminate 
beam (Fig. 273). For this we load the base beam with the distributed 
force q and apply a ‘'redundant” reaction B at Us end B (Fig. 275).

J - ■B gl i m ’ll ii m u  tii-i 11
i!•«-

ItLU
i

I
Fig. 274 Fig. 276

However, this is not sufficient. In the beam shown in Fig. 275, point 
B may move vertically under the action of forces q and B, whereas 
in the actual statically indeterminate beam (Fig. 273) point B does not 
have this freedom: it must remain attached to the supporting hinge. 
Therefore, to make Figs. 273 and 275 Identical, we must add the con
dition that the deflection of point B due to forces <7 and B must be zero:

=  0 (19.9)

This is the additional equation which enables us to determine re
action B. It represents the condition of joint deformation as applied 
to this case: end B does not detach from the support. This additional 
equation can be solved by a number of methods.

§ 112. Method of Comparison of Displacements
Equation (19.9) ffl= 0 , which was obtained in § 111 and which 

expresses the condition of joint deformation, may be solved as follows.
The total deflection of point B of the base beam due to forces q and 

B is made up of two deflections: due to force q and f sa due to
force B. Therefore

0 (19.10)

We have to calculate these deflections. First load the base beam only 
by force q (Fig. 276(a)). The deflection of point B will be

f  =  
ŶEJ

Let us load the base beam by “redundant” reaction B (Fig. 276(6)). 
The deflection of point B in this case will be

an
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Substituting these values in equation (19.10) we get

— $ n + § £ = 0

wherefrbin B= 2$Lt I.e. the same as obtained earlier in § 110 (19.0).
In this method we first allow the base beam to deform under force 

q, and then select a force B which returns point B to its original posi
tion. Thus we select the unknown reaction B such that the deflections

a_________ £_______iiiiiiim m iiim m iiiifum i

Fig. 276 Fig. 277

due to q and B neutralize each other. This method is known as the 
method of comparison of displacements.

The remaining reactions are (see § 110)

5 t -  m

The bending moment expression is obtained by considering the right- 
hand side of the beam (Fig. 275) and substituting the value of B cal
culated above (19.6):

Shearing force Q is expressed by the formula

Q = — B +  qx=*— q ( f — x)

The bending moment and shearing force diagrams are shown in 
Fig. 277. The section of maximum bending moment corresponds to
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abscissa x«, which may be obtained from the following relation:
3ql_
8 ‘

dM
T  0| i.e. •<7.vo =  0

3/
wherefrom -g-. The corresponding ordinate of the bending mo
ment diagram is:

Mmax - T  8 2 64

§ 113. Application of the Theorems of Castigliano 
and Mohr and Vereshchagin’s Method

The indeterminacy of the beam discussed in §§ 110-112 can also 
be removed by Castigliano’s theorem (§ 101).

The “redundant” reaction B (Fig. 278(a)) is replaced by a redundant 
unknown force B, which acts on the statically determinate beam AB

(Fig. 278(b)) along with the given 
force q.

By differentiating the expression 
for potential energy w.r.t. B and 
equating the deflection f B thus ob
tained to zero we may write equa
tion (19.9) as follows:

f 4 r ^ = °  c 9-1')0
We now have to calculate M and 

g^-and integrate within the appro
priate limits

M = + B x —^ , =  x (19.12)

We assume that the beam has a uniform section all along its length; 
after dividing by EJ equation (19.11) may be written as

t

J ( a : - 2 r ) j(‘i* = 0 09-13)
wherefrom

( 1
* 1 00

ci
i 
iq

i i n n i i i i n H i n i i i H i i i i m

(b) t
Fig. 278

B (19.6)

After this the solution is the same as in the method of displacement com
parison. . .



Ch. 19\ Statically Indeterminate Beams 363

After the indeterminacy of the beam has been removed, displacements 
in statically indeterminate beams are determined in a manner exactly 
similar to that used for statically determinate beams. If an additional 
force has to be applied for determining displacements (§ 103), the force 
should be assumed to act on the base beam. Under these circumstances 
the additional force only affects the main reactions and the redundant 
reaction must lie regarded as an active force, as before.

Fig. 279 Fig. 280

If the same problem (Fig. 273) is solved by Mohr’s method, then in 
addition to the first state when it is loaded by the given forces and the 
redundant unknown force (Fig. 279(a)) we must show the beam in the 
second state to be loaded by force P6  (Fig. 279(b)). Using the notations 
of Fig. 279, we obtain

M = Bx— q £ ,  (19.14)

i.e. the same as obtained by applying Castigliano’s theorem.
When solving the same problem by Vereshchagin's method, in addi

tion to the two loading diagrams used above (Fig. 280(a) and (b)) 
we must also plot bending moment diagrams due to forceq (rig. 280(c)), 
force B (Fig. 280(d)) and force F °= l (Fig. 280(c)).
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The areas of the bending moment diagrams are:

for force q: <*>„- — 7 7 / “  —j

for force B\ co* =  y B / x / = y

The corresponding ordinates of the bending moment diagram of unit 
force arc:

3/multiplication factor for w,: =
<>/

multiplication factor for (aB: Af£ =

Deflection of point B is:
f I (8 1 s 21 qP 3/ \  n
t * - T r \ T  T “ t t J = °

wherefrom
B - T l l

After this the solution is the same as explained in §§ 110 and 112.

§ 114. Solution of a Simple Statically 
indeterminate Frame

Plot the bending moment diagram for the given frame (Fig. 281). 
The elements of the frame have uniform rigidity, which is constant

p

I

e

*

G

Fig. 281
7)7. ’’ 7.

Fig. 282

along their length. Denoting the reactions by A, H, MAt and C, we 
write the following equations of statics:

H = P , A + C  = 0, P a -C a — MA = Q
There is one redundant unknown; let this be reaction C. The base 

beam loaded with the force P and the redundant unknown is shown 
in Fig. 282.
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Let us solve the problem by applying Castigliano’s theorem. In 
the equation of joint deformation

dU

potential energy U is the sum of the 
and the second portion, BA. Con
sequently, equation fc= 0 can be 
written as

a

h l M* i i r d x = 0

The moments and their derivatives 
are:

Mi t-Cxly

=  + C a —Pxa, +

energies of the first portion, CB, 

h*--------a-------- h

Fig. 283

Substituting these values in the equation of joint deformation, we get
<z a

$Cx*dA*-{-  ̂(Ca— PxJ adx—0 

After integtating we get
Cm3 Pfl* a a 3 n—  + Ca*---- r = 0 , C = j P

3
The bending moments are: in the first portion M i=~^Pxx and in

3
the second portion Afa =  ■§■ Pa—Pxt. The bending moment diagram
is shown in Fig. 283.

In solving the above problem by Vereshchagin’s method we depict 
two states of loading of the beam: with the given forces and reaction 
C (Fig. 284(a)) acting on the beam, and with a unit force acting in 
the direction of reaction C (Fig. 284(d)). Next we plot the bending 
moment diagrams M and M°. Areas of the bending moment diagrams 
(Fig. 284 (fr) and (c)) for the given load are:

I Cn̂
e>1 =  y C a x a = -f--2 -  

(o'=  -\-Caxa = Cai and <«£ =  — y  P a xa =  —



Potential Energy. Statically Indeterminate Beams [Part VIvOO

W (b) (c) ( 0  (e)
Fig. 284

The ordinates of the unit bending moment diagrams corresponding 
to the centres of gravity of the bending moment diagrams for the given 
loads are (Fig. 284 (6) and (c)):

M'c- + fa ,  A**c,= + a, M%=+a 
The condition of joint deformation (after factoring out EJ) is:

2  . paz
y y  a+Ca*a—-~^-a = 0

wherefrom C = ^ P ,  which is the result obtained earlier by applying 
Castigliano's theorem.

§ US. Analysis of Continuous Beams

From a practical point of view a very important category of indeter
minate beams are the continuous beams, which lie on a number of in
termediate supports to which they are hinged. The ends of such beams 
may be either hinged or rigidly fixed. Let us first discuss a case when

Fig. 285

the beam has hinged supports. In continuous beams one of the end sup
ports is usually fixed whereas all others are capable of moving. The 
numbering of supports and spans will be from left to right, the extreme 
left support will be denoted by 0  and the extreme left span by 1 . 
Lengths of the spans will be denoted by letter / with the number of the 
corresponding span as a subscript. We shall assume that the beam is 
of uniform section and consequently its rigidity EJ is constant. Fig
ure 285 shows a continuous beam with appropriate notations, and 
also the support reactions. It can be easily seen that the number of
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redundant support reactions is equal to the number of intermediate 
supports.

If we were to follow the method discussed above, we would take the 
reactions of the intermediate supports as redundant unknowns and a 
beam simply supported at points 0  and n+2 as the base beam. Addi
tional equations would be obtained by equating to zero the deflections 
of the points of intermediate supports of the base beam. However, there 
is a simpler and more popular method which makes use of a different 
type of base beam and redundant unknowns; in this method there are 
not more than three unknowns in each equation.

Selection of the redundant unknov 
terlinked. The statically determi
nate base beam is obtained from the 
statically indeterminate beam by 
removing constraints that are the 
redundant unknowns.

The problem can also be approa
ched in a different manner. Convert 
by some method the statically in
determinate beam into a statically 
determinate beam and study which 
of the reactions and constraints 
must be removed to achieve this.
These reactions will constitute the 
redundant unknowns in the stati
cally indeterminate beam.

Thus, in the two-span continuous 
beam (Fig. 286(a)), the reaction 
of intermediate support B may be taken as the redundant unknown. 
Then the base beam will be a beam simply supported at points A 
and C; the beam can, however, be made statically determinate by in
troduction of a hinge at point D (Fig. 286(6)). The base beam system 
will consist of cantilever CBD and suspended beam AD. By introduc
ing a hinge we impose the condition that the bending moment and 
hence the normal stresses in section D should be zero. Thus, when we 
consider the base beam system we actually equate to zero the normal 
stresses in section D acting from the left portion on the right and vice 
versa. These stresses give resultant moments equal in magnitude to 
the bending moment in section D. These moments reapplied to the 
base beam are shown in Fig. 286(c).

While transforming our statically indeterminate beam into stati
cally determinate by introducing hinge D, we- select the bending mo
ment in section D as the redundant unknown instead of one of the sup
port reactions.

Point D may be selected arbitrarily. However, the computations 
are simplified considerably if we select point D in the section of the

ws and base beam is closely in-

t

Fig. 286
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beam just above the intermediate support, point B, i.e. if we consider 
the moment at support B as the redundant unknown. Now the base beam 
system will consist of two simply supported beams hinged at points 
A, B, and'C and having a common support at point B.

This precisely is how the base beam system is selected in continuous
beams. The bending moments M„ M ..........  M a„lt M n, Afn+, at
the intermediate supports are taken as the redundant unknowns.

Such a selection of the redundant unknowns simplifies the equations 
from which the former are calculated. The equations may be written 
in general form with the help of the theorem of three moments.

§116. The Theorem of Three Moments
To derive the theorem of three moments let us consider a continuous 

beam having a number of spans of different lengths, l», etc., and 
loaded by vertical forces acting arbitrarily (Fig. 287(a)). Let us first 
show all the reactions which may occur in this case. From the equilib
rium of the beam it is evident that the horizontal reaction He—0.

firm ft nm
ll vffl?. 1p

to

The base beam (Fig. 287 (b)) is obtained by introducing hinges at all 
the intermediate supports. Then the redundant unknowns are the bend
ing moments Mu Aftt, etc., acting at the intermediate supports. Mo
ments at the end supports must be zero. Let us load the base beam by 
the external forces and the moments acting at the supports (Fig. 287 (c)). 
As the direction of support moments is not known, we consider them 
positive. After the solution is completed the sign of the result will 
show whether the assumed direction is correct or not.

The next step is to write down the condition which imposes the same 
restrictions on the deformation of the base beam as are present in the 
continuous beam. In the base beam the spans on both sides of the nth 
hinge which separates them may rotate (Fig. 288) due to the external 
load independent of each other. Let us denote by the angle of ro
tation of the span to the left of the nth hinge, and by the angle of 
rotation of the span to the right of the nth hinge. These possible angles 
of rotation of two adjacent spans are shown in rig. 288. In a continuous
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beam both sections coincide and simply represent two sides of the ssme 
section. Therefore, the condition of joint deformation may be written 
as

o ; - e ; = o  (19.15)

This is the condition which must be satisfied by adjacent spans at 
support n of the base beam loaded by the external forces and support 
moments. Such a condition may be written for all intermediate sup
ports and, consequently, the number of additional equations that we 
obtain is equal to the number of re
dundant unknowns.

Let us take an example to eluci
date how condition (19.15) can be 
expressed mathematically. Consider 
a two-span continuous beam (Fig.
289(a)) loaded by dilferent distri
buted forces and qit acting on 
the two spans.

The base beam loaded only by 
the external forces is shown in Fig.
289(b). For clarity the two adjacent 
spans have been shown slightly se
parated at support /; actually, hin
ges V and I" coincide.

Both sides of section 1 of the sup
port will turn as shown in the diag
ram. The deformations must be the same in a continuous beam; this 
can be achieved by loading the base beam by a negative support mo
ment Mi (Fig. 289(c)) of such magnitude that the deformations become 
equal. It follows from the above discussion that the deformations 
will be equal only when the following condition is satisfied:

(19.15')

Returning to the analysis of statically indeterminate beams by 
strain comparison and considering Fig. 287, we must expand equation
(19.15) by calculating Ihe deformations involved in it.

In the base beam the angles of rotation at support rt depend only upon 
the deformation of two adjacent spans In and ln+i. Let us isolate these 
two spans together with the forces acting on them (Fig. 290). Span 
ln is acted upon by the external forces applied to it as well as support 
■moments Afn_* and Af„, and span J„+i is acted upon by support mo
ments Mn and Mn+i in addition to the external forces applied to it. 
For clarity the two adjacent spans have been shown slightly separated 
at support n; actually, hinges n ' and n* coincide.

Fig. 288

13—3310
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We shall determine % and 0„ by the graph-analytic method. The 
fictitious beams, shown below their respective spans, are also hinged. 
The fictitious load of the left span is made up of:

(a) the bending moment diagram of the external forces, obtained 
by multiplying load area <on with the distance an of its centre of gra-

&) 1 Miiiiiauiiiuuimiiumumiiiiiimiiuti
2

Fig. 289

vity from the left support (as the bending moment diagram is positive, 
the load ordinates are drawn with arrows pointing vertically upwards; 
if the ordinates of the bending moment diagram are negative, area 
o>R is used in calculations with a minus sign);

Fig. 290

(b) the triangular bending moment diagram from positive support 
moment

(c) the triangular bending moment diagram from positive support 
moment Mn.

The right-hand fictitious beam corresponding to span /rt+1 is acted 
upon by the following forces:
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(a) the bending moment diagram of the external forces, obtained 
by multiplying load area <an+, with the distance bn+t of its centre of 
gravity from tne right support;

(b) the triangular bending moment diagram from positive support 
moment M„;

(e) the tpiangular bending moment diagram from positive support 
moment Mn+X.

The angle of rotation of section n is equal to the shearing force of 
the fictitious beam in this section divided by the rigidity of the beam:

The shearing force at the support is equal to the support reaction R'n 
of the fictitious beam.

Let us calculate this reaction. Load area is distributed between 
the supports of the fictitious beam as in a lever arrangement, exerting
a force of 2" at support ri. The triangular load with the maximum
ordinate Mn gives a reaction at the support which is two-thirds of its 
total value, whereas the triangular load with the ordinate Mn^x 
gives a reaction which is one-third of its total value. Hence

The fictitious shearing force (& is equal to this reaction taken with a 
positive sign:

In a similar manner we obtain reaction Ri, for the right span:

The shearing force in this case is equal to the support reaction taken 
with a negative sign:

Qk = R'„
The angle of rotation % is:

( K f j + 2 M A +  AJ..-A)

The angle of rotation 0£ is:

e« -----g ^ ( 6t0

13*
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Substituting the values of and 0« in equation (19.15) and can* 
celling out 6EJ, we obtain:

or

M„,ll„ + 2 M ,(l.+ ‘. . t ) + M nilt ' . i ----- 6 ( ^ L + ^ ± j h ± l )  (19.16)\ ln *«+i /
which is the equation of three moments.

We can write as many equations of this type as the number of inter
mediate supports, i.e. as the number of unknown support moments. 
Once the support moments are known the problem becomes one of ana
lyzing a number of simply supported beams loaded by the external 
forces and known support moments.

The brackets on the right-hand side of equation (19.16) contain the 
sum of fictitious reactions at the middle support due to the given load 
acting on the adjoining spans. Consequently, the theorem of three mo
ments (19.16) may be formulated in short as follows:

iM.-l/.+2A lll(/. +  / „ 1) +  « . +i / .H - - 6 / ? t  (19.17)

Here Rft represents the fictitious reaction of support (n) due to ben
ding moment diagrams M (*) of the given load on the two adjoining 
spans.

117. An Example on Application of the Theorem 
of Three Moments

Let us consider a three-span continuous beam of uniform section 
which is loaded as shown in Fig. 291(a). Start numbering the supports 
from left to right. The equation of three moments should be written 
twice: for supports I and 2 .

We shall need the areas of the bending moment diagrams of externa! 
forces acting on the base beam. These diagrams are shown in Fig. 291(b). 
Let us write the equation of three moments (19.17) for support J. Assum-
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ing n=  1, we obtain
* W „ > 1 =  .M 0 =  O t g>„ =  w ,  =  0

®r«+i=«>i= +  +  1T> *«+i —
The equation can be written

2A*i (/, +  / , ) -f-Ay2 =  — -|p /5  (ig.18)

Let us pass over to support 2  now. Assuming n=2, we get

Mn + 1  ~  Mt — 0,

0),'/i+j © — -i- Ha 2̂ 1 as 4 .0)3 -  +  7 T “  +  T2

?n+l . I* 
T

The second equation of three moments is:

+  =  (19.19)

The redundant unknowns Afi and Af# can be calculated by sol vine 
equations (19.18) and (19.19).

If we consider a particular case and assume and al=P
(Fig. 292 (a)), we obtain

M ‘= - m p '  and M>— m pl

Knowing the support moments, we can easily plot the bending mo
ment diagram of the continuous beam without any additional calcula
tions. To do this we first draw the bending moment diagrams of the 
base beam system due to the given load (Fig. 292(d)). The bending 
moment diagrams due to support moments Afi and M, are shown in 
Fig. 292(c). The resultant diagram with the characteristic ordinates 
is shown in Fig. 292 (d). The bending moment diagram may also be plot
ted without moving the sections apart at the support; in the given 
problem this was done for the sake of clarity.

The support reactions may be calculated for each span separately. 
The two reactions determined separately for each intermediate sup
port may then be algebraically summed up.

The support reactions can be computed in another way. The sum 
of the moments of all forces to the left of support J about the point of 
support is equated to the support moment Afi:
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which implies that

(the minus sign means that reaction A acts vertically downwards). 
We now consider the two left spans. The sum of the moments of all

Fig. 292

forces about point 2 is equated to the support moment Afa:

A21 +  fl/ — P x  0.5f =  Mt =  — ^  PI

After substituting the value of A and certain computations we obtain 
57

p  (directed upwards). Next we consider the extreme left
span:

W - 0 .B M -M ,-----

And, finally, we determine C after considering the two right spans: 

IH U -’ p i + C l - i P t - M , — T ^p .
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Let us finally check whether the calculations were correct:

We see that they are. With all the reactions calculated the shearing 
force diagrams for all the spans can be plotted without any difficulty 
(Fig. 292(d)).

§ 118. Continuous Beams with Cantilevers.
Beams with Rigidly Fixed Ends

The theorem of three moments can be easily applied to situations 
when the beam has cantilevers or when the ends (one or both) of the 
beam are rigidly fixed.

Let us consider a two-span beam with a cantilever (Fig. 293(a)). 
which works under the following conditions:

/x =  6m, /2 =  5m, c = 2 m , q =  4tf/m

The moment Mc may be considered as known and equal to the bend
ing moment in section C due to the load acting on the cantilever.

Thus, we have the following data to write the equation of three mo
ments:

Fig. 293

The equation is:

2Af, (/, +  /a) -2 £ !  i%»  - 6  &  y  (19.20)
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or

wherefrom
M jss—3.86tf-m

When determining the support reactions, it is recommended to 
study beam AB and the beam with cantilever BCD separately. The

quence. The smaller the length h  and the greater the moment of iner
tia of the portion and the lower the pliability of the wall, the more ri
gid is the constraint. We shall get an absolutely rigid fixation by as
suming that in the limit /j= 0  (or Ji=oo). While analyzing continuous 
■beams with fixed ends, we must replace the fixation by an additional 
span, write the equation of three moments and then obtain the condi
tions for the actual beam by substituting

Let us consider a beam rigidly fixed at both ends and loaded by a 
force P acting at distances a and b from the left and right supports 
respectively (Fig. 295(a)). We assume that supports A and B do not 
impede longitudinal deformation of the beam. We remove the const
raints and add a span on each side thus reducing our problem to the 
analysis of a three-span continuous beam (Fig. 295(b)).

We have the following data for writing the equation of three mo
ments at support 1 \

bending moment and shearing force 
diagrams are shown in Fig. 293 (b) 
and (c).

In order to explain how to solve 
the problem when one end of the 
beam is rigidly fixed, we must first 
study the design of the constraint 
(Fig. 294).

The fixed end may be considered 
as propped from below at point A 
and above at point B or vice versa. 
Such a construction cannot be con
sidered absolutely rigid, because the 
portion of length l\ between points 
A and B is capable of undergoing 
deformation, and the beam section 
which coincides with the front face 
of the watl can turn as a conse-

Fig. 294

li — 0 or soo
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The equation is:

2 Mt ((, +  y  +  AV, - 6 ^  (1 +  £ )  (19-21)

The data for writing the equation of three 
moments at support 2  (n=2) is as follows:

=  m„ £ = £ 2 5 ( i + £ )

«,1+i =  “ j =  0
Therefore

Mll, + lM ,(l, + l , )---6ir(l + £)
(19.22)

Now we substitute /t—/3= 0  and U—l in 
the above equations of three moments (19.21) 
and (19.22). We obtain the following set gf 
equations:

M,l + U \J  * =Pab (1 + f )
Solving the equations, we get

M l = Pab‘l 
I* * Mt = Pa*b

I*

The moment in the section under force P is:

Mp cf* P y  •+ Mtb . Mta
"T ’ +  T

2 PaW
“ 73

The bending moment diagram plotted for this data is shown in 
Fig. 295(a).



PART VII
Resistance 

Under Compound Loading

CHAPTER 20

Unsymmetric Bending

§119. Fundamental Concepts

Until now we have studied problems in which the elements of a 
structure are subjected to only one of the fundamental deformations: 
simple tension or compression, torsion, or planar bending. In actual 
practice a majority of the elements of structures and machines are 
acted upon by forces which give rise to two or more types of deforma
tions simultaneously.

Shafts in machines are subjected to torsion as well as bending. Be
sides tension or compression bars of trusses (rafters, bridges and 
cranes) also experience bending, because of welded and riveted joints 
at corners instead of hinges for which the trusses are actually designed. 
All such cases in which we have a combination of fundamental defor
mations are cases of compound loading.

Analysis of compound loading is usually based on the principle of 
superposition of forces, i.e. it is assumed that the effect of deformation 
caused by one of the forces on the deformation caused by the rest of 
the forces is negligible. Experiments confirm that this principle can be 
applied when deformations are small (exceptional situations when it is 
not applicable at all will be discussed later). Hence the principle 
of superposition of forces may be applied to determine total stresses 
and deformations in an elastic system subjected to compound loading 
of an arbitrary nature, i.e. stresses and strains corresponding to the 
various types of fundamental deformations may be added geometri
cally.

Let us first study the particular cases of compound loading and then 
the case when the elastic system is subjected to the most general com
pound loading.
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§120. Unsymmetric Bending.
Determination of Stresses

Till now we have been using the formula o =  ~  for calculating
the normal stresses in bending. However, normal stresses in a section 
of the beam can be completely determined by this formula only in 
case of uni-planar bending*, when the beam bends in the plane of 
action of the forces and the neutral axis is perpendicular to the plane 
of loading and represents the principal axis of inertia.

Fig. 296

In actual practice we often come across cases when the plane of ap
plication of the forces does not coincide with any of the two principal 
axes of inertia of the section. Experiments show that under such load
ing the axis of the bent beam does not lie in the plane of application 
of the forces; this is known as unsymmetric bending.

Roof beams are usually acted upon by forces the plane of applica
tion of which makes a considerably large angle with the principal axes

• Speaking more accurately, this will occur when all the forces lie in one of the 
principal plsnes of inertia of the section passing through the bending centre; in a 
number of cases the bending centre coincides with the centre of gravity of the cross 
section (§79).
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(Fig. 296). We also often come across cases when the plane of applies- 
tion of forces is only slightly inclined to the principal axes of inertia.

We shall explain the method of checking the strength and calculat
ing the deformation in case of unsymraetric bending with the help of 
the following example.

Consider a beam rigidly fixed at one end and loaded at the other by 
a force P which acts on the face of the beam and makes an angle <p 
with the principal axis Bz (Fig. 297). The second principal axis By 
is perpendicular to the first; let us select the direction of the coordinate

axes such that force P lies in the first 
quadrant.

For checking the strength of the 
beam we must first find the point 
which experiences the maximum nor
mal stress. Let us derive an expres
sion for the normal stress at any poi nt 
of an arbitrary section at a distance 
x  from the free end of the beam.

Let us divide force P into compo
nents, Pz and Py, which are directed 
along the principal axes Bz and By. 
The values of these components may 
be calculated by the following for
mulas:
P £ =  P cos tp and P]t, =  Psin<p
Thus, we have reduced unsym- 

metric bending to a combination of 
two planar bendings caused by forces Pt and Py which act in the prin
cipal planes of inertia of the beam. Adding the stresses and deforma
tions for each of these bendings, we find their total values in unsymmet- 
ric bending.

The bending moments due to forces Pz and Pu in the section having 
abscissa x  are:

Fig. 298

I I =  Ptx = Pxcos cp =  M cos ip |
J Me (=  PyX Px sin <p =  Af sin tp j  t • )

The subscripts y  and a of Af denote the principal axes about which 
the moments have been calculated; Af denotes the bending moment in 
the plane of application of force P , and its value in the given section is 
Px. If we depict the moments in vector form, we notice that we can 
obtain Af„ and Af, by directly resolving the total bending moment Af 
along the principal axes (Fig. 298).

To determine the signs of the bending moments in a three-dimen
sional problem like this, it is necessary to find additional conditions (we
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shall explain this point below). Let us restrict ourselves to finding the 
magnitude of the bending moments only; the effect of the direction of 
bending moments on the sign of stresses will be taken into account 
when the latter are calculated.

We determine the stresses at point C (having coordinafes y and z) 
lying in the first quadrant (Fig. 297), We can separately calculate the 
normal stresses at this point caused by moments M tJ and M z which 
bend the beam in principal planes xz and xy respectively. The formu
las derived for planar bending are valid in this case too.

The normal stress at point C due to bending moment M y is compres
sive (negative) and may be expressed by the formula

M„z■ 1 < • ] 
Jv

At*----- j— COS (f>

where J v is the moment of inertia of the section about the t/-axis which 
is also the neutral axis for bending due to moment M v. Moment M t 
will also give rise to compressive stresses at point C equal to

where J t is the moment of inertia of the section about thez-axis. Total 
stress at point C is obtained as the algebraic sum of the stresses calcu
lated above:

(20.2)Jy Jl \ Jy JZ }
The above formula may be used for calculating the stresses at any 

point in any section of the beam. As the formula has been derived for 
a point with positive coordinates y and z, we shall always get the stres
ses with their proper signs if we substitute y  and z with proper signs in 
formula (20.2).

Thus, at point D (Fig. 297) y  is positive but z is negative. Conse
quently. the first term in formula (20.2) will become positive whereas 
the second will remain negative as before.

Although formula (20.2) has been obtained by considering a particu
lar case of a beam rigidly fixed at one end and loaded at the other, it 
is not difficult to notice that it is a general formula for calculating 
stresses in unsymmetric bending. Only the rules for finding the pro
per sign of the stresses will be different for beams which are loaded or 
constrained in a different manner. If the positive direction of the 
principal axes of inertia passing through the centroid is always se
lected in such a way that the plane of application of forces always pas
ses through the first quadrant, then the sign before the right-hand side 
of formula (20.2) should be in accordance with the nature of deforma
tion which takes place due to the bending moment (or its components) 
at any point in the first quadrant (a positive sign in case of tension and
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a negative sign in case of compression). Now it would suffice to use 
the proper signs of y and z to obtain the proper signs of the stresses 
within the elastic limits at any point from formula (20.2).

In order to determine the maximum normal stresses we must first 
locate the critical section of the beam and then the maximum stressed 
point of this critical section. It is evident from formula (20.2) that the 
critical section is the section in which the bending moment M is maxi
mal.

While finding the maximum stressed point we must bear in mind 
that in uni-planar bending the deformation due to normal stresses is ro
tation of the sections about their respective neutral axes. In unsymmet
ric bending, which is a combination of two uni-planar bendings, there 
is simultaneous rotation of the sections about two axes which intersect 
at the centre of gravity of the section.

We know from kinematics that rotation of a body about two axes 
may be replaced by rotation about an axis passing through the point 
of intersection of the two axes. Hence, in unsymmetric bending also 
in every section we have a line which passes through its centre of gra
vity and about which the section rotates during deformation of the 
beam. This axis will be the neutral axis: the fibres of tiie beam mate
rial lying in its plane will neither elongate nor shorten and the normal 
stresses at points on the neutral axis will be zero. In relative rotation 
of two sections the maximum deformation (tension or compression) 
occurs in the fibres which are farthest from the neutral axis.

Hence, the problem of determining the maximum stressed points in 
unsymmetric bending is reduced to locating the neutral axis and the 
points farthest from it.

Equation of the neutral axis can be written from the condition that 
normal stresses are zero at points lying on the neutral axis. Let us de
note the coordinates of a point on the neutral axis by y 0  and z«; substi
tuting these values for y and z in formula (20.2), we get the value of 
a equal to zero:

q ^ __Af cos <pX20 M sin q>Xy0

Dividing by —M, we get
cosyxz, +  sinyxgq (20.3)

Jv Jg

This is the equation of the neutral axis. It represents a straight line 
passing through the centre of gravity of the section (at y o = 0  and zo=0).

Figure 299 shows two beam sections; the y • and the z-axis are the 
principal axes of inertia. Assuming that the beams are loaded as in 
Fig. 297, the projection of force P has been shown in both the sections 
and the proper signs of the normal stresses have been given for each 
quadrant; the signs above and below the section are for stresses due
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to moment MVi whereas the signs to the right and left of the section 
are for moment M z. For a beam which is loaded and constrained in a 
different way (Fig. 300), the signs of the stresses will also change ac
cordingly.

Approximate location of the neutral axis is shown in Fig. 299 As 
the neutral axis passes through the centre of gravity, it is sufficient 
to know angle a  which it makes with 
the //-axis in order to locate it fully.
It is evident from Fig. 299 that the tan
gent of this angle is equal to the abso
lute value of the ratio of 20 to #0:

tan a  = Is.

From equation (20.3) we obtain

tan ct =  I — tan <p -r ' (20.4)

Hence, the location of the neutral 
axis does not depend upon the magni
tude of force P, but only upon the 
angle which the plane of application 
of external forces makes with the 2-axis 
and upon the shape of the section.

After calculating angle a from for
mula (20.4), we plot the neutral axis Fi6- 300
on the diagram, and by drawing tan
gents to the section parallel to the neutral axis we find the maximum 
stressed points, which are the points farthest from the neutral axis 
(poults / and 2 in Fig. 299).
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Substituting the coordinates of these points {yu i t , or yt, z t) with 
their proper signs in formula (20.2), we calculate the maximum tensile 
or compressive stresses. The strength condition for the beam may be 
written as

K .X  I =  Mm , (  ̂  ' .  +  <  fo) (20.5)

where y{ and Z\ (or u, and are the coordinates of the point (in the 
coordinate system of principal axes passing through the centroid) far
thest from the neutral axis.

For section with corners in which both the principal axes of inertia 
are the axes of symmetry (rectangle, I-beam), i.e.

KIHi/a| = Iynml and KIH2«IH*«nJ
formula (20.5) may be simplified and the expression for o<1>a) may 
be written as follow's:

(20.6)

The strength condition for such sections is as follows:

!^fa«| =  % ^ (c o s« p -l-^ s in « p )< [o j (20.7)

w
While selecting the section we set the value of »and knowing to],

M*,-, and angle <p we find by trial and error the values of Wy and Wz 
which satisfy the strength condition (20.7). In unsymmetric sections 
without comers, i.e. when we use strength condition (20.5), the loca-
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tion of neutral axis and the coordinates of the farthest point (yu z*)
must be determined everv time beforehand. For a rectangular section,
w h ' h= Therefore assuming the ratio -y known we can easily find
Wu and the dimensions of the section from condition (20.7).

The diagrams showing the distribution of stresses in a rectangular 
section are given in Fig. 301.

It is clear from equation (20.4) that angles a  and <p are not equal, 
i.e. the neutral axis is not perpendicular to the plane of application of 
external forces as was the case in uni-planar bending. The perpendicu
larity can be achieved only if

J u =  Jz (20.8)
but then all axes become the principal axes, and unsvmmetric bending 
becomes impossible; irrespective of the plane of loading we shall have 
uni-planar bending. This w-ill be true for square, circular and all 
other sections which satisfy equation (20.8).

The shearing stresses may also be calculated by a method similar to 
the one adopted for determining the normal stresses; the total shearing 
stress will be equal to the geometric sum of the stresses due to bending 
in each of the principal planes. Usually the value of the shearing 
stresses has no practical importance.

§ 121. Determining Displacements in Unsymmetric Bending
We shall again apply the principle of superposiiion of forces lode- 

termine the deflection in various sections of a beam subjected to unsym- 
metric bending. Considering the same example discussed in the preced
ing section, we shall first find the deflection of point B (free end of the 
beam) only due to force F,; the deflection is in the direction of the 
z-axis and is

where i is the span of the beam. Similarly, the deflection of point B 
due to a single force Pu is in the direction of the y -axis and may be ex
pressed

t pvp PP*i*9

Total deflection f  of the free end of the beam is equal to the geomet
ric sum of the two deflections:

/ - K / J  +  fl (20.9)
Also

[ u __ 5 in  <fJy
fs COS <p T f (20. 10)
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and
fy h  

1 sin a cosa

It follows from this relation that the angle between total deflection 
/  and the z-axis is equal to os, i.e. deflection /  is perpendicular to the 
neutral axis. The beam bends not in the plane of application of forces, 
but in a plane perpendicular to the neutral axis (Fig. 302).

We shall consider the s/-axis the principal axis with the maximum 
moment of inertia, then plane xOz will be the plane of maximum rigi
dity, because the deflection of the beam is minimal in this plane. If,

as in the examples discussed above, 
and hence a>q>, the plane 

of bending deflects from the plane of 
maximum rigidity more than the 
plane of application of external for-

j
ces. The greater the ratio the* Z
greater the difference. Hence, in 
narrow and high sections in which 
the ratio of the principal moments 
of inertia may be quite great, even 
a small deviation of the plane of ap
plication of forces from the plane of 
maximum rigidity will give rise to 
considerable deviation of the plane 
of bending of the beam.

As long as the externa! forces act
ing on the beam of such a section 

lie in the plane of maximum rigidity xOz, the beam deflects in the 
same plane and the magnitude of deflections is small because of the 
moment of inertia Ju being large. But as soon as the plane of applica
tion of forces deviates from axis Oz by a small angle <p, there is a large 
increase in the deflections in the direction of y-axis (the designer very 
often overlooks this factor). The deflections in the direction of the 
2-axis are, however, almost unaffected. Let us take a numerical exam
ple to study this phenomenon. Consider a timber beam (Fig. 297) 
A=20cm high and b—6 cm wide. Then

^  =  ̂ ~ ^ « 4°0°cmS / a= £ ^ « 3 6 0 c m «

Fig. 302

Ratio of the moments of inertia is:
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When the plane of application of forces deflects by 5° from the z-axis, 
we obtain

tana=tan<p 7^=0.0875 x  11 «* 0.963, a « 4 4 °J i
Deflections in the direction of the ^-axis will almost be equal to the 

deflections in the direction of the z-axis:
fv = f t  tan a —0.963/*

Moreover, the deviation of the plane of application of forces from 
the plane of maximum rigidity is accompanied by a considerable in
crease in the normal stresses. In the example discussed above the ma
ximum normal stresses (as compared to uni-planar bending when (p=0) 
increase in the ratio (see formula (20.6))

Wy ( c°3<p̂ sm<t>)  „  ̂j +  JL tan9) cosc p « ( l+ ^ 0.0875) 1 =  1.29

Fig. 303 shows the relative location of the neutral surface, the plane 
of bending and the plane of loading.

Beams in which the principal moments of inertia of sections differ 
considerably from one another, work satisfactorily if bending occurs

in the plane of maximum rigidity (high rectangular sections, I-beams, 
channel bars). They, however, fail under unsymmetric bending. There
fore in situations where the designer is not very sure of a sufficiently 
accurate coincidence of the plane of loading with the principal plane, 
he should avoid using such sections or make additional provisions 
(by putting constraints) to prevent lateral deformation, which might 
occur during unsymmetric bending.

However, careless reinforcement of the existing structures may be 
extremely harmful. We know a case when a beam of channel section
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consisting of a plate and two angles (Fig. 304(a)), working und^r a load 
acting in plane xOz was reinforced by welding to it an extra angle 
(Fig. 304(A)). This resulted in deviation of the principal axes from the 
plane of loading and gave rise to deformation in the lateral direction, 
which was completely unforeseen.

Example- Select the section for a wooden lath of height h  and width
b and determine the. deflection of its middle point. Assume that y  —2;
the length of the beam (distance between the two supporting trusses) 
is /= 4  m and the roof is inclined at 23° to the horizontal; the load due 
to the lath’s weight and the weight of snow on the roof may be consid
ered as uniformly distributed and having the intensity q—A00 kgf/m. 
The lath is simply supported. Permissible stress is 100 kgf/cm3, and 
the modulus of elasticity Is £=10* kgf/cm3.

Maximum bending moment will occur at the middle of the span; 
it will be

-  800 kgt • m

As angle <p is equal to the angle of slant of the rod, i.e. 25°, it fol
lows from formula (20.7) and condition y B=2 that
m  bh2 A3 Afmax /  , A . \

"  12 ̂  “W " ( C0S‘P +  7  3,0 ^ J

™ n ^ ° - 906 +  2 x 0 -423) =  1402 Cm*

wherefrom IC ^]/12 x  1402=25.6«*26 cm and b—\Z cm.
Maximum deflection of the beam occurs at the middle of the span. 

Moments of inertia of the section are:
T _bh*  _  13X26* _  . m  139X26Jy — ~J2  —fs——lUuoUcm , =  j j- =4760cm4

The angle of inclination, a, of the neutral axis can be determined as 
follows:

tan a  =  tan<p;jr =  tan250i ^ j - =  1.865

wherefrom a=>61°50', and the angle made by the plane of bending 
with the plane of loading is:

a —<p =  61°50'—25°= 36°50'

The deflection in the plane of maximum rigidity is:
5x4X 44x0.906xl0® 

384X19059X104u
hql* cos <p 

: m J vE ‘ =  0.64 cm
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Total deflection is:

/  =  Js-' cos a
0.64 
0.4 72 1.35 cm

Deflection in the direction of they -axis (parallel to the arm of width 6) 
is:

f v — f t  tan a =  0.64 x  1.865 *  1.19 cm

Hence, in this example the deflection in the direction of axis Oy 
is much greater than in the direction of Oz and is almost equal to the 
total deflection.

cm a pter  24

Combined Bending and Tension or Compression

§ 122. Deflection of a Beam Subjected to Axial 
and Lateral Forces

In engineering practice we often come across; cases when a beam is 
subjected to combined bending and tension or compression. Deforma
tion of this type may occur either by the simultaneous action of axial 
and lateral forces or by the action of axial forces only.

AL 9
i lHIIIIIIIII III II III II III I

-------------
Fig. 305

The first of these cases is shown in Fig. 305. Beam AS is acted upon 
by a uniformly distributed force q and an axial compressive force P. 
If we assume that the deflection of the beam is negligible as compared 
to its cross-sectional dimensions, we can also assume with sufficient 
accuracy that after deformation force P will give rise to axial compres
sion only-.

Applying the method of superposition of forces, we can find the nor
mal stresses at any point of an arbitrary section as the algebraic sum 
of stresses caused by forces P and q.

Compressive stress aP due to force P is uniformly distributed over 
the cross-sectional area, 5, and is equal in all sections:

P
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In a section with abscissa x  the normal stresses due to bending in the 
vertical plane are given by the formula

_ M( X) Z
Jy

where x is measured, say, from the left end of the beam.
Hence, at a point of this section having coordinate z (measured from 

the neutral axis) the total stress is:

a = o >+0*
P
s

i M( x ) z

Figure 306 shows the diagrams of stress distribution in the given sec
tion due to forces P and q and also the resultant diagram. Maximum 
stress occurs in the uppermost fibres, where both deformations are

[ •" " y

compressive; the fibres below the neutral axis experience either ten
sion or compression depending upon the numerical values of ap and 
crff. In order to write the strength condition let us determine the maxi
mum normal stress.

As the stresses due to forces P are equal in all sections and uniform
ly distributed, the critical fibres are those which experience the maxi
mum bending stresses. These fibres are the outer fibres of the section 
in which the maximum bending moment occurs; for them

n  ___ l. M nmu </ max — -3- jp

Thus, stresses in the outer fibres 1  and 2 (Fig. 306) of the middle 
section of the beam may be expressed

Z;}— (2i.i)

and the design stress

l«»»l =  |o,l =  |4  +  % 5| , (21.2)
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If forces/1 were tensile, the sign of the first factor would be reversed 
and the lowermost fibres would be the critically loaded ones.

By denoting the compressive or tensile forces by JV we can write 
the general expression for checking the strength of such beams:

< % » ,- ± ( - jT + n p ) < [ « J  (21.3)

In writing equation (21.3) we have assumed that the section is symmet
ric about the neutral axis and the beam material has equal resistance 
to tension and compression.

The above method can also be applied to beams subjected to in
clined loading (Fig. 307). The inclined force can be decomposed into

a normal component, which bends the beam, and an axial component, 
which stretches or compresses it.

Example. An inclined beam (Fig. 308) is loaded at the middle of its 
span by a force P—2.5 tf. Find the maximum compressive stress in 
the beam.

The upper half of the beam only bends; the lower half is bent as 
well as compressed. Bending is caused by the force P cos 30e, whereas 
compression by the force P sin 30°. Maximum bending moment

^mtx
P i 2.5X3 
4 “  4 1.875 tf-m

The section modulus and the cross-sectional area are, respectively,

2400cm3, S =  16x30 =  480 cm8

The maximum compressive stress (in the uppermost fibre of the beam 
in a section to the left of the applied force) is:

___ P Sin 30° AJjnax_____  2500 137 500
"  5  W =* 2X 480 2400
=  —2.6—78.1 *  —80.7 kgf/cma
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§ 123. Eccentric Tension or Compression
A second situation in which the bending and axial deformations are 

added up is eccentric tension or compression, which results from axial 
forces only. This type of deformation occurs when the bar is acted upon 
by two equal and opposite forces P which act along AA  parallel to its 
axis (Fig. 309). The distance of point A from the centre of gravity of 
section 0  is OA—e and is known as the eccentricity.

Let us first consider eccentric, compression, because it is of greater 
practical importance. Our task is to calculate the maximum stresses 
in the material of the bar and check its strength. To solve the problem 
let us apply two equal and opposite forces P at points 0  (Fig. 310). 
This will not violate the equilibrium of the bar as a whole and will 
not affect the stresses acting in its sections.

Forces P crossed by a single stroke will cause axial compression, 
whereas the pairs of forces P crossed by two strokes will give rise to 
pure bending of moments The design scheme of the bar is
given in Fig. 311. Since plane OA of the bending moment may not co
incide with any of the principal planes of inertia of the bar. the defor
mation, in general, will be a combination of axial compression and 
pure unsymmetric bending.

As the stresses are equal in all sections in axial compression and pure 
bending, we may check the strength of the bar in any section, say sec
tion C-C (Fig. 311).

Let us remove the upper portion and consider the equilibrium of the 
lower portion (Fig. 312). Assume Oy and Oz to be the principal axes of 
inertia of the section. Let yP and zP be the coordinates of point A , (he 
point of intersection of the line of action of force P with the cross sec
tion. We shall select the positive direction of axes Oy and Oz in such 
a way that point A always remains in the first quadrant. Then both 
y P and zP will be positive.

Fig 309 Fig. 310 Fig. 3)1 Fig. 312



Ch. 21] Combined Bending and Tension 993

In order to find the maximum stressed point of the section, we write 
the expression for normal stress a at an arbitrary point B having coor
dinates y  and z. The stresses in section C-C are made up of axial com
pressive stress due to force P and bending stress due to pure unsymmet- 
ric bending by moment Pe, where e—OA. The compressive stress due
to force P is eq u al to  ^  at every point, where S is the cross-sectional
area of the bar; unsyrametric bending may be replaced by bending mo
ments in (he principal planes. Moment Pyp bends the bar in plane 
xOg about the neutral axis Qz and gives rise to normal compressive
stress at point B. Similarly, the normal stress at point B due to 
bending in plane xOz caused by moment Pzp is also compressive and

i * PzpZis equal to - j— .
Summing the stresses due to axial compression and bending in two 

plants and. considering the compressive stresses to be negative, we get 
the following formula for the stress at point B:

— <2 I < >

This formula is valid for calculating the stresses at any point of an 
arbitrary section, only the coordinates of the point in the system of 
principal axes should be substituted for y and z with proper signs.

In the case of eccentric tension, the signs of all the terms in the ex̂  
pression for the normal stress at point B will be reversed. Therefore, 
in Order to obtain the stress with the proper sign from formula (21.4), 
regardless of whether it is eccentric tension or compression, we must 
consider the sign of force P in addition to the signs of coordinates y and 
z\ in eccentric tension there should be a positive sign before the expres
sion

'( t+ E + 3 ?)
and in eccentric compression a negative sign.

The above formula may be modified somewhat. Let us factor out -g; 
we obtain

T ( I+ f + £f )  <2I5>
Here it and iv are the radii of gyration of the section about the princi
pal axes (recall that JZ~%S and 

To find the maximum stressed point we must select the y- and the 
z-axis in such a way that a attains the maximum value. The varying 
terms in formulas (21.4) and (21.5) are the last two, which reflect the
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influence of bending. Also, since the maximum stresses in bending oc
cur at points which are farthest from the neutral axis, it is essential, 
as in unsymmetric bending, to locate the neutral axis first.

Let us denote the coordinates of points on the neutral axis by yt 
and z%. As the normal stresses are zero at points on this axis, after sub
stituting y 0  and z0  in formula (21.5) we get

1 +  =  0 (21.6)
2 ly

This is the equation of the neutral axis; it is the equation of a straight 
line not passing through the centre of gravity of the section.

The simplest way of plotting this line is to calculate the segments it 
cuts on the coordinate axes. Let us denote these segments by a9  and az. 
In order to find segment ay cut on the #-axis, we put in equation (21.6)

and obtain
*o =  <L 00 =  ̂

1 =  hence a =  — JL (21.7)
v yp '

Similarly, assuming that

we obtain & =  <>.

(21.8)
If yp and zP are positive, segments av and at will be negative, i.e. 

the neutral axis will be located on the other side of the centre of gra
vity than point A (Fig. 312).

The neutral axis divides the section into two parts, compressed and 
stretched. In Fig. 312 the stretched part has been shaded. Drawing 
tangents to the contour of the section, tangents parallel to the neutral 
axis, we obtain two points Dt and Da which are subjected to the maxi
mum compressive and tensile stresses.

Measuring the coordinates y  and z of these points and substituting 
them in formula (21.4), we calculate the maximum stresses at points 
Di and Z>* by the formula

<*<!,*-- P  ( , T + - 7 r ~ + “' 7 7 7  (2L9)
# If ihe bar’s material has equal resistance to tension and compres

sion, then the strength condition may be written as

(21.10)
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For sections with comers in which both principal axes of inertia are 
also the axes of symmetry (rectangle* I-beam, etc.), y t~ ymax and zt=  
=zmax. Therefore formula (21.10) may be simplified and written as 
follows:

If the material of the bar has unequal resistance to tension and com
pression, then its strength must be checked in the stretched as well as 
compressed zone.

However, in some cases one check may suffice for these materials 
also. It is evident from formulas (21.7) and (21.8) that the location of 
point A of application of force and that of the neutral axis are inter
related; the nearer point A is to the 
centre of gravity the smaller the 
coordinates y P and zP and the great
er the segments au and az. Thus, 
as point A approaches the centre of 
gravity of the section, the neutral 
axis moves away from it, and vice 
versa. Therefore, in certain positions 
of point A the neutral axis will 
pass outside the section and the 
whole section will experience either 
tensile or compressive stress. Ob
viously, in such cases it is always 
sufficient to check the strength of 
the material at point only.

Let us analyze a case of practical 
importance, when a bar of rectan
gular section (Fig. 313) is eccentrically loaded by force P at point A 
on the principal axis Oy. The eccentricity OA is equal to e, and the 
dimensions of the section are b and d. Applying the formulas obtained 
above, we get

yP— +<?. zP= 0
The stress at point B is

Fig. 313

because
(21. 12)

The stresses are eoual at all points on a line parallel to axiz Oz. Loca
tion of the neutral axis is determined by the segments

av ~~
$ b*

V2 e * at =  oo (21.13)
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The neutral axis is parallel to the xr-axis; the points which experience 
maximum tensile and compressive stresses are located on the sides /•/ 
and 3’3.

The values of or*,* and <rmin may be obtained by substituting y — 
in formula (21.12):

§ 124. Core of Section

In designing elements from materials which have poor strength un- 
der tension (concrete, stone), it is highly desirable that the whole 
section should work under compression, this can be achieved by li
miting the value of eccentricity, i.e. not shifting the point of applica
tion of force P loo far from the centre of gravity.

It is desirable that the designer should know beforehand the value 
of eccentricity which may be permitted for a particular section with
out the risk of stresses of two types occurring in it. Here we require 
the concept of core of section. The term core of section defines an area 
about the centre of gravity within which force P may be applied at 
any point without giving rise to stresses of different types.

As long as point A remains within the core, the neutral axis does 
not intersect the contour of the section, the complete section lies to 
one side of the neutral axis and hence works only in compression. As 
we move point A away from the centre of gravity, the neutral axis ap
proaches the contour. The core boundary is determined from the condi
tion that when point A lies on the boundary, the neutral axis passes 
close to the contour just touching it.

Thus, if we move point A in such a way that the neutral axis rolls 
along the contour without intersecting it (Fig. 314), then the locus of 
points A will form the core of section. If there are “depressions” in the 
contour, then the neutral axis should roll along the envelope of the 
contour.

To plot the core of section we must draw the neutral axis in a number 
of positions touching the contour, determine the segments oy and at 
and calculate yP and zP—the coordinates of the point of application 
of force—with the help of relations (21.7) and (21.8):

They represent yt, and zc—(he coordinates of points on the core’s 
boundary.

If the contour of the section is a polygon (Fig. 315), we can find the 
coordinates ye and zc of points on the core’s boundary by successively

(21.14)

(21.15)
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drawing the neutral axis coinciding with the sides of the polygon and 
calculating the segments ay and a2 for the corresponding sides.

In the transition from one side of the contour to another the neutral 
axis will rotate about the apex between the two sides; the point of 
application of force will move on the core’s boundary between the

points already obtained. Let us establish how the point of application 
of force P  should move so that the neutral axis always pass through one 
and the same point B(y„t 2 n) and rotate about it <Fig. 316). Substitut
ing the coordinates of this point of the neutral axis in equation (21.6)

we see that coordinates y P and 2 P of point A, the point of application 
of force P, are related to each other linearly. Thus, if the neutral axis 
rotates about a fixed point B, the point of application of force moves 
along a straight line. Conversely, the motion of force P along a straight 
line is consistent with the rotation of the neutral axis about a fixed 
point.

Figure 316 shows three positions of the point of application of force 
on this line and three corresponding positions of the neutral axis. 
Hence, if the contour of the section is a polygon, the core’s boundary 
between points corresponding to the sides of the polygon consists of 
straight-line segments.

If the contour of the section is made up of curved lines either parti
ally or fully, the core’s boundary will be drawn with the help of points 
(formula (21.15)). Let us study a few simple examples on plotting the 
cores of sections.

For plotting the core of a rectangular section (Figs. 313 and 317) 
we shall employ the formulas derived at the end of the preceding sec
tion.

Fig. 314 Fig. 315
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For plotting the core’s boundary when point A moves along axis Oy 
we must find that value of eccentricity e=e0  corresponding to which 
the neutral axis occupies the position H%Oi (Fig. 317). From formula 
(21.13) we find that

wherefrom
e„ = i  (21.16)

Hence, along axis Oy the core's boundary will lie at a distance of 
~  from the centre of gravity (Fig. 317, points / and 3). Along axis Oz

the core’s boundary will be determined by a distance of -jj- (points 2  

and 4).

To draw the core’s boundary completely, let us plot the neutral axis 
in positions HtOt and //*0S corresponding to the extreme points / 
and 2 .

As the force moves from point / to point 2 along the core’s boundary, 
the neutral axis must pass from position H\0 % to f f tOs all the time 
touching the section, i.e. rotating about point D. For this to occur, the 
force must move along the straight line 1 -2 . It can be similarly proved 
that lines 2-3, 3-4, and 4-J will form the other boundary lines of the 
core.

Thus, for a rectangular section the core is a rhombus with diagonals 
equal to one-third of the corresponding sides of the section. Hence, if 
the force is applied on the principal axes, the whole section experi
ences stresses of a particular sign, provided the point of application of 
the force does not lie beyond one-third of the distance of the corres
ponding side from the centre of gravity.
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Figure 318 shows the distribution of normal stresses along the height 
of a rectangular section when the eccentricity is equal to zero, less 
thon, equal to and more than one-sixth of the width of the section. It

Pig. 318

should be noted that for all locations of force P the stress at the centre 
of gravity of the section (point 0 ) is the same and equal to and force 
P does not have any eccentricity along the second principal axis.

Fig. 319 Fig. 320 Fig. 321

From symmetry considerations the core of a circular section of radi
us r will also be a circle of radius r0. Let us consider an arbitrary posi
tion of the neutral axis tangent to the contour. We shall direct axis Oy 
perpendicular to this tangent. Then

af  =  <x>, 2e — 0
nr4
4nrx r—=- >s»—- ------=  — —

a y  r  4

Hence, the core is a circle of radius four times less than the radius 
of the section.
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In an I-beam the neutral axis will not intersect the section while 
moving round ii, if it remains tangential to rectangle ABCD described 
around the I-beam (Fig. 319). Therefore, in an I-beam the core is a 
rhombus, as in a rectangular section, but only with different dimen
sions.

Jn a channel bar, as in an I-beam, points / ,  2, 3, 4 of the core's 
boundary (Fig. 320) correspond to positions of the neutral axis when 
it coincides with the sides of rectangle ABCD. The distances may be 
found from formulas (21.15).

Example I. A cutout element of a chain (Fig. 321) is made of steel 
wire of diameter d=50 mm; o*=60 mm. Find the maximum permis
sible value of force P if the permissible tensile stress in section A is 
lcrl=l200 kgf/cm*.

In the given section the wire material is subjected to eccentric ten
sion. Eccentricity e is equal to o + y . Selecting axis Oy in the plane
passing through force P and the axis of the straight part of the wire as 
the other axis, we get

Stress at an arbitrary point of the section is given by the expression

or= + (q+4)

Substituting the limiting values y = ± . ^ t we find the maximum and 
minimum stresses:

' » « !  4P , 6 4Pde 4P  r .  .
. ff- . j “ ^ r ± T5ar“ 'sar L1:tTj

AP
' juP

The strength condition may be written as

wherefrom

AP
nd*

r *(.+*)i 4P

»  ?uP[(Tl 3 .1 4 x 5 aX J2O 0 _

Example 2. A long bulkhead h=3 m high and 6=2 m wide 
(Fig. 322) supports an earth mound. Earth pressure per metre length
of the bulkhead is H= 3 tf and acts at a height of -|- from the founda
tion. Specific weight of brickwork is 7= 2  tf/ma. Find the limiting va
lues of stresses in a section taken through the foundation.
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If we isolate a portion one metre long from the wall (Fig. 322), we 
can consider it as a bar fixed at one end and subjected to. bending due to 
earth pressure and compression due to its own weight. As the maximum 
stresses occur at the fixed end, it is sufficient to check the strength of 
the cutoff portion in this section only. The problem of determining 
stresses in this section is equivalent to analyzing a bar subjected to si
multaneous compression and bending.
The forces transmitted through this sec
tion are the weight of the cutoff portion 
N = \ X2X3X2= 12 tf and earth pres
sure H—3 tf. The bending moment in 
this section due to force H is equal to
M = H ^ —3 If* m. We shall employ
formula (21.3) for calculating the max
imum normal stresses at the edge of 
the foundation. The section which is 
being checked is a rectangle with di
mensions b— 2  m and d= l m; there
fore the maximum compressive stress 
on side 1 - 1  of this section is

H M 12 6X3
< w — 5 2 X 1  1x2*

=  — 6—4.5
— — 10.5 tf/ms — — 1.05 kgf/cm*

The compressive stress at points on side 2-2 of the section is

^mln -------- 5 ’+ ^ = ~ ‘ 6 +  4 *5

=  - 1 . 5  tf/m4 =  - 0.15 kgf/cm4

i

1 M WiI
n r -  1 >V/,

1

W V //////

t
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2
| i

iH l d~tn

» 'N
Fig. 322

CHAPTER 22

Combined Bending and Torsion

§ 125. Determination of Twisting and Bending Moments

In Chapter 9 we discussed a problem on checking the strength of a 
shaft under torsion. However, machine parts such as shafts rarely work 
under pure torsion. Even a straight shaft working under torsion bends 
due to its own weight, weight of the pulleys and the pressure exerted 
by the belts. Hence, a majority of machine parts working under tor
sion are actually subjected to combined bending and torsion. Crank
shafts belong to this group.
1 4 -3 3 1 0
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In the analysis of elements subjected to combined bending and tor
sion the first thing to do is to find the design values of the bending 
moment Mb and twisting moment M t.

Let us consider a straight circular shaft with a pulley and crank. 
The loading diagram of the shaft is shown in Figs. 323 and 324. A pul
ley of weight Q is mounted at its left end, the belt pressures on the 
tight and slack sides of the pulley are T  and t, respectively

and a horizontal force P acts at the crank pin at the right end of the 
shaft. Let us consider the instant when the crank is vertical. All di* 
mensions are given on the diagrams.

We have to calculate the bending and twisting moments for shaft 
AD. Forces T  and t (pull of the belt) acting on the pulley may be re
placed by a forceT-M acting at the centre of the pulley and a moment 
{T—QRt, where R 9  is the radius of the pulley. Force T-\-t along with 
the weight of pulley, Q, bends the shaft; moment (T—£)R9, which 
twists the shaft, is balanced by the moment applied to its right end.

Let us replace force P acting at the crank pin by an identical force 
P acting on the shaft at point N of its extension and a moment Pha. 
Thus, the ends of the shaft are acted upon by moments Ph0  and 
(T — f)R 9. In equilibrium, when the machine runs uniformly, these 
two moments are equal to the twisting moment Af t=Pht= ( f—t)R0. 
If we know the number of revolutions of the shaft per unit time, n, 
and the transmitted power, N, then the twisting moment can be found 
from formula (9.3) of § 46:

' 716.2$ M , -  n , hence
i >

p _Af*
ho

where 3 II

As far as bending is concerned, the shaft is acted upon by vertical 
force Q and horizontal forces T + t and P. Therefore, we must plot the 
bending-moment diagrams for the horizontal as well as the vertical 
forces (Fig. 325 (a) and (5)), considering the shaft to be simply support-
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ed at the bearings B and Cc(one of the bearings permits horizontal dis
placement). ■: • • , .

Having plotted the bending-moment diagrams for the vertical and 
horizontal forces, we can find the total bending moment Mb in a sec
tion as the geometric sum of the two/ The geometric addition of the 
vector^ representing the bending moments in section B is shown in 
Fig. 326. The total bending moment in section B may be written as

Each section will have its own plane of bendipg. However, since 
the section moduli of a circular body is the same about all axes passing 
through its'-centre of gravity, we can superpose the bending-moment

planes of all sections in the plane of the diagram and then plot the re
sultant bending-moment diagram, without irt any way affecting the 
final results. This precisely has been done in Fig. 325(c). We wish to 
point out without a formal proof that between sections B and C the 
resultant bending-moment diagram does not have a maximum.

It is evident from the shape of the diagram that critical loading 
occurs either in bearing B or in bearing C, depending on the numeri
cal values.
14*
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§ 120. Determination of Stresses and Strength 
Check in Combined Bending and Torsion

Having calculated the maximum bending moment M b and the ma
ximum twisting moment M t, we can now find the maximum stresses 
in tiie shaft material and write the strength condition. Let us assume 
the shaft to be cut in the critical section C {Fig. 327) and analyze it 
with the help of the principle of superposition of forces. We shall cal
culate the stresses in the cross section due to the bending moment and 
add to them the stresses due to torsion.

The bending moment acts in the horizontal plane, the neutral axis 
will be vertical, and the maximum normal stresses oh will occur at 
points c, and c2  at the endpoints of the horizontal diameter. Torsion 
will give rise to shearing stresses only, which will be maximal at 
points on the contour.

Thus, pointsC\ and c2  in the sectional plane, will experience maximum 
normal as well as maximum shearing stresses. At points c3  and cx on 
the vertical diameter the shearing stresses due to torsion will be sub
stantiated by shearing stresses due to bending. However, these stres
ses are small in magnitude and experimental studies show that points 
ci and cz are the critically loaded points. Let us isolate cubic elements 
of the shaft’s material around these points (Fig. 327). Four faces of 
these elements will be subjected to shearing stresses t* (two of these 
four faces will experience normal stresses too) and the other two faces 
of the cube will be completely free of stresses (Fig. 328). Hence, the 
element is in a two-dimensional stressed state. It is known (§§ 39 and 
77) that in order to check the strength of a material in two-dimensional 
stressed state, we must find the principal stresses o, and <r3 and sub
stitute their values in the strength condition written on the basis of 
one of the theories of failure.

An element of a bent beam cut at a distance z from the neutral axis 
is also in a similar two-dimensional state, of stress. We discussed how 
to check the slrengih of such an el’ement (§ 77) while studying the

P i g .  3 2 7 F i g .  3 2 8
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strength of beams that experience both a bending moment and a shear
ing force. The only difference was that both the normal stress a and the 
shearing stress t  were caused by bending in that case.

For checking the strength of an element cut from the shaft, we can 
directly apply the formulas derived in § 77 by substituting or, and xt 
in place of a and t , respectively. Then we obtain the fol lowing strength 
conditions according to four different theories of failure:

the theory of maximum normal stresses:

Y  +  V<ti> +  4xjr) ^  [<*]
the theory of maximum strain:

(0.350,-1-0.65 /o f+ T c ? )<  [o] 
the theory of maximum shearing stresses:

the theory of distortion energy:
V o i + 3xi <  [a]

We must calculate <jh and t ,  to correlate the strength check with 
the numerical value of moments Mb and M t and the dimensions of the 
shaft. Stress o,„ which is the maximum normal stress due to bending 
moment Mb, is

For a circular shaft W = -j-, where r is the radius of the circular sec
tion. On the other hand, the maximum stress x t due to torsion is

Mt Mt Mt Mt
T< Wfj nr^ n w*

2 1 4

Substituting these values in the first expression of formula (22.1), we 
obtain

We can similarly obtain design formulas for the other theories of 
failure. It is evident that all these formulas can be represented by a 
single general formula of the type

(22.1)

(22.2)
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where Ma is the design moment whose value depends not only upon 
the moments Mb and M i but also upon the theory of failure applied. 
According to

the theory of maximum normal stresses: '

the theory of maximum strain:
Mdi ** 0.35Af*+0.65 V  Aff+ M\ . (22.3)

the theory of maximum shearing stresses:
Mda = VM% + M\ 

the theory of distortion energy:
Af«4«  V M% +  0-.75Af?

Formula (22.2) is similar to the formula by which we check the 
strength under normal stresses due to bending by a moment Md. 
Therefore, the strength check of a round shaft under combined bending 
and torsion may be replaced by a check due to bending only by the ben
ding moment Md.

In some constructions the shafts are subjected to tension or compres
sion due tb an axial load N in addition to bending and torsion. The 
effect of the axial forces on the strength of the shaft may be taken into 
account by the addition of stresses a0 caused by them to the maximum
bending stresses ab: oa= j , where A is the cross-sectional area of the 
shaft.

From formula (22.2) we obtain

4 ^  foj

wherefrom the radius of the shaft

' >  V I W ’ d = 2r (22.4)

For using this formula all we have to do is to establish which of the 
theories of failure should be used and, consequently, which of the ex
pression in formulas (22.3) should be employed for calculating the de
sign moment.

We can straightaway reject the theory of maximum normal stresses 
(see § 39), because shafts are usually made from steel and from ductile 
materials in general. Until recent times, shafts in machine tool indust
ry were designed by the formula based on the second theory (the theory 
of maximum strain). The formula is sometimes also referred to as
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Saint-Venant's formula:

407

^  (0.35Atb +  0.65 V  M \+ M?) <  [a]

It was used despite the fact that the hypothesis underlying it is definite
ly not true for ductile materials. For some ti me now shafts are designed 
by formulas which are based either on the third theory (theory of 
maximum shearing stresses) or on the fourth theory (distortion energy 
theory):

-/Af}+Af?<[c] and K̂M|+0.75yWf <[o]
Table 15 compares the values of shaft diameters for different ratios 

of Mb and M h using the same permissible stress in all the theories 
of failure. The diameter obtained by the theory of maximum strain 
(Saint-Venant’s formula) is taken as unity.

Table 15

Comparison of the Shaft Diameters

Shaft d iam eter according to

II theory III theory IV theory

MbB&0 1 1.15 1.10
M b= - L M t 1 1.07 1.03

M b =  Mt I 1.03 1.01

It is evident from the table that, firstly, the difference in the dimen
sions of the shaft is not large regardless of the theory used and, second
ly, the diameter by Saint-Venant’s formula is in all cases less than the 
diameter obtained by the other two theories. This helps to explain 
the fact that Saint-Venant’s formula is still used sometimes in engi
neering practice, although it is based on a hypothesis which has been 
proved inapplicable to ductile materials.

A designer must remember that transition to the new design formu
las based on more accurate theories would have been practically im
possible if the old values of permissible stresses had been retained. 
This would have led to the use of shafts of bigger diameters, where 
old shafts of smaller size designed according to Saint-Venant's for
mula were working satisfactorily.

The idea is that when we change over to a new formula we cannot re
tain the previous factor of safety and the previous permissible stress.
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More accurate design and deeper knowledge about the working of 
materials must, as a rule, be accompanied by a reduction in the factor 
of safety and consequently an increase in the permissible stress, Icrl.

Therefore, when we are calculating the design moment by the new 
formulas, we must increase the permissible stress la] by such a value 
so that we can justify the dimensions of shafts already working satis
factorily on the basis of the new theories and reliable experimental in
vestigations.

C H A PT E R  23

General Compound Loading
§ 127. Stresses in a Bar Section Subjected 

to General Compound Loading
The methods of finding stresses and deformations used in solving 

particular problems of compound loading may also be employed in 
situations of more complex loading of the body. Limiting our discus
sion to prismatic bars, in which the centre of bending coincides with 
the centre of gravity of the section, we assume that such a bar 
(Fig. 329(a)) is in equilibrium under the forces acting on it; the ori
entation of these forces in space is arbitrary. To simplify the diagram, 
only concentrated forces have been shown in Fig. 329(a). However, 
distributed loads and moments may also be applied. This will not af
fect our discussion.

For finding the stresses at an arbitrary poin ts of the bar, let us draw 
a section mn perpendicular to the bar’s axis; the section cuts the bar 
into two parts (7 and //). Let us remove one part, say, the right one, 
and transfer all forces acting on it to the centre of gravity of section 
mn, to point C. In the future discussion we shall use a right-hand rec
tangular coordinate system with the x-axis passing through the centre 
of gravity of section mn and normal to it and the other two axes coin
ciding with the principal axes of inertia of the section passing through 
the centroid.

When a force Pk is transferred to point C (Fig. 329(b)), we obtain a 
force Ph. acting at the centre of gravity in general and not coinciding 
with any of the coordinate axes and a moment M k=P)fik acting in 
genera] in a plane which is inclined to all the coordinate planes. Pro
jecting force Ph on the x-, y- and z-axes, we find the components Phx, 
Phy and Phi', similarly, projectingMh on the x -, y -, and z-axes, we ob
tain the components Mhv, Mkl/ and M hz (Fig. 329(c) shows the resolu
tion of vector Lh representing moment Afft into the components Lux, 
Lh 0  and /„*,). By doing the same operation with all the forces Pk acting 
on the right part of the bar, we can replace the force system Ph by a 
statically equivalent system consisting of six components: three forces
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along the coordinate axes acting al the centre of gravity of the section,

£  v  Q ,=  £  P*
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and three moments about these axes,

M ,=  y  Mt,
*»1 k ■ 1 A?=1

(Fjg. 329(d)). Forces N, Qy, and Q? will be considered positive if they 
coincide with the positive directions of the coordinate axes, while 
moments Mx, My, and Mt will be considered positive if they act in 
the anticlockwise direction about the corresponding axes (all the force 
and moment components* shown in Fig. 329(d) are positive).

From the earlier discussion we know the simple forms of deformation 
which result from the action of each of these components. It should be 
borne in mind that these forces transferred from the right cutout part 
to the left reflect the action of the right part on the left and therefore 
in section mn are manifested as stresses. Thus, N is the sum of normal 
stresses distributed over the section, Mx is the sum of moments about 
the x-axis of all shearing stresses acting in section mn} and so on. 
It is evident that N gives rise to tension or compression, Qy and Qz to 
shear In the direction of the y• and the 2-axis, respectively, Mx to tor
sion, and My and Mz to pure uni-planar bending about the y- and the 
2-axis, respectively. Thus, in the most general case of loading of the 
bar, the latter experiences four simple deformations: tension or com
pression (N), torsion (Mx) and uni-planar bending about two axes, 
(Af„ and Qz) and (Mz and QM). Three force factors, N, M v, and Afz, 
give rise to normal stresses in section mn while the remaining three, 
Qv* Qz* an£l to shearing stresses (Fig. 330(a) and (c)).

Let us first study the case when only normal stresses appear in the 
bar section. It can be easily seen that this is a particular case of com
pound loading—tension or compression with pure bending in two 
principal inertia planes passing through the centroid.

§ 128. Determination of Normal Stresses
Let us assume that the forces acting on the removed part of the bar 

can be reduced in section mn to three components: the normal force N 
and two bending moments M.y and M 2; we shall assume all the compo
nents to be positive (Fig. 330 (a)). Let us derive a formula for determin
ing normal stress at a point A located in the first quadrant of section 
mn and having coordinates y and 2.

The positive normal force N  gives rise to the uniformly distributed 
tensile stress, o '—±A(IS, the positive bending moment My gives in the 
first quadrant tensile stress a’,—+Myz/Jfn while the positive bending 
moment M t gives compressive stress o*'~—Mty/Jz (see Fig.330 (6)). 
Summing up these components of normal stress we get the following 
expression for calculating the total normal stress at point A:

o«=o#-f a" +  (23.1)
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For calculating the total normal stress at any other point of the 
bar’s cross section, it is sufficient to substitute in formula (23.1) the 
values of N , M„, and Mz and coordinates y  and z with the proper 
signs; this gives us the total normal stress with the proper sign.

It is obvious from formula (23.1) that the normal stresses are linear 
functions of coordinates y  and z; they must attain maximum at those 
points of the section which are farthest from the neutral axis (at the

neutral axis the normal stresses are zero). Figure 331 (fl) depicts a sec
tion of the bar; in all the quadrants the signs of normal stresses, fl) a , 
(2) a" and (3) o'", are shown in the assumption that N ,M y and M t are 
positive. It is obvious that the neutral axis will intersect the quad
rants with normal stresses of different sighs and in the given case will 
not pass through the centre of gravity and the top left quadrant.

Assuming that in formula (23.1) stress <j is equal to zero and denoting 
the coordinates of a point on the neutral axis by y„ and z„, we get the 
following equation of the neutral axis:

N , M v
T + 7 7 0

Equating to zero first zn and then yn> we find the intercepts cut by 
the neutral axis on the axes of y and z, respectively (Fig. 331 (b)):

N Jt
SM t

, NJy
and 0 .— -3EJ (23.2)

As the presence or absence of factor W S  in.formula (23.1) does not 
affect the inclination of the neutral axis with respect to the coordinate 
axes, the inclination may be determined from the equation
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wherefrom it ensues that

tan a is .J L s .^ 1
V n  J  t  M g

(23.3)

By geometrically summing the moments M„ and M , acting in sec
tion mn in planesxz and xy, we obtain the resultant bending moment

Mb^V 'M * + M i  (23.4)

Angle <p between the plane in which Mb acts and the vertical plane 
xz may be found from the expression

ta"'<’ =  lT7 (23.5)

This expression enables us to write formula (23.3) in the following 
form:

ta n a = -p ta n  <p (23 6)

Angles a  and <p will be considered positive if they are laid in the anti
clockwise direction from the corresponding axes (a from the tr-axis and 
<p from the a-axis).

It is clear from (23.3) that in general the neutral axis in the section 
is not perpendicular to the trail of the resultant bending moment

(Figs. 331 arid 332) acting in the same section. The neutral axis will be 
perpendicular onlv when angles a  and <p are equal. This, in turn, is 
Possible only under the following conditions: (1) (p—0, i.e. Af*=0;
(2) i-e. 0; and (3) In the first two cases the bar
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experiences uni-planar bending in one of the principal planes of iner
tia irrespective of the magnitude of the principal moments of inertia; 
in the third case all the axes of inertia are principal central axes of 
inertia (circle, square, etc.) and 
therefore bending is uni-planar in 
all directions. The whole discussion 
leads to the following genera) con
clusion: bending is uni-planar and 
the neutral axis is perpendicular to 
the projection of the plane of action 
of the resultant bending moment if 
this plane intersects the section per* 
pendicular to one of the principal 
central axes of inertia alright angles.

In general the neutral axis divides 
the cross section into two zones: 
a stretched zone and a compressed 
zone. Drawing lines parallel to the 
neutral axis and tangent to the con
tour of the cross section, we find the
points Ot and 0 * of maximum tensile and compressive stresses which 
lie farthest from the neutral axis (Fig. 3310)) for both zones. Substi
tuting tiie coordinates of these points {y0x and z0l, or y0t and Zq) 
with their proper signs in formula (23.1), we find the maximum tensile 
and compressive stresses:

Fig. 332

?max "J' r  j^  j  ̂ lf9 (23.7)

While solving practical problems it is sometimes more convenient 
to replace general formula (23.7) by the following formula:

'm ax =  ±
\N \ , \M yz<t\ t lM>y,l (23.8)

in which the absolute values of N, Af„, M z, y 9  and z% are substituted, 
and the signs of the terms are ascertained in each particular case from 
the actual direction of force factors and location of the points in the 
section.

§129. Determination of Shearing Stresses

Shearing stresses in a bar’s section occur due to torsion of the bar 
about the x-axis, Af*, and shear in planes xy and xz (Qy and Qz); see 
Fig. 330(c). For a bar of circular or ring section the shearing stresses 
xt due to twisting moment Mx can be calculated by the well-known
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formula
(23.9)

For a bar of any other cross section the maximum shearing stresses 
may be determined by the formula

m axtt = ^  (23.10)

using the data for Wt given in the section on twisting of bars of non
circular section. In ail the cases the maximum shearing stresses (tor
sion) occur at the contour of the section and act along the tangent to it.

The shearing stresses due to forces Q„ and Qt are, as a rule, of se
condary importance; they are determined by Zhuravskii’s formula

and Q*$l 
T'~"V> (*) (23.11)

In rectangular and round sections these shearing stresses attain their 
maximum on the corresponding principal axes of inertia: xv on the 
z-axis and T,on the#-axis. At those points of the contour where the di
rection of maximum shearing stresses due to shearing forces (max t„ 
or max xz) coincides with the direction of maximum shearing stress 
due to torsion, the two are arithmetically summed up and the maximum 
total stress is used for strength analysis:

Tmax =  max t ,  +  max or Tm#S( =  max x, -f max xx

Since the normal stresses due to bending and the total shearing stres
ses due to shear and torsion are both maximum at the contour of. the 
section, it is logical to search for the maximally stressed points and 
also to check the strength of the bar’s material on the contour. The 
points experiencing maximum shearing stresses do not always coincide 
with the points subjected to maximum normal stresses. In such cases 
the strength of the bar’s material should be checked at those points on 
the contour where the combined effect of normal and shearing stresses is 
most unfavourable.

§ 130. Determination of Displacements
If we recall that in the general case of compound loading the bar ex

periences, besides other types' 6f elementary1 deformations, two planar 
bendings in the principal planes of inertia, it becomes clear that in 
general the deflected axis of the bar must be represented by a curve in 
space. The curvature of the axis in plane xy is

(23.12)



Ctu 23\ General Compound Loading 415

and in plane xz it is

<23,I3)
If the curvature vectors, x* and x„, are laid on the corresponding 

Coordinate axes, vector x of the total curvature of the deflected axis, 
which represents the geometrical sum

x =  V X  +  x* (23.14)

makes an angle v with the a-axis, and the tangent of this angle (see 
Fig. 331(c)) is found from the formula

tany ft*
fiAg Jt (23.15)

A comparison of formulas 123.15) and (23.3) assures us that angles 
a  and y are equal, i.e. the total curvature vector is parallel to the neut
ral axis, and if there is no .normal force .the two coincide. Hence, 
the resultant curvature plane, which is perpendicular to the total cur
vature vector and. tangent to the deflected axis of the bar in the given 
section, is always perpendicular to the neutral axis. The centre of 
gravity of the given section gets displaced perpendicular to the neutral 
axis only when the bar is subjected to.bending in one plane (when tp= 
const and a=cdrtst along the whole length of the bar, for instance, in 
uni-planar and unsyinmetric. bending).

If as in the example! depicted in Fig. 331, then according to
(23.3) tan a> tan  <p and cCxp, i.e. the centre of gravity gets displaced 
in a direction which is inclined to the plane of action of bending mo
ment Mb and tends towards the y-axis. It can be easily noticed that 
the centre of gravity always deflects from the plane of the resultant 
bending moment towards the axis about which the moment of inertia 
is maximum.

It follows from the above that the deflected axis of the bar can be 
represented by a curve in a plane only if the total curvature vector 
makes a constant angle y = a  with the tf-axis along the whole length of

/  Af °
the bar; i.e. (see (23.15)) if the product is independent from
the x-coordinate. The last may occur, few* instance, when a bar of uni
form section is loaded by forces that act in a single plane.

Applying the principle of superposition of forces, we can use the dif
ferential equations obtained from (23.12) and. (23.13) for finding the 
total displacement of the centre of gravity of an arbitrary section. 
After integrating and finding the constants of integration from the 
boundary conditions and then determining for the given, section two 
displacement components f y and f T in the direction of the principal 
axes of inertia y  and a, we can determine the total displacement as
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the geometric sum:
f ~ V r , + n (23.16)

Besides the analytical method, the displacement can also be found 
by the graph-analytic method and Castigliano’s theorem, which is 
particularly useful when dealing with crank rods (see below). When 
Castigliano’s theorem is employed for determining displacements un
der compound loading, the potential energy of deformation, U, must 
be expressed as a function of all the six force components: N, Q„, Qz, 
M x, My, and Mz. Neglecting the energy of shearing stress due to shear
ing forces, we may write

Assuming that in general normal force N and twisting moment Mx 
do not remain constant over the whole length of the bar, we can write

and the following expressions for the energy stored in a segment of 
length I of the bar:

We have the following expressions for the energy due to normal stres
ses in uni-planar bending (see § 100):

Keeping the above expressions in mind, we can write the formula for 
U as follows:

where subscript I shows that the expression is integrated over a length 
/ of the bar for which the functions of the ^-coordinate, i.e. N, Mx, 
Mft, and Mz, are continuous. If the bar contains a number of such seg
ments, then separate integrals should be calculated for each of them 
and then summed up.

Applying Castigliano’s theorem, we can find the displacement in the 
direction of any of the forces P from the following expression:

U = U(N) + U (At,)+U(M,)  + U (Mz)

the following expressions for the energy stored in an clement of length
dx:

and

and

(23.17)
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By P and 6  we denote here a general force and the displacement cor
responding to it. The formulas used in the methods of Mohr and Vere
shchagin can be derived in a similar manner.

§ 131. Design of a Simple Crank Rod

Crank rods are often used in engineering practice as parts of crank 
gear and other mechanisms, crankshafts, etc. The design of crank rods 
is a little more difficult than that of straight rods. As an example, we 
shall explain how to design the crank rod shown in Fig. 333. The rod 
consists of two parts: a vertical part (of rectangular section) and a hori
zontal part (of circular section), rigidly connected at right angles to 
each otner. The following loads are applied to the crank rod. In section 
A: Pi—1200 kgf, P4=1000 kgf,
n   Ann A A A  

this section about the longitudinal 
axis of the first part. Fig- 333

The analysis starts by plotting 
diagrams that show the variation of
all force factors on each part of the crank rod. Each may be assigned 
its own system of rectangular coordinates, choosing the axes in such a 
way that force N is always a normal force, Mx a twisting moment, and 
M y and Af* bending moments. In Fig. 334 such diagrams for the first 
part arc shown to the right of the crank rod (Fig. 334(a)), and for the 
second part below the crank rod. On these diagrams the values of 
force factors at the beginning and end of each part are written in arith
metic form. After plotting the diagrams for all the parts we are in a 
position to locate the critical sections, in which the combined effect of 
all the force factors is most unfavourable. In our example the critical 
sections are: horizontal section 1 - 1  in the first part and vertical section 
2-2 in the second part, both in the vicinity of section B (see Fig. 334(a)). 
These sections and the forces acting on them are shown in Fig. 334(d) 
and (c).
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Let us check the strength of the rod in section /•/. The forces acting 
on this section may be reduced to the force N=Pi—1200 kgf, twisting 
moment Mx=M t = —80000 kgf -cm, and two bending moments:

He »a

y  Neutral axis >

(lip flea I  tmanh B) (RtgM-hand view aim/} BC)

Fig. 334

/V i= —1000X120=— 120000 kgf-cm and M t=Pah * = m x  
X 120=48 000 kgf -cm. Normal stresses at any point of this section 
may be calculated by the formula (see (23.1))

N Mvz Mxy  1200 120000  4 8 0 0 0  160
a “ T + 7 7 ‘^ ~ t~ l 2 0  2 2 5 0 Z * §40“ ^  ~  ^  3 ~ Z _

since S=W i=8x 15=120 cm*, J //=Wi,/12=8x 15s/'12±=2250 cm4, and 
J 2=/i6*/12=15x 83/12=640 cm*. The neutral axis culs the following
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intercepts on the y- and the z-axis:
N J ,  1200 x 640 

av ~  SM Z =  120 X 48 000 =  0.133 cm

az —
N JV 1200 x  2250 3
5m„“  I& x 120 555 — T5=  0.1875 cm

Maximum normal stresses occur at point 1 which is farthest from 
the neutral axis and has coordinates ^ = —4 cm and 2i= —7.5 cm 
(this is a case of uniaxial stressed state):

cr(1) =  10 +  ijp x  7.5 +  75 X 4 =  710 kgf/cm* <  [o]

=  800 kgf/cm*

Hence, the rod's material at point 1 is sufficiently strong. We must now 
check the strength of the rod’s material at points 2 and 3, which expe
rience torsional shearing stresses in addition to the normal stresses. 
The normal stresses at these points are

*ia) =  4 - 7 f ^ = 10+ 75 X 4 =  310kgf/cm* 

o(s> =  - j  +  7“  =  10 +  x  *  7-5 =  410 kgf/cm*

To find the shearing stresses we determine J t=>ab* and
From the ratio n = h /b =  ^  =  1.875 we find from Table 9 (§ 54) by linear
interpolation the coefficients a=0.416, p=0.406, and y=0.808. 
Hence /<=0.416x84=2506 era4 and IF(=0.406x83=233 cm3. At 
point 2

-  S a r  - 343 ks f' cra'

and at point 3
T(a) =  Ŷ max =  0-^08 x  343 =  277 kgf/cm*

We will check the strength of the rod at these points by the third 
strength theory:

aX U =V 0*w +4tS1> =  y3IO* +  4 x  343*
=  753 kgf/cm* <  800 kgf/cm*

Odll(3, =  V<rSi>+ 4T ?„= V 4l0*+ 4 x  277* 
=  689 kgf/cm* <  800 kgf/cm*

Hence, at these points too the rod is sufficiently strong.
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Let us now undertake the analysis of the second part. In critical 
section 2 - 2  the force factors are

W =  P8 -f =  400 -f 6000=6400 kgf 
Mx ^  - /> ,/ ,  =  — 1000 x 120=* — 120000kgf-cm 
M;/ =  /y i  =  400 x 120 =  48 000 kgf • cm 
Mt = — Af, = —80000kgf -cm

As the section is a circle and has equal moments of inertia for bending 
about the two principal axes of inertia, i.e.

J J z ~  J b~  “ p  and J t = J j>~ ~ j-  a=2.Jb

bending moments My and Mt can be geometrically summed up into 
the resultant bending moment

Mb =  = l/48 000*-^0000* =  93 280 kgf -cm

The projection of the plane of action of the resultant bending mo
ment passes through the centre of gravity making an angle tp with the 
z-axis such that

Mg 80 000 5 . CAoo/
M,x ~ 4 8 ^ 0 0 1=1 3  a n t  ̂ V - 5 9 2

The critical point of the section is point O, which lies at the inter
section of the projection of the Af*,-plane with the contour. At this 
point the normal stress is

N . 4Mb 
=  oT7 ' .*ty*

6400 , 4 X 93280 2037.118 770
5 .1 4 3 +  3.14ry 33 r* ' 7?

and the shearing stress is
-  2/Mjf 2 x  80 000 76300

To determine the radius of the section for this part of the crank rod 
we shall again use the third strength theory:

tfies (O) =  i f  0(0) *1“ 4t(0>

<[<r] =  800 kgf/cm*

Taking the square of both sides of this equation and multiplying 
the result by r•, we obtain

2037V2 +  2 x 2037x  118 770r +118 770a +152 600s <  64 X 10
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or
(!> =  r«_6.485ra—756.1 r —58 516 > 0  (*)

While solving equation 0 = 0  by trial and error we neglect the fac
tors containing r2 and r in the first approximation (i.e. we ncgLct ihe 
relatively small normal stress NIS). This gives

r> { /5 8 5 !6 = 6 .2 4 cm

If we substitute a slightly larger value of r=6.3 cm in the equation 
0 = 0 , we get

0  =  6.3«—6.485x6.3*—756.1x6.3—58 516 
=  — 1013 kgf -cm*

We thus see that the selected value of r is not sufficient for satisfying 
the inequality (*); let us try r=6.4 cm. In this case O —+5099 kgfx 
Xcm". By interpolation we find that r=6.32 cm. This corresponds to

5 =  nr* =  3.14 x  6,32* =. 125.5 cm*
I ^  3.14 X 6.32* |OK5 /.m 43 '' ' y  — Izoocm*

J( = j p = 2Jb =  2 x  1253 =  2506 cm*

We shall apply Castigliano’s theorem to calculate the displacements. 
In Table 16 force factors N, Mx, M y, and Mt and their derivatives 
Pi, P^ and Afo are expressed for each of the crank rod parts as func-

Table 16

Force Factors and Their Derivatives

First pari ( 0 <  x K lt)

Force factors N M x  M j ,  
- M 0 - P t x

Mz
Formulas for them P i P a x

d J 6 P t 1
d J d P t —  X
d i d  P s x
did la* —1

Second part (0 «. x <  /,)

Formulas for force ■- J V I  P h - P l * P » X - \ - P o X  —
factors - M o

d / d P x —  X
d i d  P i - t i X
d / d P a I / l
d i d  M o — 1
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tions of x. Using the data of the table, we easily find that

,120 A 80
_  1 (  f  1260 . , p 1200*a—48000* j  \
= ? n w ( J  w " + j  — e s —

42 060 a a .‘ J>TIo5~ 0 -2 I cm

/ uu
> =  aP7

MXj dMgt •
EJn’ d P V ^&*■£?**+j

.120 80 80 
_  1 (  p I000sadx , p I000xl20xl20dx , p (130Qxa—80000*)dx\

2 X 10̂  J  6250 l" j  0 .4x2506 h J  125$--------- I

1 278 n COA= —5—=0.639 cm

c  P  M t i O A t g i  j , r i Â j dN% j  , p ^ y s

f’ -nF; \r tf lspr ix+] essf7d*+}li n a »
,n

i
fxTi 

0.9167

¥->+?t  ,dx+‘§0 0
,120 80 80' f 400x* dx , p6400<i* , pi

.) 640 
 ̂0

125.5 +r
b 5

=  0.408 cm

1553" V

• - T C - f & ^ + f x f c T J ? *  

- t ( |  « g f c * + | & * & } -- * »  *-1>̂ )
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( 120 
P 80000dx ,

j  0.4X1704 '

80
(*(1300*—80 000) ( -1 )

y  1555
15 870 =0.00794 =  0.456°

The total displacement is
/ » |/  /=+/»+/* =  j/0 .2 1»-f 0.639* +  0.408* 

e= 0.787 cm

CHAPTER 24

Curved Bars

§ 132. General Concepts

Besides straight-axis bars in structures we often come across bars 
in which the axis, i.e. the line passing through the centres of gravity of 
successive cross sections, is a curved line. Chain links, lugs, hooks, 
arches, vaults, hoisting crane frames, etc., all belong to this group of 
dements (Fig. 335). Strictly speaking, no bar has an absolutely 
straight axis. All bars, which we design as straight bars, have a slight 
curvature. Therefore, a study of the effect of curvature of the bar's axis 
on the distribution of stresses will, on the one hand, enable us to check 
the strength of bars having appre
ciable curvature and, on the other 
hand, judge the influence of a slight 
deviation of the axis from a straight 
line on the strength of a straight bar.

We introduce the following res
trictions for checking the strength of 
curved bars:

(a) sections of the bar have an 
axis of symmetry;

(b) the axis of the bar is a flat 
curve which lies in the plane of sym
metry;

(c) all external forces also lie in 
the same plane.

On account of symmetry* defor
mation of the bar will also occur in 
the same plane, the bar's axis will remain a flat curve lying in the plane 
of external forces and the picture will be identical to that of uni-pla
nar bending of beams.

Fig. 335
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By writing the above restrictions we cover almost all situations of 
the working of curved bars. Our task is to find the maximum stresses, 
check the strength and determine the deformation of curved bars. 

The solution will be similar to the case of bending of straight beams.

§ 133. Determination of Bending Moments and Normal 
and Shearing Forces

Imagine a curved bar (Fig. 336) loaded by external forces Px, P», P3, 
and Pt acting in the plane of symmetry of the cross sections. The sup
port reactions, not shown in the figure, lie in the same plane.

To determine the stresses in sections perpendicular to the bar’s 
axis we draw a section ma which divides the bar into two parts, I and

II. Let us remove part I and con
sider the equilibrium of part II 
(Fig. 337(o)). Part II  is acted upon 
by force Pu the reactions at the 
fixed end (not shown in the figure) 
and stresses in section mn which 
appear because of the action of the 
removed part on the part under con
sideration. What are the stresses 
in section mn?

The section will experience nor
mal as well as shearing Stresses (not 
shown in Fig. 337(a)). With the res
trictions of § 132 the normal stres
ses will give the following result
ants: the bending moment M and the 
normal force N. The shearing stres
ses in the section will yield a re

sultant shearing force Q. These three forces are shown in Fig. 337(a).
Let us now consider part I of the curved bar (Fig. 337(b)). All ex

ternal forces acting on this part of the curved bar may be reduced in 
general to a resultant force R and a moment Mv. Resultant R mav be 
resolved into two components, Rx and Rt. These three resultants’ are 
depicted in Fig. 337(c). They also represent the action of part I of the 
curved bar on part II.

A comparison of Figs. 337(a) and 337(c) immediately reveals that 
bending moment M in section mn will be equal to My, normal force 
N will be equal to Rx and shearing force Q to R z.

The internal forces in curved bars—the bending moment, normal 
force and shearing force-can be calculated as in the bending of 
straight bars through external forces acting on one side of the cross 
section. Their compulation amounts to solving the equations of statics.

F i g .  3 3 6
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The bending moment is equal to the algebraic sum of the moments 
of all the forces located on one side of the section about the centre of 
gravity of the section.

The norma! force is equal to the algebraic sum of the projections of 
all the forces located on one side of the section on the tangent to the 
bar’s axis drawn through the given section.

The shearing force is equal to the algebraic sum of the projections 
of all forces located to one side of the section on the vertical axis of 
the section.

The bending moment will be considered positive if it increases the 
curvature of the bar. The normal force will be considered positive if 
it tends to detach the portion under consideration from the removed

portion. The shearing force will be considered positive if it is obtained 
by rotating the positive direction of the normal force through 90° 
clockwise (Fig. 338).

As in a beam, while determining Af, N, and Q we may consider the 
equilibrium of either the left or the right portion of the bar, into which 
it is divided by the particular section; the selection is arbitrary and 
depends upon the convenience of computations.
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The sign conventions decided above for the bending moment, nor
ma! force and shearing force are. independent of whether the left or the 
right portion is considered.

Let us study an example for determining M, jV, and Q. Consider a 
bar representing one quadrant of a circle of radius R0, fixed rigidly at 
one end and loaded at the other by a force P (Fig. 339), Draw an arbi
trary plane with the centre of gravity at 0 . Location of the plane is de

termined by angle q> which it makes with the vertical. We consider the 
right portion of the bar to determine. M, N, and Q. This spares us the 
trouble of determining the reactions in section C.

The bending moment is equal to the moment of force P about 
point 0:

M — + P  xOD =  +  PR 0  sin ip (24.1)

Projecting force P on the normal to the section and on the plane of 
the section itself, we obtain

N - — P sirup, Q = +Pcosqp (24.2)
Hence the maximum bending moment and normal force occur at 

<P—90°, i.e. at the fixed end. Figure 340 shows the A4-, JV-, and Q- 
diagrams. The axis of the bar has been taken as the zero line. Ordi
nates have been cut along the radii of curvature of the bar.

§ 134. Determination of Stresses Due to Normal 
and Shearing Forces

The shearing stresses acting in a section of the curved bar add up 
to form the shearing force, Q. We can derive precise formulas for cal
culating shearing stresses in curved bars using the same approach that 
was employed in calculating shearing stresses in straight beams. How
ever, theoretical investigations reveal that the distribution of shearing 
stresses in curved bars closely resembles their distribution in straight 
beams. It is therefore permissible to calculate shearing stresses in
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curved bars ;by Zhuravskii’s formula, which was derived for straight 
beams:

The strength condition for shearing stresses in curved bars may con
sequently be written as

Let us now determine the normal stresses due to the two resultant 
internal forces: bending moment M and normal force N. Let us first 
consider the normal force. _

Considering an..element of length ds of the curved bar which is acted 
upon by forces N (Fig- 341), we notice that these forces acting at the

centres of gravity of the sections result In simple axial tension or com
pression of the element under consideration. Therefore, the corre
sponding stresses must be normal to the sections and uniformly distri
buted over the cross-sectional area, A :

The sign of the stress is determined by the sign of force N.

§ 135. Determination of Stresses Due to Bending 
Moment

The task of finding the law of distribution of normal stresses due to 
the bending moment over the section and deriving appropriate formu
las for computing them is statically indeterminate and, as in straight 
beams, requires that besides-writing and solving the static equations 
we must consider the corresponding deformations and write down ad
ditional equations. While determining stresses due to Q and N we 
could manage without similar computations, because we made use of 
known solutions; to determine the normal stresses due to the bending 
moment M we propose to carry out all the computations, which, inci
dentally* we have already given while deriving the formula for normal 
stresses in straight beams.

(13.7)

Fig. 34!

(24.3)
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Under ihe action of external moment M the curved bar A B (Fig. 342) 
experiences pure bending over its whole length.

Figure 343 depicts the part DC of the bar which is acted upon by in
ternal forces transmitted from the removed parts AD and CB. Bending 
moment M is shown on the left and the elementary normal force <j dA 
on the right.

The location of the neutral layer along the height of the section is 
not known and has to be determined; we shall assume that it does not 
pass through the centres of gravity of the sections. Let the origin of

coordinates be located at point C, which lies on the neutral axis, y> 
but does not coincide with the centre of gravity 0; moreover, distance 
OC is as yet to be determined. The e-axis is the axis of symmetry, and 
the x-axis is perpendicular to the plane of the section. Bending moment 
M  lies in the plane of symmetry xCz, and each elementary area dA 
with coordinates y and z is acted upon by a force o dA. We’can write 
six equations of equilibrium for the portion, which retains its equilib
rium under the influence of M and cdA.

The projection of the external forces on the x-axis is zero; the sum of 
projections of forces odA  may be represented by an integral over the 
whole cross-sectional area:

l<JdA~0  (24.4)
A

Equations that represent the projections of all the forces on the y  
and the z-axis,

J j Y  =  0  and 2 Zb=0
become identities, because the o’s are perpendicular to the y - and the 
z-axis. We similarly get an identity from the equation of moments 
about the x-axis:

because neither force o dA, which is parallel to the x-axis, nor bending 
moment M, which lies in plane xCz, give a moment about the x-axis.-
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By similar logic the moment M  about the 2-axis must also be zero; 
as for elementary forces odA,  their moment about the above axis is
given by the integral \ a dA y.

A
The fifth equation of equilibrium will therefore be

2A *r =  0, \ a d A y  = 0 (24.5)
A

The last integral is zero on account of the symmetry of the section 
about the z-axis.

Now we equate to zero the sum of moments of all the external forces 
about the #*axis. The equation may be written thus:

2 ^  =  0, M — \cdAz=*  0 (24.6)
A

Hence we get the following two equations by considering the static 
equilibrium of the portion:

5 vdA = 0 (24.4)
A

M — $odA z  =  0 (24.6)
A

We still do not know the law of distribution of normal stresses over 
the height of the section. For this reason let us first study the deforma
tion of the bar.

As in uni-planar bending of straight bars, we shall make use of the 
hypothesis of plane sections, which has been experimentally found

applicable for curved bars also. We shall assume that, under the in
fluence of bending moment, sections perpendicular to the axis of the 
bar remain flat and simply turn w.r.t. one another (Fig. 344). The 
fibres of the neutral layer CiCt-CjC  ̂ retain their original length, and 
fibres located at equal distances from the neutral axis elongate and
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shorten by an equal amount and: hence experience equal stresses oyer 
the width of the section. Let us establish a relation between the rela
tive angle of rotation and deformation of fibres for two adjacent sec

tions. Let us cut from the curved1 bar 
which is being acted upon by only 
a bending moment (Fig. 345) an ele
ment bv two close sections making 
an angle dq> with one another. This 
element is depicted in Fig. 346: 
OrOa .js the axis of the bar,; and 

/> ; ^  C^Cj is its neutral layer.
L*"“ The normal stresses acting in the 

cut planes form couples;.: due to 
these force couples the angle be
tween adjacent Sections /- / and 2-2 
changes by 6 d<p*on account of rela
tive rotation of these sections.

Let us determine the normal stres
ses in these sections at points A\ 
and At  which lie at a distances from 
their respective neutral axes. We 

select the positive direction of thez-axis towards the outer fibres. Fibre 
A\A% elongates by AjDt; the corresponding stress is

cr =  e £

where e is the relative elongation of fibre A xAt . It is equal to the ratio 
of absolute elongation AiDz to the initial length of the fibre AiAt:

Fig. 346

At

Denoting the radius of curvature of fibre AtAa by p, we obtain
A aD9 = z 6 d<f, A 1 Ai = pdq>

„ z 6d<p 2 0dq> -  ,n .
f f = P*p £  <2 4J>

Formula (24.7) gives the distribution of normal stresses due to bending 
moment M over the height of the section.

As ^  and E are constants for each section, or depends only upon
the z-coordinate and the radius of curvature of fibre AiAt (p=r+z, 
where r is the radius of curvature of the neutral layer).

For a straight beam we had obtained a linear law of distribution of 
normal stresses; in a curved bar o varies according to a hyperbolic law 
(Fig. 347). It is also evident from formula (24.7) that in fibres which 
are on the outside w.r.t. the neutral layer the increase of stresses
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is slower than that of z, whereas in fibres which are on the inside w.r.t. 
the neutral layer stresses increase faster than z, because z changes sign 
from positive to negative.

Hence in a curved bar the normal stresses at the “inside” outer fibre 
are greater, and at the “outside” outer fibre are less than the stresses 
for the same fibres of a straight bar. This is quite understandable since 
the initial length of the inside fibre 
of a curved bar is much less than 
that of the outside fibre; in a straight 
bar these lengths are equal. This 
explains the difference in relative 
deformation and hence the differ
ence in stress for these fibres.

Let us proceed with the solution 
of equations of statics. (24.4) and
(24.6) with the help of relation
(24.7) obtained by considering the 
deformation of the bar. Substitute 
expression (24.7) in equation (24.4):f«"-I*T?f"-°

A A

Factoring out the constant quantities, we obtain

If" - 0

Fig. 347

(24.8)

This equation enables us to determine the location of the neutral axis. 
Equation (24.8) implies that in the case of a curved bar it is not the

static moment about the neutral axis, j  z dA, that is zero. This clearly
shows that in bending of curved bars, the neutral axis really does not 
pass through the centre of gravity of the section. Substituting in equa
tion (24.8) z=>p—r (Fig. 346), we find

I * ? " - ! " - ' !
A A A

dA

A
'TZa

wherefrom it ensues that

(24.9)
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The method for computing rwill bedifferen.t.for each particular sec
tion. Substituting now expression (24.7) in equation (24.6), we get

<24-10>

where M is the bending moment; integration is over the whole cross- 
sectional area. The integral in the above equation may be modified 
as follows:

1 T d A = f J M
A A A A

On the basis of equation (24.8) the second of the last two integrals is 
equal to zero, whereas the first is equal to the static moment of the 
cross-sectional area about the neutral axis. This integral may be com
puted as the product of the cross-sectional area by the distance of 
its centre of gravity from the neutral axis, z0 (Fig. 347):

S = Azt (24.11)

Hence, equation (24.10) may be written

m - e ^ s ~ o (24.12)

wherefrom
6dq> M 
H i 15 (24.13)

and the formula for normal stresses, (24.7), becomes
M  2 
S p (24.14)

Equation (24.12) confirms that the static moment 5 of the cross- 
sectional area about the neutral axis is not zero, i.e. in bending of 
curved bars the neutral axis does not pass through the centre of gravity 
but is slightly (by z0) displaced. In Fig. 347 we depicted this displace
ment towards the centre of curvature of the bar. After actually deter
mining r from equation (24.9) for a number of sections we find that the 
neutral axis really gets displaced towards the centre of curvature.

This displacement occurs on account of the equality of the total com
pressive and tensile forces acting in the section. Since the stresses 
due to bending moment are less at the “outside” fibre and greater at 
the "inside" fibre, as compared to stresses in the corresponding fibres 
of an identical section of a straight bar (Fig. 347), the neutral axis 
must get displaced towards the inside fibres in order to maintain an 
equality of the total tensile and compressive forces.
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Adding to Ihese stresses the stresses due to the normal force obtained 
in the preceding section, we get the following formula for total normal 
stresses in a curved bar:

N , m z
A ' S  J (24.15)

The maximum tensile and compressive stresses will occur at the outer 
fibres /  and 2 (Fig. 347).

§ 136. Computation of the Radius of Curvature
of the Neutral Layer in a Rectangular Section

Equation (24.9) is the expression for determining r:

Let us solve this equation for a bar of rectangular cross section. Let 
h be the height and b the width of the section, Ra the radius of curva
ture of the bar, Rt the radius of curvature of the outer fibres, Ra the

Fig. 348 Fig. 349

radius of curvature of the inner fibres and r the radius of curvature of 
the neutral layer (Fig. 348). If we divide the section into elementary 
strips of area dA-bdp ,  then equation (24.9) may be written

„ _  bh h h (24.16)'  Ch dp Tfl =  . R.

wherefrom
7  r-, fi> —!i__ (24.17)

15-3810



Formulas (24.16) and (24.17) enable us to determine r and z0  and, 
hence, S for a rectangular section.

Location of the neutral layer in sections consisting of a number of 
rectangles is determined by the same method as in the rectangular 
section of a curved bar; only formula (24.16) becomes more compli
cated.

Let as consider an 1-beam having flanges of different sizes (Fig. 349). 
The denominator in equation (24.9) is calculated as follows:

434 Resistance Under Compound Loading JPart VII

The radius of curvature of the neutraZ layer is determined from the 
expression

j ._

in *nAj Aft Aft
(24.18)

§ 137. Determination of the Radius of Curvature 
of the Neutral Layer for Circle and Trapezoid

To determine the radius of curvature of the neutral layer for a circu
lar section of diameter d, we cut the disc into elementary strips of area 
dA by lines drawn parallel to the neutral axis (Fig. 350).

Fig. 350 Fig. 351

Let us express dA and p as functions of angle <p subtended at the 
centre. It is clear from the diagram that

p =  /?,+■—sin cp, dA =b 14p
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But
bg = dco$tp and dJp=ycos<pdq>

(Pwhich implies that d A = y C o s 8<pd<p. The denominator in equation 
(24.9) may be written

+ 31/2
f* d A_ f* d1 cos8 <p rf<p
J  p ”  J  2/?0+  d sin ©
A  - 3 1 /2

After integration we get
+  31/2

I  2R<,+ rf5inqp =  :nC (2#o—
- n / 2

Putting this value in equation (24.9) and substituting nd2/4 for A, we 
obtain

4 (2/?6 —■ 4/?o— d*)
(24.20)

For a trapezoid (Fig. 351) we again use equation (24.9). The area of 
the trapezoid is

The width of the trapezoid at a distance p from the centre of curvature 
is

b (p) =  &i+(&S- A )  » dA = b(p)dp

The integral ^ y  has the following value (dropping the intermediate
A

operations):

) ^  $ - ( b > -  6,)

Now from equation (24.9) we get

(24.21)

When bi=bu i.e. when the trapezoid becomes a rectangle, the above 
formula becomes identical to formula (24.16).
15*
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When 61-0 . we obtain the formula for determining the neutral 
axis of a triangular section:

hbr —
2/?ir ,n

(24.22)

§ 138. Determining the Location of Neutral 
Layer from Tables

With the reasoning of §§ 136 and 137 for rectangular, circular and 
trapezoidal sections, we can calculate r and z0  for an arbitrary section. 
The results for a few shapes are given in Table 17. In this table the 
values of z0  are given as fractions of the radius Ro depending upon the
ratio — , where c is the distance of the inner fibres from the centre ofC
gravity of the section. In the extreme left columns are given values of 
Role. At the top of all the other columns is given the shape of the parti
cular curved bar. The quantity Zo is obtained by multiplying the cor
responding tabulated value, k , with Ro, i.e.

Zo = kR*
n

It is evident from this table that when the ratio ~  increases, the

ratio rapidly approaches zero, i.e. the neutral axis approaches
the centre of gravity. This means that the difference in the working of 
material In a curved and a straight bar diminishes to the point of be
coming immaterial. It follow's that in the limit the neutral axis passes
through the centre of gravity of the section. Hence, when &  is large,
the location of the neutral axis and the stresses in the curved bar are 
determined, with a small error, by the same formulas which are used 
for straight bars.

For a ratio of — equal to ten, the quantity z0  may be considered 
equal to zero for all practical purposes.

§ 139. Analysis of the Formula for Normal 
Stresses in a Curved Bar

Substituting the coordinates of the farthest points of the section in 
the formula for normal stresses (24.15),

for point /, 27 and R+ (outside fibres)
for point 2 , —z% and R% (inside fibres)
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Locating the Neutral Layer from Tables
Table 17

K.

1.2 0.361 0.336 0.352 0.269
1.4 0.251 0.229 0.243 0.182
l.C 0.186 0.168 0.179 0.134
1.8 0.144 0.128 0.138 0.104
2.0 0.116 0.102 0.110 0.083
2.2 0.096 0.084 0.092 0.068
2-4 0.082 0.071 0.078 0.057
2 .6 0.070 0.061 0.067 0.049
2.8 0.060 0.053 0.058 0.043
3.0 0.052 0.046 0.050 0.038
3.5 0.038 0.033 0.037 0.028
4.0 0.029 0.024 0.028 0.020
6-0 0.013 0.011 0.012 0.0087
8.0 0.0060 0.0060 0.0060 0.0049

10.0 0.0039 0.0039 0.0039 0.0031

1.2 0.418 0.408 0.453 0.399
1.4 0.299 0.285 0.319 0.280
i.C 0.229 0.208 0.236 0.205
1.8 0.183 0.160 0.183 0.159
2 .0  * 0.149 0.127 0.147 0.127
2 .2 0.125 0.104 0.122 0.104
2.4 0.106 0.088 0.104 0.088
2.6 0.091 0.077 0.090 0.077
2.8 0.079 0.067 0.078 0.0G7
3.0 0.069 0.058 0.067 0.058
3.5 0.052 0.041 0.048 0.042
4.0 0.040 0.030 0.036 0.031
6 .0 0.018 0.013 0.016 0.014
8.0 0.010 0.0076 0.0089 0.0076

10.0 0.0065 0.0048 0.0057 0.0048
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we may write down the following strength condition of a curved bar:
-  H i M Zx c i
a>“ T + — fiT < W  1

N M Zt ^ . r ’
0« - T — n j < W  J

(24.23)

If the material has unequal strength under tension and compression, 
then to] will have two different values. On account of the fact that two 
factors, M and N, give rise to normal stresses, it is more complicated to 
determine the critical section for a curved bar than for a straight one. 
In some cases (see § 133) M and N attain maximum values in the same 
section, which obviously is the critical section. If the situation is dif
ferent, the strength of the material has to be checked in a number of 
sections and the critical section can be determined only after appro
priate calculations.

If the radius of curvature Ro of the bar is large as compared to the 
height of the section h (precisely, when R£>5h), then the ratios
~ or become negligibly small and the normal stresses which
depend upon the bending moment differ only slightly from the normal 
stresses calculated by using the formula for a straight bar. This state
ment can be easily verified from the data given in §§ 135 and 136. Let
us take, for example, equations (24.10) and (24.7). Eliminating
and substituting r-fa for p, we obtain

a = (24.24)

If we neglect - ,  then formula (24.24) becomes the same as the formula 
for calculating normal stresses in a straight bar:

Let us determine the error that is made if we determine the maximum 
normal stresses due to the bending moment in a curved rectangular bar 
from the formula for straight bars

R 0 = Sh

The radius of curvature of the neutral layer is
r  = _______!1______ r -  -  r— h —r i  o f i < m

5.5 0.20067
‘”5 ^ 0 3 5  lnt 5
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and consequently
2» =  ^ o - r =  00167/i, or ?o =  0.00334/?o

i.e. the neutral axis passes from the centre of gravity at a distance
which is only ^  of the height of the section.

The normal stresses due to bending, when calculated from the for
mulas for curved bars, are found to be

M  2, AfxO 5167/1 0.5167xAJx6
S Rx ~WiXO OI67/iX5.5A=  0.55I1M’

_  M 2a Mx0.4833/i 0.4833xA!x6 , M
1 S Rt Wtx0.0167A X 4.5/i------ 0 4509«t* =  1,U/1 W

l.e. the values of stresses differ by ±7%  from those calculated by the 
formula for straight bars.

This is the main reason why curved bars are divided into two groups
for purposes of strength check. Bars with a large curvature
fall in the first group. In such bars the normal stresses should be cal
culated by the following formula:

N
° w “ T ± T 3 ? r ,< W  (24.23)

Practical examples of this group of bars are machine parts like hooks, 
chain links and rings. To the second group belong bars with a small 
curvature, in which the racfius of curvature of the axis is large as com
pared 1o the dimensions of the cross Section ( ~ > 5 j .  In such bars
the normal stresses due to bending may be calculated according to 
the formula for straight bars:

V M
a^  = JA ± W ^ ^  (24-25)

This group generally consists of curved bars used in various structures: 
arches, domes, etc.

§ 140. Additional Remarks on the Formula for 
Normal Stresses

While checking the strength of curved bars, we often obtain consi
derably high stresses at the inside fibres. These stresses (Fig. 347) start 
decreasing fairly sharply at a small distance from the edge of the sec
tion. Thus, they bear strong resemblance to local stresses and their ef
fect on the strength of a material must be taken into account according 
to the recommendations given in § 15: ductile materials (mild steel) do
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not face danger of failure because of these stresses exceeding the yield
stress, if the loading is static.

The fundamentals of the theory of analysis of curved bars, discussed 
in § 135, were first put forward by the Russian Academician A. V. Ga- 
dolin between 1856 and 1860. The accurate theory of bending of curved 
rectangular bars was formulated in 1880 by Kh. S. Golovin; results ob
tained by him prove that sections of curved rectangular bars remain 
planes after bending. Experiments conducted for the verification of 
this theory show satisfactory concurrence of the results with the theore
tically computed values.

The hyperbolic law of distribution of stresses can be distinctly seen 
by beaming monochromatic polarized light on a transparent model of 
a deformed curved bar. We notice rows of dark and light strips in the 
model; the sharper the change of stresses the narrower and more fre
quent are these strips. Figure 352 shows the distribution of strips un-

S
Fig. 352

dor pure bending for a model which has a straight as well as a curved 
portion. The strips are spaced uniformly in the straight portion be
cause the stresses change linearly, i.e. uniformly. In the curved portion 
we notice a concentration of the strips on the concave side and an op
posite picture on the convex side, which corresponds to sharp and non- 
uniform increase of stresses in the former zone and a considerably 
slower change in the latter.

While studying the distribution of normal stresses in curved bars 
we ignored the radial normal stresses which occur due to mutual com
pression of fibres of the bar material. These stresses have much greater 
importance for curved bars than for straight bars, as is seen from exper
iments on gypsum (brittle) models. These stresses are particularly high 
in sections in which the width changes suddenly (I-beams).
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§ 141. An Example on Determining Stresses 
in a Curved Bar

A bent frame is acted upon by two forces P of 800 kgf each. Find the 
maximum stresses in section AB. The radius of the axis is R ,—80 mm, 
and the cross section is a rectangle 80 x  30 mm in size (Fig. 353).

As—< 5 , we must use the formula applicable to bars with large 
curvature. Let us determine radius r of the neutral layer:

hr =  -
In Ht

In our example /i=80 mm, #i=120 mm, and Rt—40 mm; therefore
80 _  80 

f =  . 120 1.099
, n 40

'72.8 mm

Now we calculate the quantities necessary for analysis: 
2 % — Rq—r =  80— 72.8 =  7.2 mm=0.72 cm 
$  =  4*0 =  8x3x0 .72  =  17.3 cm3
Z| =*2' “F *0 =  4+0.72 =  4.72 cm

* ,= -y —z0 =  4—0.72 =  3.28 cm

Bending moment about the centre of gravity of the section is 
M. =  —800 x  2 5 = —20000 kgf-cm

Normal force AT=+800 kgf. The cross*sectional area 4=24 cm2. The 
normal stresses at point 4  (<r2) and B (orj) are

a, =  +  f £ -  X  ± y  =  + 3 3 -  455 — 422 kgf, cm*

<’. =  +  | p + ^ x X 5r ‘= + 3 3 + 9 ‘>8 =  +98* kgt+nr
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Had we ignored the curvature of the bar and computed the stresses 
by the formula

we would have obtained
o
0

800 
24 + ^  =  + 3 3 T  625 =  { -5 9 2 }  kgf/cm«

The stresses in the inside fibres would have been
981-658

sin 100 — 33%

less, which is beyond the provided factor of safety. Hence, we may 
conclude that considerable overstressing may occur if the cross section 
of a curved bar is designed without taking into consideration its curva
ture.

§ 142. Determination of Displacements in Curved Bars
Analysis and experiments show that though the curvature must be 

accounted for while determining stresses in bars of large curvature, the 
same may be ignored in majority of cases when deformation is being

determined. Let us study how to 
calculate potential energy expended 
in bending of a curved bar.

Let us cut from the bar an ele
ment of length ds by two cross sec
tions (Fig. 354). Both faces of the 
element will be acted upon by shear
ing stresses, which give a result
ant force Q, and normal stresses, 
which give a normal force N and a 
bending moment M.

For determining the potential 
energy accumulated in the element, 
we must compute the work done by 
all the forces acting on the element. 
While determining the potential 

, , . energy of a beam we neglected the
work done by the shearing forces. This simplification is all the more 
justified in case of curved bars because the effect of shearing forces is 
still less.

Fig. 354

Now all we have to do is to calculate N and M. If wc neglect the 
curvature of the bar, then this is equivalent to assuming that the
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deformation of the element under force couple M is identical to that of
a beam. The potential energy due to this deformation is equal to ;
the only difference when compared to the expression for potential 
energy of a beam lies in a different notation of the length of the element, 
ds instead of dx.

On account of the fact that we ignore the curvature of the bar, the 
neutral axis must pass through the centre of gravity of the section. 
Therefore, when the section rotates under the action of Af, the centres 
of gravity 0i and 0 a do not move and N does not do any work. Conse
quently, we may calculate the work done by N independent of Af and 
then add to it the value obtained from the expression given above.

Forces N acting on the element produce simple tension or compres
sion; the potential energy accumulated during tension or compression
is given by the expression The potential energy accumulated in
the element is

dU = M*ds
1ET

N* da 
2EA

The potential energy accumulated in the whole of the bar is obtained 
by integrating the above expression over its total length:

M w + I w  <24-2«>
$ s

According to Castigliano's theorem, the first derivative of this ex
pression w.r.t. concentrated force P gives us the linear displacement of 
the centre of gravity of the section in which force P is applied. Similar
ly, the first derivative of U w.r.t. Af0 gives us the angle of rotation of 
the corresponding section:

r d U  f
' “ ■ a r - j

AidsdM  , 
E J dP 1 ,

(* N ds ON
J ~Ta "5p (24.27)

CD II 11’M ds dM , f* N ds dN (24.28)I EJ dM0 1 J EA dM9 
6

Mohr’s method may also be used for determining displacements in a 
curved bar. Formulas (24.27) and (24.28) are replaced by

(2 4 2 9 )

s s

Let us apply this formula for calculating the vertical displacement 
oi end B of the curved bar whose axis is described by radius /?*. The 
bar must be drawn in two states:

(a) when it is loaded by the given force, P (Fig. 355(a));
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(b) when it is loaded by a unit force P°=I acting on section B in 
the direction of the required displacement (Fig; 355(6)).

Let us calculate Af (*), M°, N(x)t and N°:

M =  -j-/>i?0s«n(p, Af° =  /?,sin<p
W =  — Psinip, N* = — sin <p, ds = Rt di p

Substituting the above values in formula (24.29), we obtain:

where i is the radius of gyration of the section.
The first term in the parentheses show's the effect of the bending mo

ment on deflection, the second term shows the effect of normal force.
Since in the majority of cases is a small quantity, the effect of

i enormal force on the deformation of curved bars is in a number of cases 
comparatively small.

If we want to find the horizontal displacement of point B, we 
should apply a unit horizontal force P9—l at the above point. We can 
similarly find the angle of rotation of this section by applying Afu= l .

If it is required to break the bar into a number of portions for cal
culating M and N, then each of the corresponding integrals in formula 
(24.29) becomes a sum of integrals with appropriate limits.

Fig. 355



Ck. 24\ Curved Bars 445

§ 143. Analysis of a Circular Ring

Let us find the stresses in the critical section of a circular ring 
(Fig. 356) subjected to two tensile forces P. The radius of the ring is 
Ro and its rigidity EJ. The problem is statically determinate as far as 
the external forces are concerned. However, with respect to internal 
forces it is statically indeterminate.

Let us cut the ring by a horizontal section into two parts; the upper 
part is shown in Fig. 357. The sectioning plane will experience inter

nal forces transmitted from the lower (removed) part: normal force 
N=Q.5P and bending moment M A drawn arbitrarily as shown in the 
figure (there is no shearing force in the horizontal sections). We have 
exhausted all equations of statics in drawing these conclusions from 
the symmetry of the ring, but moment M A still remains unknown. Let 
us now consider a section making an angle q> with the sectioning plane 
(see Figure). The following forces will act in this section:

Since the section is symmetric, the angles of rotation of horizontal 
sections to which moments M A are applied will be zero; therefore the 
partial derivative of potential energy with respect to M A will also be 
zero:

Fig. 356 Fig. 357

M y=  M^ +  0.5/, /?0( l— cos(p) 
Nv =  0.5 P coscp 

—O.SPsiny

(24.30)
(24.31)
(24.32)

s

-£J  ̂ [Ma 4- 0.5P/?o (1 —cos <p)] dtp «*= 0
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The equation is solved as follows:
n/ 2

|  (Ma + O.SPR9 — 0.5PR0 cos<t>)d<p =  MA£+Q.5PR0%— 0.5PR 0  =  0

MA = ~  0.5PR0  (1 - 1 )  =  -  QA82PR,

Hence, moment M A acts in the opposite direction to the one shown in 
the figure.

With the help of formulas (24.30)-(24.32) we can determine the in
ternal forces in any section of the ring. The section that evokes maxi
mum interest is section B. In this section at q>=n/2 we have

MB =  — 0.182PR, +  0.5 PR6 =  0.318PR<>
Q8  = 0.5P, Nb = Q

Thus, we see that for a ring section B , where force P is applied, is 
critical although the normal force in this section is zero.

The reader is advised to plot the bending-moment, normal-force and 
shearing-force diagrams for the ring section using formulas (24.30) 
and (24.32).

C H A PTER 25

Thick-walled and Thin-walled Vessels 
§ 144. Analysis of Thick-walled Cylinders

Wc were perfectly justified in considering the distribution of stres
ses as uniform over the thickness of the wall in a thin-walled cylindri
cal reservoir subjected to internal pressure {§ 29). This assumption has 
minimal effect on the accuracy of design.

However, such an assumption in the case of cylinders having con
siderable wall thickness as compared to their radius is sure to result 
in large errors. The analysis of such cylinders was worked out by
G. Lame and A. V. Gadolin in 1852-4. The latter gained worldwide 
fame thanks to his works on analysis of curved bars in application to 
strength analysis of artillery guns. Figure 358 shows the cross section 
of a thick-walled cylinder of external radius r, and internal radius r2; 
the cylinder is subjected to external pressure pt and internal pres
sure p2.

Let us consider a very thin ring of radius r in the cylinder wall. Let 
dr be the thickness of the ring and let AB (Fig. 359) depict a small ele
ment of this ring subtending an angle c/0 at the centre.

Suppose the element has unit thickness in a plane perpendicular to 
the plane of the figure and suppose ar and or+dor are the stresses acting
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at the inner and outer faces of element AB\ also suppose at is the stress 
at its side faces. It is obvious from the symmetry of the section and 
the load that element AB will not warp and that no shearing stresses 
will act on its faces. Faces of the element which lie in the plane of the

<Sr+&Gr

figure will experience the third principal stress, at, caused by the pres
sure on the cylinder base. This stress may be considered constant over 
the cylinder’s cross section.

In the plane of the figure, element AB is acted upon by two forces 
0 tdrX l, making an angle dQ between themselves, and a radial force

(or 4- d<jr) (r+ dr) dO x  1 — a,r d0 x  1

This force is directed towards the outer surface. In equilibrium the 
three forces constitute a closed triangle abc. It is evident then that the 
radial force represented by segment ab is connected with force o tdr 
(segment ca) by the following relation:

ab — cadQ
or

[(ar -1- dar) (r 4- dr)—<rrr] d0 =  at dr dft

Neglecting the small quantities of higher order, we get
<sf dr-\-dofr = o t dr

wherefrom

a' - o-+ - i3 r r = 0  <251>

The equilibrium conditions give us only one equation for determin
ing two unknown stresses. The problem is statically indeterminate and 
we must consider the deformation of the cylinder.

Deformation of the cylinder consists in its elongation and in radial 
displacement of all points of its cross sections*" Let us denote the radial
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displacement of points of the internal surface of the element by u 
(Fig. 360). Points on the outer surface will get radially displaced by 
u+du. Thus, thickness dr of the element will increase by du and the

relative elongation of the cylinder 
materia! in the radial direction
will be V = ^ - .

In the direction of stresses at the 
relative elongation et will be equal 
to the relative elongation of arc ab 
when it occupies position cd. As 
the relative elongation of the arc is 
the same as the relative elongation
of radius r, «< =  ■-. From Hooke’s
law (formulas (6.21), §34),
e r = 4 - ( ° '—per,— = ~jL

Fig. 360
8# =  -^ (o,—p<Tr—JW,) =  7

(25.2)
As both e, and er are functions of u, they must be compatible. Dif
ferentiating e, w.r.t. r, we get

du
d*t dr r 11 
"37 — r*

I (  du u \  1 , v
T i T F - T r T l * ' - * ' ) (25.3)

This is the condition of joint deformation. Substituting in it the 
values of e, and e( from (25.2), we obtain the second equation correlat
ing <j, and o>:

or
7 F  | t  — iw*)] = 7  *4 r - ( a , - * * )

d<t/ 
"37 <crr—crr) (25.4)

Substituting in this equation the value of or—a t from (25.1), we gel 
do i dor . . .  do.-ar-c-jr^-e+^-jf

or

4 r + 4 r = °  (25.5)

For simultaneous solution of equations (25.1) and (25.5) we differen
tiate the first w.r.t. r and substitute in it the value of ^  from the
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second. This gives us
dar
dr

dot
dr f  r

The differential equation may be rewritten as
3 dor 
r dr

The solution of this equation is

(25.6)

(25.7)

which can be checked. Constants A and B are calculated from the 
boundary conditions at the internal and external surfaces of the cy
linder:

(Or)r=r,----- Pit (Or)r=f, -------------------------- p9  (25.8)

The negative, sign in the right-hand sides of these expressions signifies 
that the positive direction of a, corresponds to tensile stresses (Fig. 359). 

From the expression (25.8) we get
a s 

A —  P t ' i — P i 'i
n r-—r*'~ 1 r t

(Pt— Pi)r\r\
/'*—fi 1 ri

The values of the constants and equation (25.7) give us (he final 
formulas for ar and o,:

. _  pA —Pin
rl ri

(Pt-Pi)rirj
r 'i 'f - r l)

. iPt—Pi)Ar%
(25.9)

It is obvious from these formulas that the sum crr+crf does not de
pend upon r y i.e. the strain along the axis of the cylinder is the same 
at all points of the section (as <rz is the same for all points), and the 
section remains a plane.

A situation in which only internal pressure pt acts on the cylinder is 
of considerable practical importance. Here

Figure .361 shows the distribution of stresses over the thickness of the 
cylinder waifs when />(=0. As <t? is usually much less than or and in
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magnitude, only the latter two are considered in checking the strength 
of the cylinder. From the third theory of failure (theory of maximum 
shearing stresses) we find that the maximum difference of principal 
stresses,

occurs at points of the internal surface of the cylinder and is always 
considerably greater in magnitude than the internal pressure.

Thus, permanent deformation begins at the internal surface of the 
cylinder when (cr,— becomes equal to the yield stress of its ma
terial; any attempt to curb the appearance of permanent deformation

by increasing the external radius n  is accompanied by an increase of 
the numerator as well as denominator in formula (25.11). Therefore, 
although the difference of principal stresses (at—or)max becomes less, 
the decrease is very slow. However, when permanent deformation be
gins at the internal surface of the cylinder, this does not mean that the 
maximum lifting capacity of the structure has been exhausted; we can 
properly evaluate the strength of the cylinder only by analysis based 
on the method cf permissible loads.

Lifting capacity of thick cylinders in the elastic range may be im
proved by creating initial stresses. For this the cylinder must be made 
of two cylinders, one fitted into the other. The external diameter of 
the internal cylinder is madea little more than the internal diameter 
of the outer cylinder. The outer cylinder is put on the internal one in 
healed stale and upon cooling gives rise to reactions at the surface of 
contact; the reactions compress the internal cylinder and stretch the 
outer. The analysis given below wil 1 show that these initial stresses 
improve the working of the composite cylinder which is subjected to 
internal pressure.

(25.11)

Fig. 361 Fig. 362
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Figure 362 shows a composite cylinder after it has cooled. Stresses 
in a tangential direction will be: for the outer cylinder (tensile)

f _  Psf3 | Ptf ?/•$

' rl ~ rs r i(r*~r$)

and for the inner cylinder (compressive)
% 2 2

__ Pzr*___________P%r*r%
* rl ~ rl

Figure 363 shows the distribution curves of these initial stresses for 
the following numerical data:
r, =  11.50 cm, r8 =  5.70 cm, r3 =  8.25 cm, pu =  280 kgf/cm* 

For the outer cylinder stresses at the externa! surface are
2 r\

= + Ps -rY ^ ri °= +  613 kgf/cm*
rl r9

and stresses at the internal surface are

=  +  r\ _ rl  -  +  695 kgf/cm*
rl '9.

For the inner cylinder stresses at the internal surface are
* 2 r2

ah =  —A> =  — 1080 kgf/cm*'a 'a

and stresses at the external surface are

=  — Pa =  — 600 kgf/cm*
« 'a

Let us now assume that the cylinder is subjected to an internal pres
sure of p4=3400 kgf/cm1. The distribution of ut without considering 
the initial stresses p3 will be given by formula (25.10):

__ Pan
I r*

The limiting values of these stresses are: 
at the external surface 0^=4-2245 kgf/cm8 
at the internal surface <^’=4-5620 kgf/ctn2 
The corresponding curve is’depicted in Fig. 363. When internal pres

sure and initial stresses act simultaneously, the total stress may be
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Mini itnsses

taken as the sum of ordinates of curves crt+o't and cr,+cr?; the curve 
of total stresses has the shape of a tooth, as is shown in Fig. 363.

The shape of the resultant curve shows that when initial stresses 
p3 are acting, the stresses in the outer cylinder increase whereas the

stresses in the inner cyl inder decrease. 
As a consequence, the material 
works more uniformly—the maxi
mum stress comes down to 5620— 
—1080=+4540 kgf/cma and the mi
nimum stress grows up to 2245+ 
+613=2858 kgw'cm*. Of course, this 
distribution holds well only when 
the material is working within the 
elastic limit.

Cl Let us determine the difference of
Iadiii "’hj ch !*1» se"‘ialto create the required initial stress
p3  (here ra is the initial external
radius of the inner cylinder, and rl
is the initial internal radius of the flto jtmsa ou(er cylin(fer).

As the outer cylinder cools, these 
Pig 353 radii tend to become equal due

to a decrease in r3  by Ar”9  and an 
increase in r3  by A/y, the sum of ab

solute values of these deformations must be Ar,:
|A r; |+ |A r; | =  Ar3

Relative tangential elongation of the material at the internal sur
face of the outer cylinder is

= t ( ° ; ( - £ ^ l + n )

y / z \

woo • ^ 2

m
3000 / P
m o A
5000\
m o l

In this formula for r3 we substituted the radius r8=r^—Ar̂  common to 
both cylinders; this is possible because Ar; is a small quantity and the 
error committed by it is very small. Relative elongation of radius r'a 
will also be e'(; therefore

Ar; =  ejr, _  Pa'3 /  ri +  ri 
£ V r f- r l

Relative tangential compression of the material at the external sur
face of the inner cylinder is

T  K . - K . ) Pa (
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and the shortening of radius r\ is

Ar',= P9r 9

The sum of absolute values of Ar\ and ArZ will as before be
!> ,',('l+ 'i  , /  'S + 1  \

~ V ‘? R f + l v + " J " v 7F T  ^
2P.1/-2 r a _ r J 

l  4

~ ‘V s

Hence, in order to create the desired initial stress pa, we must pro* 
vide a difference of diameters

Ad, 4 ftr* r a _ r a ri rs
E W -4 )  v t - ' i )

Gr*dfjr

The minimum temperature 1 ° up to which the outer cylinder must 
be heated before it is put on the in
ner cylinder can be determined from 
the following relation:

a  tr3i° =  A r,

wherefrom
f t_r®_ri rtf> = 2pjr i ____________

* *  ( 1 - D W - D
=  66°C

(We have assumed the following 
numerical values: a —125x10"% 
£=2X  10* kgf/cm% Ad8=0.0137cm.)

§ 145. Stresses In Thick Spherical 
Vessels

Fig. 364
Figure 364 shows an element cut 

from the wall of a thick spherical
vessel. The element has internal radius r and external radius r-f-dr; 
stresses acting on the element are also shown in the figure. From the 
equations of equilibrium and joint deformation we get

B B (25.12)

Constants A and B may be determined from the boundary conditions 
at the internal and external surfaces of the vessel at r=r% and r=ru res
pectively, where rx and r4 are the external and internal radii of the 
vessel.

For example, if the vessel is subjected to an external pressure pi and 
an internal pressure p„ constants A and B may be determined from
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the following conditions:
£

^  =  • 4 + —  =  —  p t at the internal surface

Q r^A  =  — pL at the external surface

wherefrom

Therefore

+■ (Pz Pi) 2r»(r|—rj)

(P* Pi) r*{r]— r |)
(25.13)

§ 146. Analysis of Thin-walled Vessels
If the thickness of the cylinder wall, t=r-t—rt, is small compared 

to radii rl and r2f then from formula (25.10) we get

which is the same as obtained earlier (§29).
A general formula can be derived for calculating stresses in thin- 

walled vessels which represent surfaces of rotation and are subjected to 
internal pressure p symmetrical about the axis of rotation.

Let us cut from the vessel (Fig. 365) an element by two meridian sec
tions and two sections perpendicular to the meridian. Let dsm and dst 
be the dimensions of the element along the meridian and perpendicu
lar to it, and let us denote by pm and p, the radii of curvature of the 
meridian and of the section perpendicular to it; let t be the wall thick
ness.

Fig. 365
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From symmetry, the faces of the element will be acted upon by nor
mal stresses om in the direction of meridian and a< in the perpendicu
lar direction. The corresponding forces acting on the faces of the ele
ment will be OfljdSff and Otdsmt. 
Since a thin shell, just like a flexible 
string, has resistance only against 
tensile loading, these forces act 
along the tangents to the meridian 
and to a section normal to the 
meridian.

Along the normal to the surface 
of the element forces atdsj=ac=bc 
(Fig. 366) give resultant aby which 
is equal to

ab= 1>cddt = o t

Similarly force gives a resul- ^
tant a^/istdsjn^- in the same dircc-

Pm
tion. The sum of these forces must balance the normal pressure acting 
on the element:

pdsmdsi = oMdst d$m~ -  +  <Ji dsmdst

wherefrom
I P

Pm ^  Pt I
(25.14)

This basic equation, correlating a,* and at in thin-walled vessels 
having a surface of rotation, was derived by Laplace.

As we had assumed that the stresses are distributed (uniformly) 
over the section, the problem is statically determinate; the second 
equilibrium equation can be obtained by considering the equilibrium 
of the lower portion of the vessel cut by a parallel circular section.

Let us consider a vessel subjected to hydrostatic loading (Fig. 367). 
Let us describe the meridian curve in the system of x and y  coordinate 
axes with the origin at the apex of the curve. Assume that the section
ing plane passes at a height y from point 0. Radius of the correspond
ing parallel circle is x.

Each force couple Or̂ dSft acting on diametrically opposite elements 
dst of the section will give resultant be equal to

bc = 2 ab cos 0 =  2om dstt cos0

The sum of these forces acting on the whole circular section will be 
2 nxomt cos 0; it will balance the liquid’s pressure p —y(h—y) at
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this level and weight Py of the liquid in the cutoff portion:
2n xcml cos 0 — nx*p -J- Py

wherefrom

*« =  -
px 

2t cos 6 2jixt cos 6 (25.15)

Knowing the equation of the meridian curve, we can find 0, x, and Pv
for all values of y  and, consequently, de
termine am. We can then determine or* 
from equation (25.14).

For instance, for a conical reservoir hav
ing apex angle 2a and filled with a li
quid of specific weight y to a height h 
we have

p^csoo, jc= p tan a
=  y  ynx'y «B y  yn tf tan* a
p~*y(h—y), 0*=a

x  _  y  ta n a  
cos a  cos aP* =  

Therefore
y ( h —y ) y t  an a

« 2/ cos a  

_  y (/i—y )y  ta n a

+
y ,nya tan* g

Ian a / cos a  
y*y tan a

2/ cos a  1 6 / cos a  
Virtana /  2 \

0|

2/ cos <
PPt 
I

y(h—y)ytana
Tcosa

For a spherical vessel of radius r0 sub
jected to internal pressure p0. from symme

try we have a. Now as pm= p (=/’o, equation (25.14) gives
2o Pt

“ r
or o = Pafp

I F

If the meridian curve has a discontinuity of angle 0, the equilibrium 
of the thin shell at the point of discontinuity can be achieved only 
if a reaction acts at this point of the shell. Such a reaction can be made 
to appear with the help of special rings capable of taking the load 
that occurs due to unbalanced stresses om on both sides of the point of 
discontinuity.
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CH A PTER  26

Design for Permissible Loads. 
Design for Limiting States

§ 147. Design for Permissible Loads.
Application to Statically Determinate Systems

In the methods explained above for designing under tension or com
pression statically determinate as well as indeterminate structures 
we proceeded from the fundamental strength condition (rmax̂ l<rl (§§ 4 
and 18). According to this condition, the dimensions of the structure 
should ensure that the maximum 
stress in the critical section does not 
exceed the permissible value.

Let us view the problem from a 
different angle (§ 4). We require 
that the load acting on the whole 
structure should not exceed a permis
sible value. This condition may be 
expressed as follows:

The. permissible load is the £th 
part of the load at which the struc
ture ceases to function properly and 
no longer serves the purpose for 
which it has been designed. The 
latter is generally called the ultimate 
load and sometimes the breaking load in the broader sense of the word 
(destruction of the structure means that it stops functioning properly).

Let us consider a system consisting of two steel rods AB and AC 
(Fig. 368) loaded with a force P. By the conventional method of de
sign we determine forces ATi and N? according to the formula

(from the equilibrium of point A). Hence the cross-sectional area of 
each rod must be

^  [o] 2 [o] cos a
By the method of permissible loads we have

P < [P ]
Taking for the whole structure the same factor of safety k  which we 
had assumed in the method of permissible stresses, we get I F ) = ^ .

Fig. 368
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The ultimate critical load, Pu, is the load at which the stresses in the 
rods reach the yjej^ stress;

Pa =  2 Suv cos<x (a)

Thus, the permissible load is
2Soy cos a  

k

The strength condition (a) takes the form
2S < jy  cos a  

k

Keeping, in mind that ^  = lol, we have

P  25 [o] cosa
wherefrom

^  ^  2 [o] cos«

Hence, design for permissible loads gives the same results as the 
design for permissible stresses. This is always true of statically deter
minate structures with uniform stress distribution, when the material 
is utilized fully over the whole section.

§ 148. Design of Statically Indeterminate Systems 
Under Tension or Compression by the Method 
of Permissible Loads

We get entirely different results if we apply the method of permis
sible loads for designing statically indeterminate systems in which 
the rods are made of a material capable of large plastic deformations, 
for example mild steel.

Let us consider as an example a system consisting of three rods load
ed with force Q (Fig. 369). The rods are all assumed to be made of mild 
steel having yield stress a,j. Let us denote the lengths of the side bars 
by lu and that of the middle bar by l3. The permissible stress tol=
=  -^. As in the previous case, we assume the ratio of the cross-section
al areas of all the bars to be known; let all the rods be of equal cross- 
sectional areas 5. Solving the problem in the same way as in § 18, we 
get

Q
I - f  2 cos3 a  ’

Q cos3 a  
r + 2  cos3 cc =  NX



Ch, 26\ Design for Permissible Loads 459

As N£>Ni, the middle rod is stressed more than the side rods; 
therefore S should be determined from the formula

o ^ ,   Q
^  Iff] 7* + 2 cos3 a) [a]

The side rods have the same cross-sectional area; they will have a 
slightly greater reserve.

Let us apply the method of permissible loads; the strength condition 
may be written as

<3 <[<?]=■%•

What is the ultimate load of the structure in this case? As the struc
ture is made of a material having a yield plateau, in analogy with 
simple tension of a rod of the same material, the^ultimate load is the 
load at which the whole structure starts yielding. Let us denote this 
load by Q̂ . Until force Q is less than this value, the deformation 
(lowering of point A) is possible only by increasing the load. As soon

Fig, 369

as Q attains the value QL further deformation occurs without any 
increase of the load and the structure gets out of order.

Let us study the process of deformation of the system to determine 
As the middle rod is stressed more than the side rods, it attains 

the yield stress earlier than the side rods. Let us denote the load 
corresponding to this instant by Qyi it will be

Qv =  (1 -1- 2 cos3 a)
where N%=Sov is the force on the middle rod corresponding to its 
yield stress.

The stresses in the side rods, having the same cross-sectional area, 
will not have reached the yield stress as yet, and they will continue 
to be subjected to elastic deformation. For this deformation to occur, 
it is necessary that the load on the side rods be increased until the
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stresses do not attain the yield stress. Only then will the maximum lift
ing capacity. QjJ, of the structure be reached.

As the yield stress <xy has been already attained in the middle rod at 
load Qf/f further increase of the load does not affect it and, consequent
ly, force N* remains unchanged. Our statically indeterminate system is

transformed into a statically determinate one consisting of two rods 
AB and AC and loaded with the force Q acting at point A vertically 
downwards and the known force equal to Say (Fig. 370). The struc
ture will continue to work in this way until

Qy<Q<Q*y
Let us plot the graph of force Q versus displacement f  to illustrate 

the course of deformation of the given structure (Fig. 37J). As long as 
Q^QU, the distance by which point A lowers is equal to the elongation 
of the middle rod and is determined by the formula

/ a t
Ql3

()-t-2cosa a) ES

When Q falls in the interval the displacement of point
A has to be calculated as the lowering of trie joint of the system of two 
rods AB and AC loaded at point A with force (Q—S<j„). From § 18 
one knows that the lowering of point A is

h
In its turn

H i .
ES ’ N ,=

Q— Soy
2cosoc

( Q - S o y)tj  
“  “i t s  cos a  *

-  (Q—SOy)t^ (Q Soy)
n s  -  2ES cos3 a  ~  2ES cos?' a

whence
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For /,* (in the second segment) we again get the equation of a straight 
line, but in this case not passing through the origin of coordinates. 
When force Q attains the value Q£, the stresses in the side rods reach 
the yield stress, and further deformation of the system occurs without 
increase in load. The displacement curve is now parallel to the x-axis.

To determine the ultimate lifting capacity Ql of the whole system 
we must, for a system of two rods loaded with force (Q—Say), find the 
value of Q for which the stresses in the side rods reach the yield stress 
(the same problem was solved in the previous section). Substituting 
Q ~Sav for P in equation (a) of § 147, we get

( Q — S a y)„ =  Q l~ ~ S o y  =  2 $ o „  cosol

whencefrom
Ql =  Sov (1 +  2 cosa)

The permissible load will be
r /i  1 Ql S q „ ( l+ 2 c o s tt)JvJ— A — k

Taking into account that

we get
[Q l=S  [oj (1 +  2 cosa)

Finally
Q <[Q ] =  S[o] (1 + 2  cos a) and Q

[oj (1 +  2 cos a)

This value is less than the value obtained by the conventional method, 
i.c. less than

Q
|o | (1 +  2 cos’ a)

At Q=4 tf, a =30°, fa 1000 kgf/cm* (steel) we get:
(1) by the conventional method

n _  4000 _  1 7 1  Iim i
1000 (1 + 2  cos’ fl0°)

(2) by the method of permissible loads
n  ___  4000_ _ _ _ _  |  i/> j
s  Ba idoci7 i +2 a S l n  “  ' 46

Thus, in designing a statically indeterminate system from a material 
having a yield plateau, the method of permissible loads is more econo-
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mical than the method of permissible stresses. This is quite obvious: 
in the method of permissible stresses we take as the breaking load the 
force Qu at which only the middle rod attains the yield stress (the side 
rods remaining understressed). In the method of permissible loads the 
ultimate lifting capacity is determined from the condition 
The material of all the three rods is fully employed at the load Q£.

Hence, the method of permissible loads helps us to discover the la
tent sources of reducing the safety factor of statically indeterminate 
structures, increasing their design lifting capacity and achieving great- 
er uniformity of strength of all their parts. Without any difficulty 
the method can be applied to the case when the cross-sectional areas 
of the middle and side rods are not equal.

The theoretical considerations discussed above were experimentally 
verified a number of times, and the calculated and experimental values 
of the ultimate load were found to be in good agreement with each oth
er. This assures that the theoretical premises on which the method of 
permissible loads is based are correct.

§ 149. Determination of Limiting Lifting 
Capacity of a Twisted Rod

The method of designing for permissible loads may also be applied 
to torsion. As already explained in § 148 the result obtained by this 
method in tension and compression differs from the one obtained by 
designing for permissible stresses only for a statically indeterminate 
system of bars, because the stresses are distributed uniformly over the 
cross sections of each bar. The situation is different in torsion: the 
stresses are not distributed uniformly over the cross sections.

In § 49 we determined the required dimensions of a twisted shaft 
from the condition that the maximum shearing stress at points on the 
contour of the cross section should not exceed the permissible shearing 
stress I t ) .  We conducted the analysis on the basis of permissible stres
ses without considering the inhomogeneity of stress distribution in 
the section.

In this method of analysis, as in the analysis of statically indetermi
nate systems, under tension or compression, we do not utilize the ul
timate lifting capacity of the ro*d to the full. In § 49 we considered as 
critical the state of the material when the shearing stresses t  equal the 
yield stress (for steel) only at the contour of the section (Fig. 372(a)). 
According to the distortion energy theory of strength, should be 
equal to 0.6 oy. The twisting moment in this case will be:

2
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and the angle of twist will be
M,i " 'V  V

<P< G J P  2  G ~  G r

To further increase of the angle of twist wc must increase the twist
ing moment, because the material inside the rod is still in an elastic 
state. While the deformation increases, the increase in stress at the

Fig. 372

edge of the section will stop (yielding), and at a certain value M >Mt 
the distribution of stresses will correspond to the diagram shown in 
Fig. 372(6). The material inside the non-hatched circle of radius OB 
will continue to be in an elastic state as before.

The limiting state corresponding to complete utilization of the lift
ing capacity of the rod will be the state in which the elastic zone within 
the shaft is completely absent; in such a state the stress all over the 
section will be equal to the yield stress xy (Fig. 372(c)).*

The limiting twisting moment Mt may in this case be calculated as 
the sum of moments of all internal forces about the centre of the circle. 
For this we divide the area of the given section by concentric circles 
into a number of infinitesimal rings.

In the limiting state the stresses acting at each point of the section 
have a constant value equal to xv (Fig. 372(c)). The internal force act
ing on an elementary area of radius p will be equal to (Fig. 373) xvdS, 
and the moment of the internal force will be px„d5. By summing the 
elementary moments of the internal forces over the area of the whole 
circle, we get

dM in= xu p £  dS =  xu p2np dp

* This manner of working in the limiting slate is only approximate. Actually, 
although the stresses at the centre change sharply, they do not increase in jumps, 
and at the surface they do not remain constant but increase due to work hardening 
of the material.
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If we now write the equilibrium condition for the limiting twisting 
moment, we find that

r
M( = $ 2nt(/p1 dp = 0

o
wherefrom

Af, =  y jr r5Tff (26.1)

The maximum permissible twisting moment for safety factor k is:

[M ,]= 'T = X '" T = T - rJW  (26.2)
Therefore

r >

Simultaneously, from conventional analysis we have (§ 50)

r >  i / H E  
V  n lx]

Hence, the design on the basis of limiting lifting capacity enables 
us to reduce the shaft diameter in the ratio

K 5 r ° - 91

Due to non-uniform stress distribution over the section in elastic 
state, the transition to design on the basis of limiting lifting capacity 
helps reduce the consumption of materials.

It should, however, be borne in mind that the above analysis holds
true only under static loading, when 
the failure occurs due to yield
ing. A vast majority of the shafts 
under torsion, however, work under 
varying loads, when the failure oc
curs due to the appearance of fatigue 
cracks; therefore the analysis should 
be based on this factor. Obvious
ly, the above analysis cannot be 
applied in the design of shafts in a 
majority of the cases. As we shall 
see later, the analysis of beams un
der bending will be entirely differ
ent.

The results obtained are of inter
est because they can be checked inFig. 373
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firactice. It has been established experimentally that xv obtained from 
ormuia (26.1) in terms of the limiting twisting moment, also deter

mined experimentally, is sufficiently close to 0.6cr„, which it ought to 
be according to the distortion energy theory of strength.

§ 150. Selecting Beam Section for Permissible Loads
We have seen in torsion of shafts that, if the stresses are not distri

buted uniformly over the section, then the dimensions of the sections 
obtained for permissible stresses and permissible loads are different. 
A similar phenomenon is observed in the bending of beams.

In the analysis based on the method of permissible stresses we de
termine the size of the section from the condition

_ —fflwpx <: [g]
'•’m ax ^  I'-’J

For materials having a yield zone (mild steel), [a] is taken as

where av is the yield stress, and kv the corresponding safely factor.
Thus, we consider the material of the beam in critical state when 

the maximum stress in the critical section reaches the yield stress.

Me <

Let us denote the bending moment giving rise to this state by My\ it 
corresponds to the attainment of maximum carrying capacity of the 
material in the maximum stressed layers of the critical section. How
ever, this state does not mean that the maximum carrying capacity of 
the whole beam, as a structure, has been exhausted.

Let us consider a steel beam of symmetrical (for example, rectangu
lar or I-section) section (Fig. 374(a) and (&)). The distribution of stres
ses in the critical section for a moment Af„ is shown in Fig. 374(c); 
the yield stress is reached only in the boundary layers, and all the re
maining portion of the beam remains in an elastic state. Therefore,

16-3310
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for further deformation of the beam we must increase the load and the 
bending moment: the lifting capacity of the beam remains to be ex
ploited fully.

As we increase the moment the yield zone spreads towards the inside 
of the beam, the stress diagram appears as in Fig. 374(d) and in the li
mit, when the material begins to flow along the complete height of the 
section and the lifting capacity of the beam is exhausted, it takes the 
form of two rectangles (Fig. 374(e)). The bending moment in this stale 
of the beam will be the limiting one for it as a whole. Further deforma
tion of the beam will occur without any increase in the moment; a 
so-called ductile hinge will be formed in the critical section.

Let us determine this limiting moment Mev. It is equal to the sum 
of moments of forces about the neutral axis, as is evident from Fig. 
374(e). A force ay dA acts on the elementary area dA at a distance 2  

from the neutral axis; the moment of this force about the neutral axis 
is zoy dA. As the section is symmetric, it is sufficient to calculate the 
sum of moments of these forces for the upper or lower half of the sec
tion and double the result. Thus

=  2 $ OyzdA 
A /i

where A is the area of the whole section. As <r„ is constant for all points 
of the section, we have

Mcv=2ou $ 2d/4=2cr^Sm«
A! 2

because the integral

 ̂ z dA =
>1/2

represents the static moment of one half of the section about the neut
ral axis.

The strength condition may be written as 

For a safety factor of ktJ we get

K U  K V

Hence the strength condition becomes

or (26.3)
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Therefore, when analyzing a beam of symmetrical section for per
missible load, its dimensions should be calculated not from the section 
modulus W but from the static moment of its half-section multiplied 
by two. For a rectangular section of height h  and width b

25 =26 L  —"m ix — *  2 4
bh? , c *
~ T = 1 -5 “5" 1.5 W

Putting this value in formula (26.3), we get
Mmax 

1.5 loj

Thus, when designed for permissible load the required section modu
lus of a rectangular beam is 1.5 times less than when it is designed for 
permissible stresses.

For any symmetrical section the quantity 2Smax may be taken as a 
product of the section modulus and a constant n which depends upon 
the shape of the section:

2Smax =  nW

Therefore formula (26.3) takes the form

W > Mmax
»l<rl (26.4)

For a rectangular section n=1.5, for I-sections of the type which we 
are considering n varies between 1.15 and 1.17; the mean value of n 
may be taken as 1.16. Thus, if we start designing steel beams of the 
commonly used sections by the method of permissible loads, we may 
increase their carrying capacity by 16%, which is equivalent to 
increasing their permissible stress. Such an increase in the permis
sible stress must be thoroughly investigated (during strength check) in 
conjunction with other possible factors which may cause failure of 
the beam.

It has been experimentally established that 1-section steel beams 
never fail solely as a result of the yield stress appearing over the whole 
section. More commonly the failure is due to the loss of stability of the 
flange (Fig. 375) or the web. Therefore, special attention should be paid 
to checking the stability of the elements of the beam when higher per
missible stress is used upon analyzing by the method of permissible 
loads.

If a repeated load acts on the beam, the possibility of failure due to 
the appearance of fatigue cracks should be taken into consideration. 
This requires an additional check against a failure of this nature oc
curring in the structure.

The analysis based on permissible loads is somewhat more compli
cated in the case of beams having one axis of symmetry, for example in 
T-section beams.
16-
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Figure 376 shows such a section and the diagram of normal stress 
distribution when the carrying capacity of the beam is reached. In 
such beams we must first determine the location of the neutral axis; 
even at this stage of working of the beam it does not pass through the 
centre of gravity of the section.

Fig. 375

At 1
m m m

■9 ■■■ *

Fig. 376

Let us denote the area of the compressed portion of the section by 
At and the stretched portion by A 3. The condition that the sum of the 
tensile and compressive stresses should be equal gives

OgA^OyAt or Ai — Ai
The neutral axis divides the area of the section into two equal por- 

tions. In bending within the elastic limits the same condition brought 
us to the conclusion that the static moments of the compressed and 
stretched portions of the section should be equal and, therefore, the 
neutral axis should pass through the centre of gravity of the section. 
Here it divides the area of the section into two equal parts.

Having determined the location of the neutral axis, we see that

[M] = ky
where and S„ are the static moments of the upper and lower halves 
of the area of the section about the neutral axis. The strength condition 
takes the form

(Si +  Si) >  (26.5)

The above discussion is valid for pure bending; the presence of 
shearing forces complicates the analysis.
§151. Design of Statically Indeterminate Beams for 

Permissible Loads. The Fundamentals.
Analysis of a Two-span Beam

It was established in the preceding section that the formation of a 
ductile hinge is necessary to cause breakdown of a statically determi
nate beam.
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In statically indeterminate beams the formation of one ductile hinge is not enough for full utilization of their bending capacity: il is essential that at least one more ductile hinge be formed. We shall explain this with the help of an example.

Fig. 377

Let us consider a two-span continuous beam of uniform section (Fig. 377(a)). Its bending moment diagram for work within the elastic limits (Fig. 377(/>)) is the difference of the bending moment diagrams
for force P and support moment M\—— t̂ PI- Graphic subtraction ol
the diagrams is shown by dotted lines. The resultant bending moment diagram is hatched. The maximum stressed sections are the section ol
application of the load with a moment r-APl = \^Pl and1 4 1)4 lH
the middle support with moment Af,~ | .-ĵ P/1 < P/. When the load
is increased, stresses in the beam become equal to the yield stress a,, first of all in the top and bottom layers of the section under load P„ and may be expressed by the relation

l.s/y
U41F o„, wherefrom P, I»4U«t//

13/
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If the load is further increased, a ductile hinge is formed in this 
section when the bending moment (§ 150) becomes equal to:

Mcu— 2o'1,Sinax= ayriW

However, under such a load the beam does not exhaust its maximum 
lifting capacity. It transforms into a statically determinate beam with 
a hinge at point D through which moment is transmitted

Fig. 378

(Fig. 378)—this beam is still capable of taking more load. When the 
load is further increased, the moment at point D remains constant 
whereas the moment at the support increases until it also becomes equal 
to M y  another ductile hinge is formed at the support, the left span 
transforms into a movable system and full lifting capacity of the beam 
is utilized as the load increases to P%. The bending moment diagram of 
the beam for this state of loading, which is shown in Fig. 377(e), is the 
diagram for breaking moments. It is the difference of the ordinates of

p c ,
triangle adb with maximum ordinate in the section of load appli

cation and triangle, aek with an ordinate at the support 1  and ^
in the section of load application. The breaking load /* is determined

Pcd Mcfrom the condition that segment cd equal to ----- must also be
equal to M y

4 2

wherefrom

=  (26.6)

The strength condition may be written as follows (§ 147):
P < [P ]  (26.7)

where P is the load acting on the beam, and [PI is the permissible load.
To obtain [P] we divide both sides of equation (26.6) by the safety 

factor k and get

1 J k ~  ki i r<§.8)
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Substituting this value of [PI in equation (26.7), we obtain

^  t

wlierefrora

W7* Pi _  Mr 
On 1<tJ n fo] (26.9)

PIwhere Mr=-g is the reduced bending moment in sections /  and D. 
Consequently, the beam section in this example may be selected inpi
accordance with the reduced moment Mr- - ^  and the permissible 
stress /dal.

It is evident from the formulas Mr= ^  and that the
ordinates of the diagram of reduced moments (Fig. 377(d)) are pro
portional to the ordinates of the diagram of breaking moments and are 
obtained from them by replacing the breaking load Pi by the actual 
load P.

If we design the beam for permissible stress, we should take 
=  g |p / >  j  (Fig. 377(6)) as the reduced moment and la] as the per
missible stress. Hence, designing statically indeterminate beams for 
permissible loads has a double advantage—the permissible stress in
creases as in statically determinate beams, and the diagram of reduced 
moments “shrinks”, i.e. its ordinates in corresponding sections become 
smaller.

The increase in the lifting capacity of the beam is given by the ratio

Pff X 131 7a
Py -  /xG 4rPj, “ 0 4 n

Assuming that /t=1.16 (for I-beams, $ 150), we find that the lift
ing capacity of the beam increases by 40% if it is designed according 
to the new method.

In the example discussed above the diagram of reduced moments 
(Fig. 377(c)) is obtained from the condition that in the two maximum 
stressed sections the bending moments are equal. Therefore in the de
sign of beams of uniform section this method is sometimes referred to 
as the method of equal moments.

Keeping this in mind, we can plot the diagram of reduced moments 
(for permissible loads) graphically: first we plot the bending moment 
diagram of force P for span I of the beam (adb) and then plot diagram 
aek of support moments such that be—cd (this can be done by dividing
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If another force P were acting at the middle of the second span, 
the diagram of reduced moments would remain unaffected (Fig. 379), 
i.e. no reinforcement of the beam would be required even if an addi

tional force were applied. There would only be a change in the order of 
appearance of the ductile hinges: a hinge would first be formed at the 
middle support and then in the sections where the two forces act.

§ 152. Analysis of a Three-span Beam
Let us now consider a beam having an additional span in the middle 

(Fig. 380(a)). The bending moment diagram of this beam for work 
within the elastic region is shown in Fig. 380(b). When the load is gra
dually increased, ductile hinges are first formed at the intermediate 
support I and the centre (approximately) of the middle span (Fig. 
380(c)). However, the beam is still capable of taking further loads un
til a third hinge forms at support 2. The final diagram of breaking 
moments is shown in Fig. 380(d). The limiting value of the moment is:

u 2 8 16

and the reduced moment is:

The required section modulus is:

r —^  Tpjf ”  16* 1<t]

Thus, three ductile hinges must be formed before the middle span 
fails, and the moments in all the three hinges wilt be equal. If all the 
spans of the beam were loaded, it would be essential to check the pos
sibility of failure for each span by plotting the corresponding diagrams 
of reduced moments (by equating their values in the critical sections)
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and select W for the maximum value of Mr thus obtained. As a con
crete example let us load the three-span beam (Fig. 381) by a uniform
ly distributed force q in the middle span and concentrated forces P=2ql

Fig. 380

acting at the centre of each side span. The reduced moments Mr for 
all three spans are shown in the diagram with dotted lines; their values 
are as follows:

M, =  £ ,  =  =  g

The section should be selected for the moment Mr=  y ; the section

modulus should be d i s 
similarly, we can analyze a beam with any number of spans by as

sessing the possibility of failure in each span separately.
The method of designing continuous beams explained above employs 

a number of approximations and restrictions. Firstly, it is valid only 
for static loads. Secondly, the physical picture of failure of the beam 
is much more complicated even for static loads than the highly sim- 
plihed concept of ductile hinge formation, which we employed in the 
above discussion. Plastic deformation is not limited to a particular 
section but covers the whole beam length. In addition, the maximum 
lifting capacity of the beam can be restricted not only by its plastic 
deformation, but also by the violation of its stability as a whole or the
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flange plates and web separately. Therefore, if this method is applied 
in actual design, greater attention should be paid to the stability of 
the beam even though the loading may be static.

Experiments on the failure of statically indeterminate beams under 
static loading reveal that, if failure due to lack of stability is prevent
ed, the breaking load calculated theoretically by the above method 
concurs well with the experimentally determined value.

§ 153. Fundamentals of Design by the Method 
of Limiting States

Design by the method of limiting states is outside the scope of the 
basic course on strength of materials. It is compulsory only in design 
of building structures and is not yet used in mechanical engineering. 
However, keeping in mind that the method is ultimately based upon 
strength of materials, we give below the fundamental concepts of de
sign of building structures by the method of limiting states to enable 
those studying this method to coordinate its methods and terminology 
with that of the strength of materials.

Two groups of limiting states are considered below. The first group 
deals with limiting states that appear due to loss of load carrying ca
pacity or because the structure is not fit for working. The second group 
deals with those that appear because the structure is not fit for normal 
functioning.

The main limiting states of the first group are failure, loss of stabi
lity, excessive opening of cracks, etc.

The limiting states of the second group include conditions that hin-
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der normal functioning of the structure or reduce its service life due 
mainly to impermissibly large displacements (deflections, angles of 
rotation, etc.).

The rated, strength, Rr, which is specified by design standards on the 
basis of control conditions and statistical variation of strength, is 
the main parameter characterizing the resistance of materials to the 
action of external forces. We may choose as rated strength the yield 
stress, ultimate strength, fatigue strength, critical stress and other 
similar characteristics of the material, which in the course of strength 
of materials are called critical and are denoted by pCT.

The possible harmful deviation of strength characteristics from the 
rated strength is taken into account by the safely factor of material, kt 
by which the rated strength is divided.

The numerical value of k depends on the properties of materials and 
their statistical variation. When calculating the load carrying capa
city of structures, the value of k is not taken less than 1.1.

By the design strength of material, R, we mean the strength which is 
considered while designing a structure and is obtained by dividing 
Rr by k :

The coefficient of operating conditions, m, takes care of the special 
features of a systematic nature that arise during actual functioning 
of materials, elements and joints and structures, but which are not 
directly reflected in the design procedure.

Coefficient m takes into account the effect of temperature, humidity 
and corroding effect of the atmosphere, length of time during which 
forces act and some other factors.

The reliability and capital investment factors in design of buildings 
and structures are accounted for in a number of cases by the coefficieik 
of reliability, kr  The numerical values of coefficients k, m, and kr are 
established by standards.

Thus, formula (26.10) for design strength R with suitable coeffi
cients m and kr when necessary may be written as follows:

In the courses of strength of materials design strength R is known as 
permissible stress and is denoted by [oj or [t1. However, R contains 
a more detailed break-up of the safety factors and does not provide 
for safety against overloading. When a structure is designed by the 
method of limiting states, the safety factor against overloading is cal
culated by a special method, which will be discussed later.

The loads are defined mainly by their rated values, denoted by Pr. 
These are specified by standards for various structures.

(26.10)

(26.11)
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The probable harmful deviation of loads from the rated values due 
to variation of loads or changes in conditions of normal functioning is 
taken account of by the coefficient of overloading, n. Coefficient n is 
the safety factor against overloading. The overloading coefficients may 
be different for different loads even if the latter are applied to the 
structure simultaneously, for instance, for permanent and temporary 
loads. This is the difference between this design method and the one in 
strength of materials in which the safety factor against overloading is 
the same for all loads simultaneously acting on a structure and is taken 
into account by a common safety factor.

The loads used in actual design are obtained by multiplying the 
rated values with the corresponding overloading coefficients «, and 
are known as design loads.

If the different values of the overloading coefficient for permanent 
and temporary loads are taken into account, then, for instance, the 
design bending moment M due to simultaneous action of permanent 
and temporary forces on a beam may be deli ned as

M =  /tjAf̂ erm +  «4/Wtcinp (26.12)
Structures should be designed by considering the possible unfavour

able combinations of loads (for example, simultaneous loading of a 
bridge by a train, breaking forces and wind, or simultaneous loading 
of power transmission line towers by wind and one-sided tension due 
to snapping of wire in the adjacent span). The probability of such com
binations is taken into account by the coefficient of combination, ne- 
The values of coefficients n and nc and. the recommendations regarding 
their application are available in standards.

Thus, if the standards require that a coefficient of combination for 
temporary loads be included in the design of a structure, formula
(26.12) for the design moment becomes

M =  rt, Alperu, -J- n.entAJ[<anp (26.13)
If the standards do not contain instructions for the accounting 

of inelastic deformations, it is permitted to determine forces in sta
tically indeterminate systems on the assumption that deformations 
of the structure remain in the elastic region. The strength condition, 
for instance, in bending, can then be written as follow's:

Taking into account formulas (26.11) and (26.13), we get
pe«n-{- flgKtAffetup ^  Rr

IP' ^  kfh
If the strength is to be checked for limiting states of the second 

group, we must determine the elastic deformation or displacement 
(elongation, twist angle, deflection) due to normal load. The defor
mation thus found must not exceed the permissible value aid down 
in the standards.
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Stability of Bars Under Compression

§ 154. Introduction. Fundamentals of Stability 
of Shape of Compressed Bars

In all previous discussions we determined the cross-sectional dimen
sions of bars from their strength condition. However, a bar may fail 
not because of insufficient strength but because it docs not retain its 
designed shape. This changes the nature of stressed stale of the bar.

The most typical example is that of a bar compressed by axial forces 
P. Until now we have checked the strength of bars by the following 
condition:

°  = -X <  taJ. where =  ̂  or

This condition is based on the assumption that the bar works under 
axial compression right up to the moment of its failure due to atJ or au. 
However, even the simplest of experiments shows that it is not always 
possible to load the bar up to its yield stress or ultimate strength.

If we subject a thin wooden scale to axial compression, it may fail 
due to bending. At the time of failure the compressive force acting on 
the scale will be considerably less than the force which the scale can 
withstand before its ultimate strength is reached. The scale fails be
cause it does not retain its designed shape of a rectangle but bends, giv
ing rise to bending moments due to forces P and, consequently, to ad
ditional bending stress: the scale loses its stability.

Therefore, for safe working of a structure it is not enough for it to 
have sufficient strength; it is essential that all its elements are stable 
and their deformation under the action of external forces is within such 
limits that the nature of their work remains unaffected. Hence, in a 
number of cases, in particular in bars under compression, the strength 
check must be substantiated by a check of stability. Before we carry 
out such a check it is necessary to get closely acquainted with the 
conditions which lead to the bar losing its stability.
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Let us consider a bar sufficiently longer than its cross-sectional size, 
hinged at both ends (Fig. 382) and loaded by a gradually increasing 
axial force P. We notice that the bar remains straight as long as P is 
small. If we try to bend it to one side by applying a momentary hori
zontal force, it comes back to its original shape upon the removal of 
the external force causing deflection after doing a few oscillations.

As force P increases, the bar takes longer to return to its original 
stable position; finally force P may attain a value at which the bar 
fails to straighten when it is slightly bent to one side. If we try to 
straighten the bar without removing force P, we find that it is inca
pable of remaining straight. In other words, at a particular value of 
P , called critical force Pvt the straight-line shape ceases to be.stable for 
a bar under compression.*

The transition to critical value is sudden; a small decrease of the 
compressive force from the critical value is enough to make the 
straight-line shape stable again.

On the other hand, if the compressive force P is slightly higher than 
the critical value, the straight-line shape becomes extremely unstable. 
In this case a small eccentricity of the applied force or the non-unifor
mity of the bar material is enough not only to bend the bar but also to 
increase the curvature of bent bar due to a continuously increasing 
bending moment; the process of bending comes to a stop either when a 
new position of equilibrium is achieved or when the bar completely 
breaks down.

Thus, for all practical purposes we can consider critical force Pc 
equivalent to a load which “cripples” the compressed bar and creates 
a condition in which normal working of the bar becomes impossible.

• Investigations reveal that instability begins at values of P which exceed the 
critical force only by a second-order quantity.
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It must be kept in mind that “failure” of the bar due to a force greater 
than the critical occurs only when there is no obstacle to bending. 
Therefore failure may be avoided if buckling is prevented by a side 
support which restricts further bending.

Usually such a possibility is remote—the critical compressive force 
should practically be considered as the lower limit that causes “fail
ure” of the bar.

The loss or stability under compression may be explained by the 
analogy following from mechanics of solid bodies (Fig. 383). Let us 
roll a cylinder on an inclined plane ab which changes into a small 
horizontal platform be and then an inclined plane cd of opposite in
clination. The cylinder remains stable as long as we lift it along plane 
ob holding it with a support perpendicular to the inclined plane. Equi
librium of the cylinder is immaterial when it rolls on platform be. 
As soon as it reaches point c its equilibrium becomes unstable—the 
slightest push to the right is enough to make it go rolling down.

The physical picture of loss of stability in the compressed bar de
scribed above can be actually reproduced in any laboratory with very 
elementary equipment *. This description is not a theoretical or ideal 
picture of working of a compressed bar, but a real one showing how 
actually a bar works when it is acted upon by compressive forces.

The loss of straight-line stable state by a compressed bar is some
times referred to as axial bending, because it manifests itself in the form 
of considerable bending of the bar under axial compression. Therefore, 
instead of check on stability the term “check on axial bending” is still 
quite prevalent, although it is not very appropriate, because we are 
basically interested not in the check on bending but in the check on 
stability of the straight-line shape of the bar.

Having established the concept of critical force as a “crippling” load 
which puts an end to the normal functioning of the bar, we can easily 
derive a condition for checking the stability of bars identical to the 
strength condition.

Critical force P e gives rise to “critical stresses” in the bar, which are
denoted by o<,= . Critical stresses in the compressed bar are stresses
at which the bar fails. Therefore, to ensure stability of a straight bar 
compressed by forces P, it is essential that the strength check (o=
•=£-<[al) should be accompanied by a stability check

< r = 4 < [ a j  (27.1)

• See N. M. Belyaev, Laboratory Experiments on Strength of Maieriats, Gos- 
lekhtzdat, Moscow. 1951 (111 Russian), §85.
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where fo*1 is the permissible stress for stability equal to critical stress 
divided by a factor of stability:

Before we explain how stabil ity is to be checked, we must show how 
to determine oc and how to select k a.

§ 155. Euler’s Formula for Critical Force
For determining critical stress oc we must first calculate the critical 

force, Pef i.e. the minimum axial compressive force which a slightly 
bent compressed bar can withstand and yet remain in equilibrium. 
This problem was first solved by Leonhard Euler in 1774.

Let us point out that the problem is entirely different from ail pro* 
blems discussed in previous sections of this book. Until now we have de
termined deformation of a bar when the external forces acting on it

are known. Our problem is just the opposite: we assume a certain de
flection of the bar’s axis and then determine the axial compressive 
force P at which the assumed deflection occurs.

Consider a uniform straight bar hinged at both ends. One of the sup
ports permits axial displacement of the corresponding end of the bar 
(Fig. 384). The dead weight of the bar is negligible. Let us load the 
bar with an axial compressive force P = P C and impart to it a slight 
deflection in the plane of minimum rigidity; the bar remains in equi
librium in the bent state because P —P c.

The imparted deflection is assumed to be very small. Therefore, the 
problem may be solved by using the approximate differential equation 
of the deflected axis of the bar (§ 82). Selecting the origin of coordinates 
at point A and directing the coordinate axes as shown in Fig. 384, we 
get from equation (15.7)

Fig. 384

E l  S  =  M (4

Consider a section at a distance x from the origin of coordinates. The 
ordinate of the deflected axis in this section is y  and the bending mo-
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merit is:
M{x) =  - P y

When compared with Fig. 384 the bending moment is found to be 
negative although the ordinates are positive for the selected direction 
of the y-axis *. (Had the bar been bent with its convexity downwards, 
the moment would have been positive, the ^/-ordinate would have 
been negative and M (x)——Py.)

Consequently, differential equation (15.7) may be written as fol
lows:

E J ^ ^ - P y  (27.2)
P

Dividing both sides of the equation by EJ and denoting by k~, we 
may rewrite the above equation as follows:

a J + t f v - o  (27.3)

The general solution of this equation is:
y= a sin kx-r  bcoskx (27.4)

This solution contains three unknowns: constants of integration a
and 6 and k-= because the critical force is not known.

The boundary conditions of the bar give us two equations: 
at point A: x = 0  deflection y = 0 
at point B: x  — t deflection y — 0

It ensues from the first condition (since sin kx—0 and cos £.v=l) that
0 =  6

Thus, the bent axis is a sine curve having equation
i/= a sin  kx

Upon substituting the second equation

we obtain
y =  0 and x = l 

0  — a^\nkt

(27.5)

(27.6)
It follows that either a or kl must be zero.

If a is equal to zero, then from equation (27.5) we see that the de
flection of the bar is zero in all sections, i.e. the bar remains straight.

• If the ^-axis is directed downwards, a positive bending moment /W (x) will 
correspond to a positive deflection y. However, in this case the curvature will be 
negative and <Pyldxl<$. Hence, the signs in equation (27.2) will remain the same.
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This contradicts the assumptions made at the very beginning of this 
derivation. Hence, sin k l= 0 ,  and k l  may have the following values

/W =  0 ,n ,2 n ,3 j i , .. , ,/m (27.7)
where n is an arbitrary integer.

This yields and since k —

-E T= F n'  or (27.8)

In other words, a load capable of holding a slightly deflected bar in 
equilibrium can, in theory, have a number of values. However, as we

Fig. 385

ends. This value of the critical I 
the bar along a sine curve with

are interested in determining the 
minimum axial compressive force at 
which axial bending may occur, we 
must take 

According to the first root, «=0, 
the critical force Pr must be zero, 
but this contradicts the given data. 
Therefore this root is ruled out and 
the minimum value of n  is taken as 
n=*l. This gives

(27.9)

(Here J is the minimum moment of 
inertia of the bar cross section.) 
This is known as Euler’s formula 
for compressed bars hinged at the 
>ree (27.9) corresponds to bending of 
ane half-wave (formula (27.5)):

y — asin — (27.10)

Higher values of the critical force correspond to bending the bar 
along a sine curve with two, three, etc. half-waves (Fig. 385):

Pc =
4jz*EJ

D 9n*EJ
“c J2 »

£/=asin 2nx
T

0 =  asin-2yi
(27.11)

Hence, the greater the number of inflection points in the sine curve 
of the deflected axis of the bar, the greater the critical force must be. 
Intensive investigations show that the equilibrium modes determined 
by formula (27.11) are not stable; stable equilibrium modes can be
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achieved only if we place Intermediate supports at points B and C 
(Fig. 385).

Thus, we have solved the problem which we had set before our
selves: the critical force for our bar is calculated by the formula

P c
n*EJ
n r

and the deflected axis is represented by the sine curve
. Jtx y — asm —

The constant of integration, a, has remained undetermined; its phys
ical nature will become clear if we substitute x =■£- in the equation of
the sine curve. The condition yx=i/t (deflection at the middle of the 
bar) yields

ym»x =  f  = a
This means that a is the deflection of the bar at its middle point. 
Deflection /  remains undetermined, because the deflected bar can re
main in equilibrium in various deflected positions from the straight- 
line shape for a single value oi critical force P, provided the deflections 
are small.

Deflection f  should be small enough to enable us to use the approxi
mate differential equation of the deflected axis, i.e. should be
negligible as compared to unity (§ 82).

Having found the critical force, we can immediately determine 
critical stress by dividing P0  by the cross-sectional area, A. As the 
critical force was determined by considering the deformation of the 
bar which is not much affected by local weakenings in the section, the 
moment of inertia used in the expression for P c is Thus
while calculating critical stress or writing the condition of stability 
we must consider not the weakened but the total area A t of unweakened 
section. Then

(27.12)Pc n2EJt n s£ / 2 _ :
° c ~  At ~  I* At ~ ~ T ' ~ < kl/i)* '~ ' K*

We find that critical stress in a bar of a given material is inversely 
proportional to the square of the ratio of its length to the minimum
radius of gyration of its section. This ratio, is called the flexi
bility oi the bar and plays an important part in all stability checks of 
compressed bars.

It is evident from formula (27.12) that the critical stress may be ex
tremely small in long and thin bars; it may be less than the permissi-
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ble stress fol. For steel with ultimate strength of 4000 kgf/cm4 the per
missible stress may be assumed equal to )<rJ=1600 kgf/cm4; for a bar 
having flexibility and modulus of elasticity of the material
£=2x10* kgf.'cm* the critical stress will be

Had the cross-sectional area of the compressed bar of given flexibi
lity been determined from the strength condition, the bar would have 
failed due to loss of stability of its straight-line shape.

§ 156. Effect of Constraining the Bar Ends
Euler’s formula was obtained by integrating the approximate differ

ential equation of the deflected axis of the bar with ends constrained 
by a particular method (hinged). This implies that the expression fos 
determining the critical force is valid only for bars with hinged endr,

and changes when the method of constraint is different. If the ends of 
the bar are hinged this type of fixation will be referred to as the basic 
method of constraint. All other methods of constraint will be discussed 
by comparing them to the basic method.

If we repeat the derivation for a bar rigidly fixed at one end and 
loaded at the other by an axial compressive force P  (Fig. 386), we shall 
obtain a different expression for the critical force and, consequently, 
for the critical stress. Leaving it to the reader to derive such an expres
sion himself, we proceed to explain how the expression for the critical 
force can be obtained in this case with the help of the following simple 
considerations.

=877 kgf/cm2 <  1600 kgf/cm

P

F ig . 388F ig  38G F i g  3 8 7
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Suppose the bar retains its equilibrium under critical force P when 
it bulges slightly along the curve AB. Comparing Figs. 382 and 386, 
we observe that the deflected axis of the bar rigidly fixed at one end is 
in the same conditions as the upper half of a bar of double length 
hinged at both ends.

This means that the critical force in a bar of length I which is fixed 
at one end and free at the other is the same as in a bar of length 2 1  

hinged at both ends:

p *ZEJ n%EJ (27.13)

If we consider a bar in which both ends are rigidly fixed and are in
capable of rotation (Fig. 387), we observe that the middle portion of
length of the deflected bar works under the same conditions as a bar
which is hinged at both ends (points of inflection C and D may be con
sidered as hinges, because the bending moment at these points is zero). 

Thus, the critical force in a bar of length I which is fixed at both
ends is equal to the critical force in a bar of length in which the
ends are fixed by the basic method of constraint:

/> =
4n*£J (27.14)

Formulas (27.13) and (27.14) may be combined with the formula»l n »
for critical force in the basic method of constraint Pc=  and the 
generalized formula may be written as follows:

Pe =
n*EJ
W (27.15)

Here p, is the coefficient of length with the following values: 
when both ends are hinged (basic case) p =  l 
when one end is free and the other 
rigidly fixed p =  2
when both ends are rigidly fixed |ut= 1/2

For the bar shown in Fig. 388 which is rigidly fixed at one end and 
hinged at the other, coefficient p is approximately found to be equal to
-4 = « 0 .7 f and the critical force is:
yT
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The product pI is called the reduced (free) length; with the help of 
the coefficient of length a bar with arbitrarily constrained ends can be 
reduced to a bar in which the ends are constrained by the basic method: 
while calculating flexibility the actual length of the bar must be re
placed by the reduced length nl. The concept of reduced length was first

Fig. 389

introduced by Prof. F. Yasinskii * of the St. Petersburg Institute of 
Railway Engineers.

Formula f^.I2) for critical stresses in bars with hinged ends may be 
generalized for other types of constraints by introducing in the denomi
nator the reduced flexibility

and (27.12')

The values of coefficient p for some types of constraints are given in 
Fig. 389.

in practice, however, we rarely find constraints exactly in the form 
as they have been considered here (Fig. 389). Cylindrical hinges are 
generally used instead of hinged supports. Such bars may be consid
ered as simply hinged if they buckle in a plane perpendicular to the 
axis of the hinges. If, however, the bar bends in the plane of axes, 
then the ends should be considered rigidly fixed (with the reserva
tions, discussed below for rigidly fixed ends).

In structures we often find compressed bars, which are riveted or 
welded at the ends to other elements quite often with the help of cover 
plates. Such a constraint cannot, however, be considered rigid, because 
the elements to which the compressed bars are secured are themselves 
not absolutely rigid. Incidentally, even a slight rotation of the fixed 
end in the fixation is enough to render it more close to a hinged con-

• Proceedings of the Conference of Raikwy Engineers, St. Petersburg, 1892 (in 
Russian).
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straint rather than to a rigidly fixed one. Therefore, it is inadmissible 
to consider such a bar as one with rigidly fixed ends. Only when we are 
quite sure about the reliability of the fixation can a small (about 10- 
20%) decrease of the free length of the bar be permitted.

Finally, we have bars which rest on adjoining elements with the 
whole area of their end faces. Such bars include wooden posts, indepen
dently standing metal columns which are secured to the foundation by 
bolts, etc. If the end face is properly designed and secured to the foun
dation, such bars may be considered rigidly fixed at the end. This 
group of bars also includes large columns with cylindrical hinges 
when they are designed for buckling in the plane of the hinge axis. 
Generally, it is difficult to ensure uniform contact between the end 
face of the compressed column and the supporting foundation. There
fore, the load carrying capacity of such columns is only marginally 
greater than that of columns with hinged ends.

The formula for critical loads may be obtained in a form close to 
that of Euler’s formula (27.15) even for bars of non-uniform sections 
and bars being acted upon by several forces. Derivations for a few cases 
of practical interest, which have been obtained by the theory of elasti
city, are given in Table 18.

§ 157. Limits of Applicability of Euler’s Formula.
Plotting of the Diagram of Total Critical Stresses

It would seem that the results obtained in the preceding section were 
enough to check the stability of compressed bars; the coefficient of 
stability, k5, remains to be determined. This, however, is far from 
true. The very first study of numerical values obtained by Euler’s 
formula confirms that the formula gives proper results only within cer
tain limits.

For example, if we calculate the critical stress according to formula
(27.12) for a steel bar (E—2X 10* kgf/cms) of flexibility X=50, we 
obtain

_  JI* £  3 > 1 4 * x 2 x l 0 "  ______________ _®e=*^r  = ----- go?----- --  8000 kgt/cm2

This is almost twice the ultimate strength of steel; the bar will 
cease to work even before the critical stress is achieved. We thus see 
that for low flexibility bars Euler’s formula gives exaggerated values 
of critical stresses and forces. What are the reasons for this? Figure 
390 shows the relation between ac and X. The curve is a hyperbola, 
which is known as “Euler's hyperbola”. While using this curve, it 
should be kept in mind that formula (27.12), which it represents, was 
obtained by integrating the differential equation oi the deflected axis, 
i.e. it was derived on the assumption that the stresses in the bar are 
less than the limit of proportionality when it loses its stability.



Ch. 27] Stability of liars Under Compression 489

Consequently, we cannot use the critical stresses calculated by Eul
er’s formula if' they exceed the limit of proportionality of the given 
material. In other words, Euler’s formula is valid only when it satis
fies the following conditions:

o,s^arp or (27.17)

If we express X through equation (27.17), the limit of applicability 
of Euler’s formula will change:

} / i S  (27.17')

By substituting the values of modulus of elasticity and limit of 
proportionality of the given material, we can find the minimum flexi

bility at which Euler’s formula can still be applied. For steel the limit 
of proportionality is a«=2000 kgf/cma; therefore, as is evident from 
formula (27.17'), Eulers formula can be used for bars of this material 
only when ______

h > Y ^ ! r a m

i.e. when is greater than 100.
For another type of steel, o„«3000 kgf/cm* and Euler’s formula is 

applicable when X>85; Euler’s formula is applicable for cast iron 
when X>80, for pine wood when X>110, etc. If we draw a horizontal 
line in Fig. 390 with an ordinate orp=2000 kgf/cma, it will cut Euler’s 
hyperbola into two parts; only the lower portion of the diagram, which 
is valid for thin and long bars, can be used, because such bars become 
unstable at stresses less than the limit of proportionality.
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The theoretical solution obtained by Euler can be applied to a very 
limited category of bars, namely thin and long bars having high flexi
bility. In structures we often find bars having low flexibility. Attempts 
to apply Euler’s formula for calculating critical stresses in such bars 
led to catastrophic results, and experiments on compression of bars 
aiso show that, if the critical stresses exceed the limit of proportiona
lity, the actual critical force is considerably less than the value ob
tained by Euler's formula.

Let us note that for axial compression of the bar is accompa
nied not only by elastic but also by plastic deformation; additional 
bending stresses appear at the instant when the bar loses its stability 
(when the bar axis becomes curved). When the load is removed, the 
bar fails to straighten, as it does when compressed within the elastic 
limits.

Keeping in mind all these factors, we see that it is necessary to find 
methods for calculating critical stresses in those cases when they ex
ceed the limit of proportionality, i.e. for bars which have a flexibility 
less than that determined by equation (27.17'), for example, for low 
carbon steel bars with flexibility A,=*0 to A.= 100.
A. A theoretical solution of the problem of stability of compressed 
bar subjected to critical stresses exceeding the limit of proportionality 
of the bar material was first attempted by F. Engesser (1889), who 
obtained the following formula Identical to Euler’s, (27.12):

Here Ex is a variable modulus of elasticity, which is determined as the 
tangent of the angle of slope which the tangent at a point beyond the 
proportionality limit makes with the compression test diagram
(Fig. 391(g)) The langenlial modulus E i~  depends upon the. type of
diagram as well as on the magnitude of critical stress ac at the instant 
when the bar loses stability.

Tt was Yasinskii who pointed out that formula (27.18) was incorrect 
as it did not take into account the fact that when a bar lost stability 
and its axis became curved it experienced additional stresses not only 
of compressive but also of tensile nature. Conceding to the validity of 
the critical remarks of Yasinkii, who pointed out the necessity of ac
counting for load relaxation on the convex side of a bent bar, Engesser 
(1895) and independently Th. Karman (1909) came to the conclusion 
that in formula (27.18) the tangential modulus should be replaced by 
reduced modulus £*, which took into account load addition on the con
cave side with modulus E\ and load relaxation on the convex side with 
modulus E (load relaxation, as is well known, follows Hooke’s law). 
The formula for critical stresses exceeding the limit of proportionality

(27.18)
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(for bars having flexibility \> ^ p) may be rewritten as
n3E»

Cc =  x 3
<27.18')

The reduced modulus of elasticity may be calculated from the fol
lowing expression derived from the conditions of equilibrium of addi*

S e ttitn  m -n

(b)

tional stresses (load addition—load relaxation) and on the basis of 
the hypothesis of plane sections:

£ * = £|/ l + £/a (27.19)
J

where is the moment of inertia of the concave half of the section 
about the neutral axis, Jz is the moment of inertia of the convex half 
of the section and J is the moment of inertia of the whole section about 
the central axis.

On account of the difference between moduli E and £i in expression
(27.19), the neutral axis dividing the concave half of the section 
from the convex half does not pass through the centre of gravity of the 
section (Fig. 391(b); its location (and this means that the areas that 
experience additional loading and load relaxation) depends upon the 
shape of the section as well as upon the critical stress, which we want 
to determine. For different sections, assuming a particular value of 
Ei and using the method of successive approximations, wc can find the 
location of the neutral axis and calculate the moments of inertia Ji 
and and then the reduced modulus of elasticity E* as a function of
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moduli E and £ t. Foi a rectangular section, lor instance,
A ll E j

{VE+ VEIY (27.19')

It is evident from equations (27.19) and (27.19') that when the criti
cal stress does not exceed the limit of proportionality of the material 
(i.e. when the deformation is within the elastic limits and £ i= £ ), 
the reduced modulus of elasticity £ * = £ .

For materials having a well defined yield plateau Et and E* tend to 
zero as the critical stress approaches the yield stress. This implies that 
in such cases the critical stresses cannot exceed the yield stress of the 
material.

The Engesser-Karman formula did not find application in practical 
design since the determination of E*, which depends upon the critical 
stress, raises serious difficulties in computation and also because it 
gives exaggerated values of critical stresses as compared to experimen
tal results.

The application of Euler's formula to the inelastic region of defor
mation became possible only after F. Shenly published his work in 
which he suggested a new approach to the analysis of stability of com
pressed bars (1946) subjected to elastico-plastic deformation. Looking 
upon the loss of stability as a dynamic process under the action of a 
continuously increasing compressive force, Shenly, in fact, returned 
to the original formula of Engesser (27.18) with tangential modulus of 
elasticity £ t, which had earlier been rejected (if the curvature is small 
at the moment when the bar loses its stability, an increase of force P 
by AP balances the load relaxation on the convex side due to addi
tional compression).

The transition to generalized formula (27.18) considerably simpli
fied the calculation of critical stresses for bars in which loss of stability 
is accompanied by plastic deformation. At present, theoretical values 
of critical stresses for low and medium flexibility of different materi
als have been calculated on the basis of experimental data on E\ cor
responding to different values of critical stresses ar greater than op, 
and with the help of modern computational techniques. These values 
are in good agreement with the results obtained from experimental 
research.
B. The first experimental investigations on stability of compressed 
bars were conducted with the aim of checking Euler's formula. It 
was found perfectly valid for long (flexible) bars but was observed to 
give a large discrepancy with experimental results for short bars (as 
is evident from theoretical considerations). On the basis of these expe
riments, often not conducted with due care, various empirical formulas 
were proposed for determining critical stresses, though without suf
ficient justification in most of the cases. However, the quality of ex
perimental investigations improved as new apparatus was developed.
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Extensive experiments that covered a wide range of materials and 
were distinguished by an extreme thoroughness were conducted in 
1896 by L. Tetmajer. The results of these experiments were processed 
by Yasinskii who compiled a table of “breaking” (critical) stresses de
pending upon flexibility for bars from commonly used structural mate
rials.

Alt experiments show that short bars having stability X=30-40 lost 
their load carrying capacity not due to insufficient strength but be
cause of the compressive stresses rising to a dangerous value a* which 
was critical for the given material (recall that a d=o„ for ductile state 
of material and <xd= o u for brittle state). It may therefore be assumed 
that for bars with low flexibility critical stresses for ductile materials 
are practically equal to the yield stress av and for brittle materials to 
the ultimate strength oru.

For medium flexibility bars, which find maximum application in 
structures, it was experimentally established that they lose their load

carrying capacity due to loss of stability of straight-line form under 
stress ae greater than the limit of proportionality ap but less than <r<j.

In such bars, the variation of critical stresses as a function of flexi
bility follows an almost linear law. For instance, the empirical 
formula of Tetinajer-Yasinskii is:

oc= a — b\ (27.20)
where a and b are coefficients that depend upon the material and are 
selected such that for flexibility ?v=A,1jni, ac—ap and for low flexi
bility c r is close to 

This data is used for plotting the total critical stress diagram shown 
in Fig. 392 for low-carbon steel having a limit of proportionality 
op=2000 kgf/cin* and yield stress <Tl/=2400 kgf/cm4. The diagram con
sists of three parts: Euler’s hyperbola when 100 (on the right),
horizontal line for â 40 when a c«o„ (on the left) and an inclined
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straight line (27.20) when 40<X<!00 (joining points m and n). In 
o^der to avoid sharp inflections in the <xc versus % curve at points m 
and nt we may use the empirical formula due to Johnson which recom
mends a parabolic variation of critical stress in the inelastic zone

oc= od— a\* (27.20')
Here, when X=0 then <Jc=odt and when then o ^ o P; more
over, coefficient a is selected such so as to ensure smooth conjunction 
of the parabola (27.20') with Euler’s hyperbola (a common tangent). 
For example, for structural steel having yield stress or„=2800 kgf/cmS 
a<=0.09.

Hence, either by using the general theoretical formula (27.19) or 
combining Euler's formula with experimental results, we can plot the 
total critical stress diagram for bars of different materials and deter

mine critical stress oc for any flexi
bility.

§ 158. The Stability Check of 
Compressed Bars

We noted in § 154 that the follow
ing two checks should be carried 
out for bars under compression: 

the strength check

a — - j  <  M* where [<f] =  ̂

the stability check 

* =  where [ o ,] = £

Having plotted the total critical stress diagram for bars of any flexi
bility (§ 157), we can also plot the permissible stress diagram for sta
bility for the given material by reducing the <vordinates k, times:

We only have to choose a proper value for coefficient k t. Bearing in 
mind a number of errors, which are unavoidable in axial compression 
(initial curvature, eccentricity, etc.) and seriously influence the load 
carrying capacity of the bar, the factor of safety for stability is taken 
greater than the safety factor for strength, fa. For steel this coefficient 
varies between 1.8 and 3.5, for iron between 5.0 and 5.5 and for timber 
between 2.8 and 3.2.

Figure 393 shows the diagram of permissible stresses for stability
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and the safety factor for stability for low-carbon steel having yield 
stress of<=2400 kgf/cm9.

In order to establish a relation between the permissible stress for 
stability* [a J , and permissible stress for strength, (oj, let us lake their 
ratio:

Denoting

we get

[o£l D a£»o

1!©- (27.21)

[a,] =  (F[or] (27.22)

where <p is the reduction coefficient of the permissible stress for com
pressed bars.

If we have the versus X curve for a given material, know o0 —ov 
or <7o=aru and select the safety factors for strength, k6l and stability, 
kg, we can put together a table for q> as a function of flexibility.

Table 19

Coefficient <p

F le x ib ility  
.  lU 
X =  T

Structural steel?  

C 3 8 /2 3  0 4 4 / 2 9 C -4 6 /3 3

Steel
ctjk

Cast
iron Wood

0 1.00 1.00 1.00 1.00 1.00 1.00
10 0.988 0.987 0.986 0.97 0.97 0.99
20 0.970 0.968 0.965 0.95 0.91 0.97
30 0.943 0.935 0.932 0.91 0.81 0.93
40 0.905 0.892 0.888 0.87 0.69 0.87
50 0.867 0.843 0.837 0.83 0.57 0.80
<50 0.820 0.792 0.780 0.79 0.44 0.71
70 0.770 0.730 0.710 0.72 0.34 0.60
80 0.715 0.660 0.637 0.65 0.26 0.48
90 0.055 0.592 0.563 0.55 0.20 0.38

100 0.582 0.515 0.482 0.43 0.16 0.31
110 0.512 0.440 0.413 0.35 0.25
120 0.448 0.383 0.350\ 0.30 0.22
130 0.397 0.330 0.302 0.26 0.18
140 0.348 0.285 0.256 0.23 0.16
150 0.305 0 250 0.226 0 .2! 0.14
160 0.19 0.12
170 0.17 0.11
180 0.15 0.10
190 0.14 0.09
200 0.13 0.08
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Table 19 contains data on coefficient <p for structural steels recom
mended by the latest Soviet standards for designing metal structures. 
The table also contains the reduction coefficients of main permissible 
stresses* for improved quality steels, iron and timber (pine). The de
sign standards used in construction recommend that coefficient q> for 
timber should be calculated by the following formulas:

if flexibility 75, then q>=l — 

if flexibility X >  75, then <p =  ̂

The values of cp obtained from these formulas are quite close to the 
tabulated values.

This table helps us to select the cross-sectional area of the com
pressed bar. The cross-sectional area depends upon fa j, which in its 
turn depends upon «p and flexibility X, i.e. upon the area and shape of 
the cross section. Therefore, the cross-sectional area is determined by 
successive approximations in the following order.

We select the shape of the section and define its dimensions. Next, 
we calculate the minimum radius of gyration and the flexibility. We 
find coefficient <p from the table and calculate the permissible stress
for stability |o,l=(p|o|. We now compare the actual stress <r=£- with
lo j; if the condition

» =  (27.23)

is not satisfied, or is satisfied with a big margin, we change the dimen
sions and repeat the calculations. Obviously, the section finally se
lected must also satisfy the strength condition

* < [o ]
In actual calculations the stability condition is sometimes written 

as follows:

<27-23')

In the left-hand side or, represents the design (reduced) stress.
The order of calculations will be elaborated on in the following 

example.

• The steels accepted In the standards are characterized by ultimate strength 
(numerator) and yield stress (denominator) in kgf/imn*. Standards do not permit 
the use of steel bars having flexibility X>I50 in structures as load carrying elements 
subjected to compression. In design by the method of limiting states (see Chapter 26) 
coefficient cp is considered a coefficient by which the rated Toad should be reduced.
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Find the cross-sectional dimensions of an iron pipe column hinged 
at both ends and subjected to a compressive force P= 85 If, if the ratio 
of internal diameter to the external is diD=0.6. The column is 1= 
=4.8 m long. The main permissible stress under compression for iron
is Iol=l200 kgf/cm*. .

Let us express area A of the section and its radius of inertia i 
through diameter D:

A = n(D*~ dl)c=±(Di— 0.36D*) =  0.503D* (a)

In stability condition (27.23) we know neither the cross-sectional 
area, A, nor the reduction coefficient for permissible stress, <p. There
fore it is essential to assume a value for one of these quantities. In the 
first approximation let us assume q>=0.5. We get

A > P
<pl*J

85 000 
0.5X1200 142 cm*

In the first approximation the diameter is (a) 142/0.503=
=  19 cm. The radius of inertia is (b) /i=0.291Di=0.29l X 19=5.5 cm.
Flexibility X1= pf/i,=  g -  =87.5. For flexibility between X=80 and
X=90 we find from the table by interpolation that <p=0.215. The de
sign stresses from formula (27.23') are

P 85000 =  2800 kgf/cm* >  [o]

The section does not satisfy the stability condition. Therefore, in 
the second approximation let us assume that diameter £>*=25 cm. 
Cross-sectional area J4*=0.503D!=0.503x25*=314 cm*. Radius of 
inertia /s=0.291 X25=10.2 cm. Flexibility Xi=//t *=480/10.2=47and 
<p=0.654. Thus

° '  =  { a =  =  4 L 0 kgf/cm’ «1200 kgf/cm’

When diameter is Df=19cm  the stresses are considerably greater 
than the permissible, and when it is £>*=25 cm they are much less. 
Let us trv in the third approximation a section of diameter D=22 cm. 
In this'case A=0.503X 22*=245 cm*, *=0.291x22=6.4 cm, X=

17-3810
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*480/6.4=*75, q>=0.30 and the design stresses are:

<*r =  p S S ,  “  1150 kgf/cma <  1200 kgf/cm*

The calculations may be terminated here as understressing is less 
than 5%.

§ 159. Selection of the Type of Section 
and Material

A. As the flexibility of Ihe bar and consequently the minimum radius 
of gyration plays the most important part in resistance to axial bend
ing (loss of stability), it is important to take into account not only the 
cross-sectional area but also its shape.

The most economic solution of the problem is obtained if the sect ion 
of a certain cross-sectional area has the minimum radius of gyration of 
the maximum possible magnitude. To achieve this, we try to select a 
section in which the minimum and maximum radii of gyration are 
equal, i.e. a section in which the moments of inertia about all central 
axes are zero and consequently the inertia ellipse transforms into an 
inertia circle. Such a bar will have uniform resistance to buckling in 
all directions.

If the free length of the bar <§ 156) is different for deflection in the 
two principal planes, then the principal moments of inertia should be 
such that coefficient <p is the same in both the cases.

It is now essential to obtain the maximum possible central moments 
of inertia for the given cross-sectional area. This is possible if the mate
rial of the section is located as far away from the centre of gravity as 
possible. Both these conditions are, for example, fully satisfied by a 
pipe section (Fig. 394(a)), which is therefore often used in compressed 
bars and columns.

The lower limit of wall thickness of such sections is determined either 
by casting limitations (as in cast iron) or by the condition that local 
deformation (warping) of the section should not occur when the bar is 
working.

To prevent such local deformations and to ensure that the bar re
tains its designed shape, the pipe-section is reinforced with the help of 
plates placed at a particular distance from one another, which increase 
the rigidity of the thin-walled section (Fig. 394(b)). As a matter of 
fact, proper use of reinforcing plates is extremely important in de
signing compressed bars.

Some sections which have excellent bending resistance in one plane, 
for example beams, are found to be of no use as compressed bars. 
Examples are: an I-beam, a section consisting of two channel sections 
placed in such a way that their webs touch each other (Fig. 394(c)).
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These sections are disadvantageous when used as compressed bars on 
account of the large difference in the values of their principal moments 
of inertia. This drawback may be overcome by moving apart the chan* 
nel sections, as shown in Fig. 395(c). To ensure that the sections work 
together as a single unit, they are 
joined by means of a network (Fig.
395) of fixing plates.

Trouble-free working of such com
posite sections can be guaranteed 
only by providing a sufficiently 
strong fixation (by network of plates 
and angles), which ensures that 
all load carrying elements function 
simultaneously. Thus, if we loin 
two strong channel sections weakly, 
they will not work as a single unit.*
Each half of the sections will work 
independently and its stability will 
be considerably less than that of a 
section in which both halves operate 
as a single unit.

Insufficient attention paid to the design of reliable fixation of com
posite sections has been the cause of serious catastrophes in the past.

f a (b)

Fig. 394

2 T 
( 0

In designing a composite section, distance b by which the two halves 
of the section should be moved apart is determined from the condition 
that the moments of inertia about principal axes y and z be almost

* The analysis and methods of determining the dimensions of network plates 
for composite compressed bars are given in the course on metal structures. Also see 
N.M. Belyaev, Strength of Materials, Nauka, 1965 (in Russian), §212.

17*
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equal. Usually, however, the moment of inertia about the axis per
pendicular to the network plane is taken a little higher, because the 
network cannot ensure simultaneous working of the two halves as well 
as of a section which is one rigid unit.

We will show below how the stability of a composite bar subjected 
to compression can be improved by rationally placing the elements of

section. Suppose we have to design a section from two channel sections 
(steel C-38/23) for a 4-m long column that is hinged at both ends and 
is subjected to compression.

We shall compare the maximum permissible (from the point of view 
of stability) compressive force acting on the column made up of two 
channel sections No. 30 (see Appendix). Let us consider two versions: 
in the first the two channel sections are attached alone their height 
back to back so as to form an I-section (Fig. 396(a)); in the second ver
sion the two channel sections are attached by a network and placed in 
such a way that the section has identical moments of inertia about the 
two principal axes of inertia (Fig. 396(7;)). The main permissible stress 
under compression is assume! to be [cri =  1600 kgf/cm1.

For the first version (channel sections attached without any gap) 
the minimum moment of inertia of the section is:

Jm\a =  Jz =  2 (327 -|- 40.5 x  2.52s) =1168 cin*

The area of the composite section is A^2x4Q.5=81 cm4. Radius of 
inertia of the section is i= \rJ !A —]/'{168/81— 3.8 cm. Flexibility of 
the bar >.=p/7=400 3.8=105.

Interpolating from Table 19 the value of <p between 100 and X— 
*=110, we obtain <p=0.547. The maximum compressive force which can

Fig. 396
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be safely applied to the column is:
Pt =  [o] Ay  =  1600 x 81 x 0.547 =  70 800 kgf 71 tf

For the second version (when the channel sections are apart) Ihe mo* 
ment of inertia of the composite section (Fig. 396(6)) is:

Jv =  /* =  2x5810= 11 620 cm4

The radius of inertia i= V  \ 1620/81 =  12 cm, the flexibility X=//*= 
—400/12=33.3 and the coefficient <p=0.931.

The permissible load on the bar may in this version be taken P*= 
=[<rM<p=1600 X 81 X0.931 =  120 900 kgf«121 tf, i.e. 1.7 times grea
ter than in the first. Hence, a rational approach in selecting the shape 
of a section enabled us to raise the load carrying capacity of the com
pressed bar by 70%.

Simultaneous functioning of both halves (channel sections) of the 
composite section is possible only if they are reliably secured to each 
other by a network or plates (Fig. 395(a) and (6)). Distance a between 
the securing elements should ensure that neither of the channel sec
tions bend in the plane of its minimum flexibility. This condition can 
be satisfied only if the flexibility of each half (in this example each 
channel section) does not exceed the flexibility of the column over 
length a:

K .s lmln

For one channel section the minimum radius of gyration is 
=2.84 cm. Therefore

a — Xyim j„ =  33.3 x  2.84 =  94.6 cm

This means that the distance between the securing plates should not 
be more than 94.6 cm.

Distance b between the channel sections (Fig. 396(6)) may be de
termined from the condition where

Here J*u and J\ are moments of inertia of one channel section about 
the axes passing through its centre of gravity, and A 0  is the cross
sectional area of one channel section. Therefore

Y
5810—327

40.5 =  11.6cm

Since b=2(c — y0) and from the specifications ^<>=2.52 cm, we get 
6=2(11.6—2.52)=18.2 cm.
B. The material of compressed bars is selected from the following 
considerations. As long as the critical stress does not exceed the
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limit of proportionality, the resistance of a bar to buckling is deter
mined by only one mechanical property, the modulus of elasticity, E. 
In bars of medium and particularly low flexibility the critical stress 
depends to a considerable extent upon the yield stress or ultimate

strength of the material. These con
siderations should be taken into 
account while selecting a material 
for compressed bars of high as well 
as low flexibility.

For example, there is no sense in 
using special high-strength steels 
for long and thin-walled bars, be
cause the modulus of elasticity is 
approximately the same for all 
grades of steel. On the other hand, 
it is advantageous to use high- 
grade steels in bars having critical 
stress higher than the limit of pro
portionality, because in such bars 
the increase of yield stress results 
in an increase of the critical stress, 

thus improving the resistance of the bar against buckling.
Figure 397 shows approximate diagrams depicting critical stress 

as function of flexibility for structural steels: low-carbon steel C-38/23 
and stronger steel C-46/33, which have yield stresses equal to 2300 
and 3300 kgf/cma, respectively.

It is evident from the diagrams that for highly flexible bars (k great
er than 100) the critical stresses, which are limited by Euler’s hy
perbola (27.12), are the same for both steels, as the latter have identical 
moduli of elasticity E upon which crc depends; the permissible stresses 
for stability are considerably higher for steel C-46/33 in comparison 
with steel C-38/23.

It follows from the above discussion that there is no advantage 
in using high-strength steels for bars of high strength subjected to 
compression in structures. Also, considerable saving of material can 
be achieved by using stronger steels for bars of low flexibility.

Fig. 397

§ 160. Practical Importance of Stability Check

The check on stability is of great importance for an engineer. It 
can be said with authority that sudden failure of most of the struc
tures occurs only due to loss of stability of its compressed elements. 
Engineers know about a large number of cases of catastrophic failure 
of structures in the past; yet, somehow, they fail to appreciate the 
actual reasons of this. This clearly shows that often engineers do not
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pay sufficient attention to seemingly unimportant but actually very 
important aspects in the working of compressed bars.

Loss of stability is all the more dangerous because it occurs sud
denly. Deformation is not noticeable and fails to arouse suspicion 
right up to the moment when the compressive force becomes critical. 
In addition, as mentioned earlier, a number of factors—eccentricity 
of loading, initial curvature, local overslrcssing of the material- 
can further considerably reduce the resistance of compressed bars 
to buckling, although the same factors have almost no effect on the 
working of other elements of the structure.

Special attention should be paid to the reliability of joints of parts 
in compressed bars made of composite sections. Neglect of this 
factor was the cause of tragic accidents in the past, especially in case 
of large bridges.

At present, an engineer has at his disposal all means to prevent 
such mistakes provided he designs properly and the designed structure 
is manufactured accurately. The theory of analysis of stability check 
has been worked out quite soundly, as has been already discussed 
(§§ 154-159).

The stability check of machine parts is slightly different. Here 
particular attention must be paid to the value of permissible stress 
[ol. While selecting its value, it should be borne in mind that such , 
machine parts as connecting rods, plungers, etc., are subjected to 
dynamic loading. Therefore in the formula of permissible stress for 
stability, namely

[<rrf] =  (f [oJ

[ol should imply the permissible stress for strength under dynamic 
loading (see Part IX, Chapter 29).

In § 154 there was a mention about the analogy between sudden 
increase in deformation when stresses exceed the critical stress. This 
analogy leads to the idea lhat in statically indeterminate structures 
failure may not occur despite the stresses achieving critical value, 
especially if the stresses are below the limit of elasticity.

Examples of such situations are lattice trusses of old bridges which 
are still working under present conditions although the load they 
have to take now is considerably higher. Part of the bars in these 
trusses may find themselves loaded up to the critical stress limit 
and yet remain in the elastic state of deformation. The load of these 
bars is taken up by the opposite bars working under tension. When 
the load is removed, the bars return to their original positions.

Other instances of such loading can be found in aviation engineering 
and ship building, where we have to cope with buckling of not only 
bars but also beams, plates and shells. Thus in exceptional cases we 
may allow the stresses in a compressed element to reach the critical 
limit provided that the stresses do not exceed the elastic limit, the
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structure is statically indeterminate and the load of elements thus 
overstressed is taken up by other elements.

We shall discuss below a few more complicated problems on sta
bility check.

CHAPTER 28

More Complicated Questions of Stability 
in Elements of Structures

§ 161. Stability of Plane Surface in Bending 
of Beams

Buckling occurs not only in axial compression of bars. For exam
ple, buckling may occur in an I-beam under bending (Fig. 398).

The lower flange of such a beam represents a bar rigidly fixed to 
the web and subjected to axial compression. The constraint does not 
permit the flange to buckle in the web plane. However, for particular

Fig. 398

beam dimensions the flange may buckle on one side, causing rotation 
of the sections w.r.t. one another and giving rise to torsion of the 
beam (Fig. 398). Instead of bending in the plane of maximum rigidity, 
as intended by designer, the beam starts working in unsymmetric 
bending, which results in a sharp increase in deformation ultimately 
leading to total failure.

Stability of the beam depends upon its cross-sectional dimensions 
and its free length. This length is restricted by providing constraints 
between the beams. Serious accidents may occur if insufficient at
tention is paid to these side constraints in long beams, although 
their height may be small (for example, failure of the Tarbes-bridge 
in France).

Buckling is also dangerous for thin shells under compression, 
i.e. for elements in which one dimension is considerably less than the 
other. A thin and wide flange in an 1-section will warp under com
pression; a web which Is not sufficiently strengthened by stiffening 
angles will buckle.
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Let us determine for a beam the approximate critical load at which 
the plane shape of the beam becomes unstable leading to complete 
failure due to side buckling if the load Is further increased. Let us 
consider a simply supported beam of thin rectangular section (Fig. 399) 
acted upon by a lateral force P.

Let us assume that force P has reached its critical value and the 
beam is buckling slightly to one side, as shown in the top view as

well as the section in Fig. 399; only ends A and B remain in the 
original positions due to the constraints applied to them.

with buckling the potential energy of the deformed beam should 
increase due to bending on one side and torsion (the energy of bending 
in the vertical plane remaining constant). The potential energy of 
the external force should decrease, because of the lowering of its 
point of application.

Let us denote the potential energy of side bending by Uu of torsion 
by £/*, and the work done by the load in lowering by Up. As at the 
critical force the transition from plane shape to buckled shape is 
accompanied by transformation of energy of the load into potential 
energy of deformation of the beam, we may assume that

Here the bending moment in an arbitrary section at a distance x 
from the left support will be (assuming the angle of rotation, q,, to 
be small)

Fig. 399

t f . + V . - V ,

Potential energy of buckling (w.r.t. axis zO is (§ 63):

(28.1)

p p
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Substituting the expression for bending moment, we get

The potential energy of torsion may also be expressed through <f .

Let us first determine the vertical displacement of the point of 
application of force P (Fig. 400) in order to calculate the work done 
by force P in lowering. Here, it is relevant to point out that there are 
two reasons for the displacement of point 0  to 0,: rotation of the 
section about point 0  by an angle <p and displacement in the di
rection of axis Oy\.

Since lowering of point 0  is not possible due to rotation, obviously 
the cause of lowering of the point of application of force P is buckling 
of the beam from plane xOz.

The vertical displacement of point 0  can be found by Castigliano's 
theorem from expression (28.2):

Wherefrom work done by force P (which is equal to critical force Pe 
when buckling starts) in causing displacement 8 is:

(28.2)

The work done by the twisting mo
ment over a length dx is:

we obtain

Keeping in mind that

a n d

Fig. 400 The total potential energy of torsion 
due to budding of the beam is:

2 c j  . \ JC* ^ 1 d x (28.4)
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Now substituting the values of (Ju U3  and Up in the original equation 
(28.1), we get

l/J //* tfa
**»•&+oaJ $)'dx=wrS

o o  0
wherefrom

m  //*
^  j  A '*  (•$•)’&

o o

Denoting rigidity in bending by EJz=Clt and torsional rigidity by 
G/*=Ca, we get the following expression for critical force:

s  ( f e y * *
P } -4 C ,C ,^ t;---------  (28.5)

J  Jt^p* dx 
o

Under the integral sign we have two variables, <p and x, which are 
interrelated because qj changes along length x, i.e. <p=<p(*). The law 
of variation of tp as a function of x  is not known. Using the method 
of approximate solution, we assume a value of <p which relates it to x 
in such a way that the conditions of constraint at the ends are satis
fied. Let us assume that

<P =  £ s in ~  (28.6)

We see that <p=0 at x=0, that cp=cpraJX at x = — and that <p=0 at
x= l. Thus, the function vanishes at the supports and is maximum 
at the middle of the span. In other words, the function satisfies the 
boundary conditions.

Substituting the values of <p and its first derivative in the integral 
in equation (28.5), we obtain

/ / 3

cos* -y- dx
D3 _  &r n  . .. ®

*  C ~  **- 1^2----- //.,

m *

Upon integration we get
(28.7)
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The exact value of critical force for a simply supported rectangu- 
lar beam (Fig. 399) is given by the formula *

The error of approximate solution is about 1.5%. The critical force 
depends upon the product of rigidity under bending Ci=EJt and 
torsional rigidity Cz=GJt.

If the load is uniformly distributed along the axis, then the critical 
value of the distributed force will be

<28-8>

For a cantilever of length I which is loaded by a uniformly dis
tributed force we get

< 2 8 9 >

For a cantilever being acted upon by a concentrated force at its 
free end we have

P'-tjfvTZ.  < 2 8 - 1 0 )

The formulas for critical force in an 1-bcam are the same as for a 
rectangular. The difference is that the coefficient before V CiCa is 
not a constant quantity but depends upon the resistance of flanges 
to buckling and is determined by the ratio

- a w
where h  is the height of the I-beam. Thus, for an I-beam

=  i  I ' C A  (28. 11)

where p has to be determined individually for each value of a. The 
values of coefficient p have been determined for various types of loads 
and are given below in Table 20.

It is evident from the table that the values of coefficient p approach 
its values for a rectangular section as ///i is increased. A ta=100, 
P almost coincides with its numerical value for a rectangular beam.

While studying the slability of plane shape during bending it is 
essential that the normal stresses due to bending should not exceed

• S. Timoshenko, Theory of Elastic Stability, Toronto, 1961.
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Coefficient p in Formula (28.11)
Table 20

fix P. 8»
C , /  1 \*

8 . 8. 8 .

1 2 3 I o* 4

0.1 31.0 86.4 143.0 16 5.08 18.3 30.5
1.0 y.7f. 31.9 53.0 20 4.85 18 1 30.1
2.0 8.03 25.6 42.6 32 4.50 17.9 29.4
4.0 6.73 21.8 36.3 50 4.35 17.5 29.0
G.O 6.19 20.3 33.8 70 4.10 17.4 28.8
8.0 5.87 19.6 32.6 90 4.04 17 2 28.6

12.0 5.36 18.8 31.5 too 4.04 17.2 28.6

Column 2 is for a cantilever loaded at tlie free end.
Column 3 is for a simply supported beam with a force acting at the middle 

of its span.
Column 4 is for a simply supported beam loaded with a uniformly distrib 

uted force.

the permissible stress for stability, where k 9  is the safety
factor.

Knowing the critical force for each type of load on the beam, we 
can easily determine the critical stress:

_ _Mumx
C~~~Wwy

where M^  is the maximum bending moment due to the critical 
force and Wu is the section modulus in the web plane.

The results obtained above hold good only when the critical stress 
under buckling does not exceed the limit of proportionality of the 
material.

If Oc> j p, then the formulas derived above give exaggerated values 
of the critical stresses, just as Euler’s formula gives overstated values 
for compressed bars of low flexibility. Data collected by experimental 
studies should be used for determining the actual critical stresses 
under buckling of beams when <T0>cr,,. Prof. Yasinskii suggests that 
the analogy with compressed bars can be successfully employed by 
assuming that the ratio between the actual stresses and the stresses 
determined by the formulas derived in this section is the same as 
between the actual stresses and critical stresses in compressed bars 
when cr^Up.

Let us consider the following example. A simply supported I-beam 
No. 60 (see Appendix) with a span /—6 m is loaded by a uniformly
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distributed force of intensity <7=9 tf/m. Check the strength and sta
bility of plane shape of the beam if the permissible stress [al= 
=  1600 kgf/cma and the safety factor for strength and stability are 
both equal to k =1.7.

The dimensions of the section (Fig. 401) and its geometrical charac
teristics, as obtained from the specifications, are: A=60 cm, 6=19 cm,

6j=1.2cm, 6*=/= 17.8 mm «l.8cm , /ij=60-—- 
—2x1.8=56.4 cm, /„=76  800 cm4, / , =  

h =1725 cm4, U%=2560 cm3.
The torsional moment of inertia has been

calculated from formula (9.38'):
where t) = 1.2 for an I-beam. Substituting the 
numerical values, we obtain

A - T t M + 2 6 ©

=0.4 (56.4X 1.2* +  2 x  19xl.8s) =  127 cm*
Let us check the beam section for strength 
and stability of plane form.

(a) Strength check:
^  A n  * if^max g a  § — 40.Dtf*rn

=  405x10* kgf-cm
Afmax_  405X104 

w"«* Wy ~~ 2560
=  1590 kgf/cm* <  1600 kgf/em*

(b) Check for stability. The critical load that leads to instability 
of the uniplanar state of bending may be calculated from formula 
(28.11):

Fig. 401

where C ,= £ /,  is the rigidity under bending, Ct—QJt is the torsional 
rigidity, and p is a coefficient that depends upon the ratio of rigidi
ties and llh .

Assuming that the modulus of elasticity for steel £ = 2 x  104 kgf/cm1 
and shearing modulus from formula (6.38) G= ^ =»^ , we get

= p ^ :  |/84  100=^x5.56 x  290= 1610(1
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As coefficient 0 depends upon the ratio

Cx \ h )  l J e \ h )
127 /ooo\*

2.6x I725 '̂§5'J ; 2.84

by using Table 20 (Column 4) and interpolating between a= 2  and 
<x=4 we find (5=39.4, and the critical load is:

Qe =  (<?/), =  1610 x 39.4 =  63 400 kgf

In order to avoid buckling the permissible load should be taken as 

[ Q] — %  =  =  37 300 kgf

For the chosen value of A=1.7 the intensity of the uniformly dis
tributed load should not exceed

<7 = IQ | 37300 — 6250 kgf/m

Hence, reliable functioning of the beam can be ensured only if the 
given intensity of 9 tf/m is reduced by about one and a half or by 
providing side supports which prevent buckling of Ihe beam (if the 
beam design permits this).

Let us see how the value of critical force changes when side con
straints are applied. Applying side constraints is equivalent to 
reducing the free length of the beam by two and using other values 
of coefficients a  and (5:

a C# /o.5/‘\*
£ p r ]

127 X 0.25 /  600\* n „
2.6X 1725 \ "0?T/  “ U/ 1

From Table 20 wc obtain (5=0.57 by graphic interpolation between 
a=0.1 and a=1.0. The critical load is:

< ? c = P
E 

(0.5/)*/C ,C ,= 0 -5 7 5 25/a T X =  0.57 2 x l0 #x290 
0.25 x  600* 367 000 kgf

This corresponds to critical stress

°c
307000x 600 

8x2560 10300 kgf/cm*

The value of orf is considerably greater than the limit of proportion
ality of the material; therefore, formula (28.11) cannot be applied. 
The value of critical stress obtained above actually corresponds to 
the yield stress of the material. Therefore, in this case it is sufficient 
to carry out the strength check only.
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§ 162. Design of Compressed-bent Bars

While studying the combined effect of axial and lateral forces in 
Chapter 21 we used the principle of superposition of forces and added 
the stresses due to tension or compression to the stresses due to bend
ing. The strength condition in this case is:

=  (21.1)

Assuming that the axial force N—± P  does not participate in 
bending, in the formula we used bending moment A f-,x caused only 
by lateral forces. However, we have already seen while studying the 
stability of bars by Euler’s method (§ 155) that in the case of buckling 
the axial compressive force P creates an additional bending moment 
M ’—Pf, which gives rise to additional stresses and displacements

due to additional bending of the 
f bar (Fig. 402). The maximum stress

in the critical section may be deter
mined by the formula

^max j PfI
T i f ~w~ w (28 12)

where /  is the maximum deflection 
due to the lateral and axial com
pressive forces. If the axial force is 
tensile, it decreases the curvature 
of the buckled bar and reduces stress 

this case is of little interest 
(the third term in formula (28.12) 
will be deducted).

From a comparison of formulas 
(21.1) and (28.12) we see that by 

applying the principle of superposition of forces (Chapter 21) we 
neglect the additional bending moment Pf due to axial forces and 
the stress Pj!W. Strictly speaking, the principle of superposition of 
forces cannot be applied at ail if both axial and lateral forces act on 
the bar. By neglecting the third term in formula (28.12) we intro
duce a serious error except when the bar is sufficiently rigid and 
deflection /  is small in magnitude. However, if we ignore the bending 
caused by axial forces in flexible bars, this may lead to serious errors 
while determining the stresses.

In order to avoid such errors it is essential to take into account 
the bending moment due to axial forces P by determining deflection f 
caused by the combined action of both axial and lateral forces.

For the compressed-bent bar shown in Fig. 402 the differential

w

Fig. 402
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equation of the elastic curve is:
EJl = Mc- P y  (28.13)

Here M 0 = y -x —2j- is the bending moment due to the lateral

forces. Dividing (28.13) by EJ and substituting we obtain

i f  - r P y ^ Y j ^ x — qjr )

The general solution of this equation may be expressed 
y = Ct sin kx -fC t cos kx -\-y*

After choosing the particular solution y* ^here y* =  ̂ Y j 'X

X (Jp +  lx— and determining the constants of integration
Ci and C% from constraint conditions at the bar ends (y=0 at x=0 
and y—0 at x=l) we may calculate y  and find deflection /  at x= li 2 .

However, if several forces are acting on the bar, this approach 
leads to cumbersome calculations, because for different portions M* 
has different expressions and the elastic curve consists of a number 
of conjugated curves. In such cases it is simpler to solve the problem 
by an approximate method. The idea lying at the root of this method 
is that the shape of the elastic curve is defined beforehand with the 
condition that it must satisfy the boundary conditions; this makes 
it much easier to solve the problem.

Suppose a beam is loaded by lateral forces Pt, Pa Pa and axial 
compressive force P (Fig. 403). Bearing in mind that a sinusoidal 
elastic curve was obtained while solving Euler’s problem, we assume 
that in our problem also the elastic curve due to lateral forces is si
nusoidal:

y0 =  f0s in ^  (28.14)

It can be easily seen that this equation for the elastic curve satisfies 
the boundary conditions: at both supports, at x=0 and x = l ,  deflec
tion 0. At the supports the bending moments are also zero (Af«=
= EJyl——EJjf sin ™ becomes zero for x=0 and *=/); /o is the
maximum deflection of the beam due to lateral forces acting at right 
angles to its axis.

Let us rewrite equation (28.13) by substituting EJyl for Mt:
EJy" — EJy%— Py

or
EJyH +  Py =  — E J ̂  /„ sin ~
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Dividing by EJ and substituting ^=A *, we get

—jr/.s in S !  (28 .15)

It will be easiest to look for the solution in the form y= f s illy , 
i.e. assume that under the combined action of axial and lateral

forces the beam bends along the same sine curve. After substituting 
in equation (28.15), we obtain

or
^ j J s i n ^ - M » / s i n ^ =nx a - e . nx 7rfoSinT

iw*
« 2 f= h

wherefrom

/ - (28.16)

Substituting k*=Pi(EJ) and keeping in mind that expression ^  
may be represented as Euler’s critical force, we get

/ = (28.17)

Coefficient C accounts for the effect of axial forces on deflection:

C l _ Pc 
F_ P e —P 
Pc

(28.18)

It is clear from formula (28.18) that deflection f  should theoreti
cally become infinite when compressive force P attains its critical 
value. Note that critical force Pc enters the formula formally as a 
substitution for n^EJIl2, where J is the moment of inertia of the 
section about the neutral axis when the beam is acted upon by lateral 
forces. This means that J is not Jmia, as the beam is usually placed 
in such a way that the moment of inertia of its section is maximum 
about the neutral axis.
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Let us apply the solution obtained here to particular examples, 
for instance to a simply supported beam subjected to bending by a 
uniformly distributed force q and compressed by forces P (Fig. 402). 
As already established,

=  M0+ P / = £ +  PftC (28.19)

5a/4where / 0=  334^  (see Chapter 15); therefore

Multiplying and dividing the fraction inside the parentheses by 
ii4, we obtain for this fraction

5.a«P/* 1.028P
4W E J ^  P e

and the expression for becomes

'W » .« = T (1 + i r r c ) = ? <:‘ (28-2t>)

For practical purposes we may assume that 1.028P=P, and after
substituting coefficient C=p ~ p  in formula (28.20) we get

=  =  (28.20')

For the assumed approximation (1.028«1) coefficient Ci=aC is 
found to be equal to C, i.e. the same as in deflection. Some authors 
suggest that we can always assume that C i—C on the basis of the 
assumption that bending moments are proportional to deflections. 

Formula (28.12) for normal stresses acquires the form

+  (28.21)

l ~ r .
p

When p -  is small, coefficient Ci is close to unity and formula (28.21)
coincides with (21.1).

Let us note that when the beam is symmetrically loaded by lateral 
forces, approximate formulas (28.17) and (28.21) give results that 
are very close to the exact solution. The results in the case of unsym- 
metric loading are slightly poorer, yet they are quite acceptable for 
practical calculations (discrepancy does not exceed 5-7%). If all 
forces act in one direction, the deflection ft may be considered maxi
mum at the middle of the span.



51G Stability of Elements of Structures [Part VII t

It is evident from the formulas derived above that there exists 
a non-linear relationship between deflections and stresses and the 
forces applied: if ail the forces are increased, say, n times, the stresses 
increase more than n times due to the increase in the value of coef
ficient Cj. This means that the strength condition crmJx̂ [a] ceases 
to be valid.

Therefore, in order to ensure sufficient strength the compressed- 
bent bars should be designed for permissible loads. Let us derive the 
strength condition for the beam discussed above.

Let us assume that in our beam the maximum stresses become equal 
to yield stress when all the forces are raised k0 times. Formula (28.21) 
may be rewritten as follows:

koP
T

where k0P and kjj are limiting loads. To go over to permissible loads 
we divide this equation by the safety factor k0. The equation then 
becomes

W
1 _ O y

I
Pc

Here j-  =fol is the main permissible stress under compression. 
The strength condition may be written as follows:

W  — s  ^  M  (28.22)
~ T 7

The effect of axial forces on stress in the given bar is taken into ac
count by coefficient

c »“ r s ~ r ^ t r  (28'23)
Pc

We now impose a restriction on deflection by writing the rigidity 
condition:

/ » . . = / . — ^ = / .  (28.24)

T ?
where 1/1 is the permissible deflection and k f is the safety factor 
against deflection.

Besides checking the strength and rigidity of the bar in the plane 
of bending it is necessary to check its stability in the plane of mini-
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mum rigidity when it is subjected only to compressive forces P (§ 158) 
and also check the stability for plane surface in bending (§ 161).

Let us consider one more example. Suppose that a simply supported 
beam is subjected to bending by a force P» acting at the middle of 
its span and is compressed by an axial force P. From formulas (28.17) 
and (28.18) the deflection at the middle of the span is:

l - t f i .  or t = $ § j — '-p- (28.25)
1 r .

The maximum absolute normal stresses in the critical section are:

^max —
P
S

M 0+ P f
W (28.26)

Off
_ p  \ p °l \ p  p °p  r  p  . / V / ,  , PI*  i 

5  w 4 8 £ 7 1=3"5" ' 411?I21/1 4 \ l~ 1 \

Substituting 

we obtain

)2EJ  n*EJ
* 0.822/2 ~  0.822

^  p  . p »l  ( i * 0.822P P .  \  , na  0 _ .tfaiix— 5 i 4j ^ H  f~c Ft. — PJ (28.27)

After transformations, we get
_  p  j _ p 9i  p e - o . m p

< w — s  . ? c— p

Off
n _ p » Mq
°jaax “5" r

(28.28)

Here Ci is slightly less than C. For example, when P=0.5PC, C=» 
=»P PJ_p — 2  while Ci~  1.822. Calculations are the same as in the 
preceding example.

§ 163. Effect of Eccentric Compressive Force 
and Initial Curvature of Bar

A. In case of eccentric application the axial compressive force leads 
to eccentric compression, which, as shown earlier (Chapter 21) re
sults in axial compression and bending (§ 162). By using the results 
obtained in § 162 we can take into account the effect of initial eccen
tricity e of the axial compressive force P (Fig. 404(a)).
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According to formula (28.17) the maximum deflection in this case is
f = / 0C

where f , is the deflection due to bending caused by moment M0=Pe 
and is equal to (Chapter 15)

, _  W  pel*
8 EJ= TeJ

and coefficient C that accounts for the effect of axial forces on deflec
tion (28.18) is:

/■>_ 1___ Pe

Pc
Consequently

i = M r r r  (28’29)
Pc

and the maximum compressive stress according to formula (28.12) is:

®max — s  - r w t  w

Substituting the value of /, (28.29), we obtain
* P , Pe , P Pci* 1 _  P , Pe / ,  , PI* I \
°m#x “  T  +  W ' W &EJ l S W f 1 8EJ 4_ P _  \

Pe \  P eJ

(28.30)

After opening the brackets, we find that

■ W -T + T f fC ,,  where C . - f r ^ T  (28-31)

B. If there is an initial curvature in the bar compressed by forces P 
(Fig. 404 (fr)), the eccentricity of the point of application of force P 
is assumed to be known: in the middle of the span it is equal to 
and the total deflection is (28.17):

f —f£*  or —

As in the earlier case of eccentric application of compressive forces, 
deflections rise sharply only when force P approaches the critical 
value, Pc- In both cases (A and B) the Euler critical force should be 
considered dangerous. Therefore, irrespective of eccentricity and 
initial curvature, the stability of a bar against buckling should be 
checked as in axial compression. The strength check is different,
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p S f t t ,  p
A i > A

i -
~~ i

because in these cases bending should be considered in addition to 
compression (see § 122).

Hence, when highly flexible bars (ormax<cr2,) are subjected to axial 
compression, they lose stability upon the compressive force attaining 
the critical value determined by Euler’s formula. Euler’s critical 
force P=PC should be taken as the breaking load. Neither the eccen- 
trie application of compressive force nor the presence of initial cur
vature have any influence upon 
the breaking load in these bars.

The above conclusion does not 
hold well for bars of small and 
medium flexibility. At critical 
stresses exceeding the limit of 
proportionality the above-men
tioned factors considerably re
duce <fc. This has been observed 
experimentally and confirmed by 
theoretical attempts at calculat
ing critical deformation. Experi
ments reveal that eccenlricity of 
application of force considerably 
affects the stability of bars of
small and medium flexibility, it also affects the stability of long 
bars, but to a much smaller degree.

The additional factors, which have been discussed in this section, 
compel us to increase the stability factor for bars of small and medium 
flexibility and select a value which is slightly greater than the sa
fety factor in I he case of long bars. For proper evaluation of the in
fluence of ivc-n tricity and initial curvature on the strength and sta
bility of compressed bars, we must get an idea about the numerical 
values of e and yo.

fn accurately manufactured bars we may expect an initial deflec
tion yb which is the of the length; if the manufacturing ac
curacy is not high, the initial deflection may be twice as large.

If the centering is proper, eccentricity may be the of the
length. Further, we must take into account the tolerances of the 
cross-sectional dimensions; it may be assumed that they are equi
valent to an eccentricity of ^  and an initial deflection of the same
magnitude. Here h  is the cross-sectional dimension in the plane of 
possible buckling. In composite sections we must provide for an

i.
additional eccentricity of about ^  on account of the possible 
difference between the areas of individual elements.
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Thus, lor a solid section we may assume the following minimum 
values of e and y0:

_  I . it . ___/ . h
e ~~ 750 “T 45 3,10 ^ 0— 1000 ”*"40

Besides eccentricity and initial curvature, there are a number of 
other factors which affect the stability of compressed bars much 
more than the strength of beams and elements under tension. These 
factors include work hardening, initial stresses due to manufacturing 
inaccuracy of various parts, local defects in castings and knots in 
timber. In steel structures the effect of all these additional factors 
is taken into account by an increased (by 10-20%) stability factor (see 
§ 153).

In conclusion let us note that in this section we discussed only a 
few problems in which critical force was determined at the instant 
when the bar crosses over from the existing state of equilibrium to a 
new one. it was assumed that bending was the only source that caused 
instability. However, it is known that loss of stability may occur in 
other forms too, in particular as bending plus torsion and pure torsion * 
(in case of axial compression of thin-walled bars).

Instability is characteristic not only of bars. The theory of sta
bility deals with many complicated problems of stability of com
plete structures and their individual elements—arches, frames, shells, 
plates, etc. Of special interest arc problems of stability of such struc
tures and their elements when subjected to dynamic loading ** 
and also investigations on stability in the process of eiasto-plastic 
deformation and visco-elastic deformation (see Chapter 32).

It is impossible to solve these problems if a static approach is 
adopted towards problems of stability as problems of equilibrium in 
one or the other form. In all these problems deformation should be 
studied in time, i.e. the stability of movement must be investigated. 
Many complicated problems of stability are solved at present pre
cisely on the basis of these principles. The reader can get acquainted 
with them in the special literature.***

* See N. M. Belyaev, Strength of Materials, Nauka, 1965 (it) Russian), §213.
••  The problem of dynamic stability of prismatic bars subjected to variable 

loading was first solved in 1924. See N. M. Belyaev, Selected Works on Engineering 
Structures, Leningrad, 1924 (in Russian).

• • •  See, for instance, I. 1. Goldcnblat, Modern Problems of Vibration and Stability 
of Engineering Structures, Stroiizdai, 1948 (in Russian): V. V. Bolotin, Dynamic 
Stability of Elastic Systems, Gostekhizriat, 1956 (in Russian), A. S. Vuhtiir, Sta
bility of Deformable Systems, Nauka, 1967 (in Russian).



PART IX
Dynamic Action of Forces

'  CHAPTER 29

Effect of Forces of Inertia. 
Stresses due to Vibrations

§ 164. Introduction

Until now we were solving the fundamental problem of strength 
of materials: determining cross-sectional sizes and selecting proper 
material for elements of structures by assuming the loading to be 
static.

It was explained in § 2 that loading may be considered static if 
there is no mechanical movement of the parts when pressure is trans
ferred from one part to the other or when both parts are acted upon 
by body forces. Under such loading each element of the structure 
remains in equilibrium under the action of external forces and stresses.

The constancy of movement is characterized by constant velocity 
of the parts under consideration and complete absence of acceleration 
of these parts. Tf acceleration is experienced by the body or the parts 
contacting with it, the loading is said to be dynamic. For instance, 
the earth pressure on a bulkhead is an example of static loading, 
because neither the bulkhead nor the earth mass move, their velo
cities are constant and equal to zero.

Similarly, the force exerted on the rope by a load which is lifted 
by it may be considered static provided the load is raised with a con
stant velocity. On the other hand, the force exerted will be dynamic 
if the load is raised with acceleration. The connecting rods of steam 
and interna! combustion engines experience dynamic loading, be
cause their individual elements have different velocities. Two other 
examples of constructions working under dynamic loading are the 
foundation of a machine with rotating parts mounted eccentrically 
w.r.t. the axis of rotation {the foundation in this case experiences 
centripetal acceleration) and the foundation and piston rod of a 
steam hammer (in the process of forging the hammer block comes 
to a stop in a very short period on account of very strong retardation).

Even these examples are enough to make it clear that in practice 
we come across various types of acceleration which bodies under
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consideration or bodies contacting with them have to experience. 
The acceleration may be constant in direction as well as magnitude 
or only in direction; it may also be reversible.

Under variable and reversible stresses the bodies fail due to a gra
dually increasing crack, and the failure is said to occur due to fa
tigue. Jf there is a sharp change in the velocity of an element of struc
ture w.r.t. the force being exerted on it by adjacent elements, i.e. 
if the element experiences shock loading, the material of the element 
may behave as if it were brittle, although it is ductile under static 
loading. Therefore, in conducting a strength check for elements of 
structures subjected to dynamic loading, it is important to study not 
only the effect of external loading on the magnitude of stresses in the 
element but also its effect on the nature of resistance of the element 
material.

The effect of acceleration of elements of structures on the stressed 
state of the material may be accounted for as follows. If a body moves 
with acceleration, it is being acted upon (experiencing) by forces (pres
sure) from other bodies. From the law of equal reactions the body 
under consideration acts upon the other bodies with forces equal in 
magnitude and oppositely directed, namely the forces of inertia. 
This logic is also applicable to each element of the body moving with 
acceleration; the elements act on the contacting elements with a 
force equal to the force of inertia.

Thus, when elements of structures move with acceleration, they 
experience additional stresses which are equivalent to static stresses 
caused by forces of inertia; each element of the structure gives rise 
to stresses in the adjacent elements, as if the latter were acted upon 
by forces equal to the corresponding forces of inertia.

Here we must differentiate between three situations. If the mag
nitude and location of the external forces acting on the element under 
consideration does not depend upon the deformation of the element, 
i.e. if the deformation does not change the nature of motion of the 
body, then its acceleration is determined from the methods of kine
matics of solid bodies, and the dynamic action of external forces is 
reduced to the addition of a static load corresponding to the inertial 
forces. This method is applicable to a majority of situations of prac
tical importance (except shock loading).

If the acceleration changes, in the process, this invariably gives 
rise to vibrations in the element under condsideration. The vibrations 
in their turn may cause resonance that results in a sharp increase in 
deformation and stresses. These stresses may be very high and must 
be added to the stresses obtained by considering the inertial forces 
as an additional static load.

Finally, there may be cases (shock loading) when the acceleration 
and consequently the corresponding forces of inertia depend upon 
the deformability of the element under consideration. In such cases
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the mechanical properties of the material must be taken into account 
while calculating the inertial forces. The method of strength check 
in each of the above cases will be explained through the following 
examples.

M S r

§ 165. Determining Stresses in Uniformly 
Accelerated Motion of Bodies

We shall begin the study of strength check under dynamic loading 
with the simplest case when points on the element of structure under 
consideration move with constant acceleration without causing vi
brations. As an example we shall study 
the uniformly accelerated lifting of load 
Q suspended from a steel cable of cross- 
sectional area 5. The specific weight of 
the cable material is y, the load is lifted 
with a constant acceleration a cm/see2 
(Fig. 405). We shall determine the stres
ses in an arbitrary section at a distance 
x from the lower end of the cable. Let us 
cut the cable at this section and study 
the equilibrium of the lower cutoff por
tion. This portion moves upwards with 
acceleration a, which means that be
sides the force balancing Its weight it is 
acted upon from the upper portion by a 
force equal to its mass times accelera-

TfX
i
D u

m
Fig.

tion a, i.e. Q-l-yS*
s . a, where g  is the acceleration of gravity.

From the law of equality of action and reaction the upper portion 
will experience a similar force acting downwards. Thus the dynamic 
stresses o D acting in the sectioned plane on the lower portion will 
balance not only the static load Q+ySx but also the additional force
Q ~J$,Xa. To determine these stresses we must study the equilib
rium of the lower portion under the action of aBt static load Q+ySx, 
and the force of inertia --" y — a acting downwards (Fig. 405). We find 
that

____Q+yS* , Q+yS*___Q+V$x f« , a \
°i>— s — + - * s - “ — r - l 1 + 7 j

Ratio - $ * represents static stress <r. in the section oT cutting; 
therefore

O n = < f .( l  +  f )  (29.1)
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i.e. the dynamic stress is equal to the static stress multiplied by 
coefficient l + ~ .  This coefficient is called the dynamic coefficient 
and is denoted hy Kd-

OD=KDax (29.2)
This form of the formula for dynamic stresses shows why we paid 

special attention to calculating the stresses under static loading: 
in a large number of cases dynamic stresses may be expressed through 
static stresses by multiplying the latter with the appropriate dynamic 
coefficient.

The strength condition may be written

&D m ax =  <T.v max

wherefrom

i +  fL Kd
g

0  + 7 ) - * * * « » «

r°i _ i° i

Thus in a number of cases dynamic analysis may be replaced by 
static by simply dividing the permissible stress with the dynamic 
coefficient Ki>. This is done when it is difficult to obtain the dynamic 
coefficient theoretically and we have to be satisfied with the value 
of the dynamic coefficient determined experimentally. This method 
is employed, for example, in taking into account the dynamic nature 
of temporary loads acting on bridges.

§ 166. Stresses in a Rotating Ring (Flywheel Rim)
As a second example we shall determine the stresses in a uniform 

ring rotating at a high speed (Fig. 406(a)). The flywheel rim works 
under similar conditions, provided we neglect the effect of spokes.

00 (b)
Fig. 406

Lot S be the cross-sectional area of the ring, y the specific weight 
of its material, n its number of revolutions per unit time, m its an
gular velocity of rotation and D the mean diameter of the ring.
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Let us isolate an element of length ds from the ring. When the 
ring rotates, this element moves along a circular path with constant 
angular velocity <o. Angular acceleration e is zero. Therefore tangen
tial acceleration of the element is w ,~ tD /2=0; normal (centripetal) 
acceleration of the element is wn=it>*Di2 and is directed toward 
the centre of the ring. In order to determine oD, the force of inertia 
must be applied to each and every element of the ring. This force is 
directed away from the centre and is equal to

wn J ds= Y ^ T 'ds = qds
where q is the intensity of the inertial force per unit length of the 
rim. Thus, the ring experiences stresses as if it were loaded by a radial 
force of 'intensity q per unit length (Fig. 406(b)). Force P stretching 
the rim is (§ 19):

p _ O q  
F ~  2

Stress Cjy is:
P Dif DSy uPD vtfS

»D— $ ~ l S ~ 2 g S  2 =  4g  ~  g

where i/-wD.'2 is the linear velocity of points on the surface of the 
ring. Thus, stresses in the rim depend only upon the specific weight 
of the rim material and the linear velocity of points on the rim sur
face. Let us solve the following problem to get an idea about the 
approximate value of these stresses:

n = 360 rpm, Z> =  4m, Y ^ .b g f/cm 3

Angular velocity is:
2nn 2«x360

a )= iKT= “ « r“ = I2stsec- *

The stress is:
y(o3Ds 7.5xl44n3x  16x10* 

4 x l 0 3X<Wl =  435 kgf/cma

§ 167. Stresses in Connecting Rods

Let us check the strength of connecting rod AB joining two wheel 
axles of a steam engine (Fig. 407); to the driving wheel Ot is trans
mitted a torque from the steam engine. The connecting rod is secured 
to the wheels at points A and B with the help of cylindrical hinges, 
AO* and BOi are both equal to r, diameter of the wheels is D, length 
of the connecting rod is I and the steam engine moves with a constant 
velocity v.



526 Dynamic Action of Forces tPart IX

As the connecting rod is in movement, the first step in checking 
its strength is to establish whether the motion is with acceleration, 
i.e. solve a clear-cut problem of kinematics. The connecting rod is 
in relative motion w.r.t. the steam engine, and the engine imparts 
to it translational motion of velocity v.

As the translational motion is of constant velocity, the acceleration 
can appear only in the relative motion. Now in relative motion of 
the connecting rod two of its points A and B move identically, de-

Fig. 407

scribing circles of radius r in a single plane. The relative motion of the 
connecting rod may therefore be considered plane-rectilinear and it 
may be safely concluded that all points of the connecting rod have 
the same velocity and acceleration as points A and B.

Point A moves with the second wheel describing a circle of radius r. 
If the steam engine is moving with uniform velocity, the angular 
velocity of rotation © of the wheels must also be constant. This means 
that angular acceleration must be zero and hence the tangential 
acceleration of point A must also be zero, i.e. wt—0. Point A expe
riences only centripetal acceleration directed from A towards Oa 
and equal to©*r. Any other point on the connecting rod, say, point K, 
experiences the same acceleration parallel to 0*4.

To check the strength of the connecting rod, the load due to inertial 
forces must be added to its dead weight. The inertial force per unit 
length of the connecting rod is:

<? =_  1 X|Sy,,, _ 5 y
8 H

this force of inertia acts parallel to 0*4 but is directed opposite to 
the direction of acceleration.

In the position of the connecting rod shown in the diagram, bending 
caused by its dead weight is opposite to that caused by the forces of 
inertia. The connecting rod finds itself critically loaded in the lower
most position A\B% when both the forces act in the same direction. 
The total load qo per unit length of the connecting rod will in this 
case be

?o =  T S + f  »,r =  Ts ( l  +  - i )



Ch. 29) Forces of Inertia. Stresses due to Vibrations 527

The connecting rod should be analyzed as a beam hinged at points A 
and B and loaded by a uniformly distributed force qD. The maximum 
bending moment at the middle of span will be

8 8 +  g )

The maximum stress in this section will be
n _Mpijix__ s yf* /  1 i \
v Z>roax — ^  ~  fl? "g" V 1 I T  /

Example. Analyze two following shapes of the connecting rod, (o) 
rectangular cross section and (b) I-section (Fig. 408), for the data 
given below:

<*>=30sec\ y — 7.86 gf/cm*, r =  50cm, / =  150cm

In this example
yP  f  t , U*r\ 0.00786X150® /  , , 50 x30* \  ___------- 5------- ( l + - - 9gr - j  =  1036kgf/cm

For the rectangular section
S =  10x4.5 =  45 cm8, W =  1 ^ 1 ° ! . =  75 cm*

•^- — -^■ =  0 .6  cm"1, 1036 =  622 kgf/cm8

For the I-section:

S = 10x4 .5—2 x 6 x  1.5= 27cm®, 5x6>=64.2 cm*

4 “= =  0 -42 cm"1, c r ^ ,  =0.42x1036 =  435 kgf/cm8

Hence, despite the decrease in the section modulus (almost by 15%) 
the maximum stresses in the second case are less by 1.5 times due 
to considerable decrease in the weight of the connecting rod.

Besides bending, the connecting rod is subjected to tension or 
compression due to force P  with which wheel Oj acts on wheel 0*. 
In position A 1B 1 the connecting rod experiences compression. Neglect
ing the effect of deflection on the bending moment we may write the 
strength condition as follows:

•‘- “ T + f i r O + T ^ M
In addition to the strength check the connected rod should also 

be checked for stability by considering it as simply supported in the
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plane of bending caused by qD, and as a bar fixed rigidly at one end 
in a perpendicular plane. While calculating flexibility the maximum 
value of the radius of gyration should be used in the first case and the 
minimum in the second.

We may similarly design connecting rod AB hinged at end A with 
the crank OA that is rotating about point 0  with angular velocity o> 
(Fig. 409). If the crank rotates with constant angular velocity, point 
A of the connecting rod experiences only centripetal acceleration,

whereas point B experiences only tangential acceleration. All other 
points of the connecting rod between points A and B experience 
both accelerations. Limiting ourselves to forces of inertia arising in 
the connecting rod due to centripetal acceleration only, let us study 
the position of the connecting rod when it is perpendicular to the 
crank and, consequently, when the centripetal acceleration of point A 
is perpendicular to the crank axis. Let us assume that the centripetal 
inertial force q is perpendicular to the crank at all points and changes 
linearly along the length of the connecting rod from q=q9 at point A 
to q—0 at point B. The greater the length of the connecting rod as 
compared to the crank the higher is the accuracy of this assumption. 
The connecting rod may be considered as a simply supported beam
hinged at points A and B. The bending moment is maximum at x= -^~

V 3
(x is measured from point B) and is equal to (see § 59)

Fig. 408 Fig. 409

Since (°2r and oi . we get

g, / 8_____ SyI*tcAr
9 Yr3 W ~  9 V T W g
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§ 168. Rotating Disc of Uniform Thickness

The problem of determining stresses and deformation in shafts 
and discs rotating at high speeds is of considerable interest. Due to 
their high speeds of rotation, the steam turbine shafts and discs ex
perience large centripetal forces.
The stresses caused by these forces 
are distributed symmetrically about 
the axis of rotation of the disc.

Let us study a simple problem on 
analysis of discs of uniform thick
ness. The analysis of such discs 
lies at the base of several approxi
mate methods employed in analyz
ing discs of an arbitrary shape. We 
shall use here some results obtained 
while deriving the formulas for the 
analysis of thick-walled cylinders 
(§ 144). Let us assume that stres
ses <Jr and at remain constant over 
the width of the disc of unit thick
ness; we shall consider axial stress 
at to be equal to zero.

Let ns write the conditions of equilibrium of element AB isolated 
from the disc by two meridian sections and two concentric cylindri
cal surfaces (Fig. 410). In this case, besides the forces acting on ele
ment AB, we must also take into account inertial force

d/ =  co*r vr x lx < W 6
e

which acts from the centre of the disc towards its periphery. Equa
tion (25.1) derived in § 144 may be replaced by the following relation:

or—ot + r dar
dr

ya*r*.... a
8 0 (29.4)

Equation (25.4) of the same section (equation of joint deformation) 
remains valid in the present case also, i.e.

o,) (»-5)

Substituting the value of (<rr—a,) from equation (29.4) in equation 
(29.5), we get

^  =  (29.6)dr dr g r '

1S-3aio
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Differentiating equation (29.4) with respect to r and substituting 
from equation (29.6), we get the following linear differential 

equation:
<Par

r 7Pr

or

p l f r - 0

Upon integration we obtain

■ * + i- -^ya>*r*r‘ 8g

It ensues from equations (29.4) and (29.7) that
-  _  i _ dor , yoPr* A B I -h3n(Ji= ° r + r - 1 f + ! — - = A — ?;-----

(29.7)

(29.8)

In formulas (29.7) and (29.8), A and B are constants of integra
tion, which must be determined from the conditions at the disc sur
face. In determining the constants we shall study the following two 
cases: (a) disc with a central hole, and (2) solid disc. Let us assume 
that ends of the disc are free of external forces.

For the disc with a central hole, stress ar must be zero at r—rx 
as well as at r=r* (Fig. 410). When the conditions at the disc surface 
are applied to formula (29.7) we get the following equations:

A + j i - 2 Q L y m 'n = 0

and

wherefrom

A =  ̂  ?<*>’ (r? -KS), B - — y®Mi

Substituting the values of A and B in formulas (29.7) and (29.8), 
we get

( '* + '• —■r‘— T r - )

°*= J s r  ( p + i*) ( ' ■i+fs + + 3t‘) r ' ]

and
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Assuming for brevity that

we may write the equations obtained above as follows:

=  p J1 +a* ( l  mP*]

(29.9)

(29.10)

Let us point out that ar becomes zero at p = l and p ^ a , i.e. at the 
internal and external peripheries of the disc. It is positive for values 
of p between 1 and a  and, as is not difficult to prove, becomes 
maximum at

p = V ra=* j / ^ ^

At this value
(<U»« =  P ( l - « ) a (29.11)

Stress o t is also positive for all values of p and becomes maximum 
at the internal periphery of the disc, where p= a:

(<*/)»«=P t2 +  (1 ~ m) a*J (29-12)
From a comparison of equations (29.11) and (29.12) we can easily 
notice that (o()mix is always greater than (<r,)max. Therefore irre
spective of whether we check the strength of the disc by the theory 
of maximum shearing stresses or the distortion energy theory, the 
strength condition will be

(o,)„„ =  ̂  v»’n  [2 +  (1 - m )  a»J <  [o-j (29.13)

Figure 411 shows curves depicting the change in values of o?=o,/p 
along the disc radius for values of a  between 0 and I and for p=>0.3. 
We note that the maximum values of a,, (29.12), (at the internal 
periphery of the disc) do not change much with the value of the 
hole’s radius, i.e. with a  (curve ab). At a « 0 , i.e. when the radius 
of the central hole is very small, there is a sharp change in the value 
of at at the hole edge due to stress concentration (curve acd). Under 
these conditions

M „,,==2,>=2±K y«>V; (29.14)

In a very thin circular ring, where and a « l #

IB*

(29 15)
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which is the same as obtained in § 166. In this case the maximum 
value of ai, <29.15), is only 20% greater than (ot)ntx for a disc with 
a very small hole (29.14).

It is evident from formulas (29.9) and (29.10) that stresses ar and a, 
increase sharply with the increase in the peripheral velocity u=<or,. 
It should be noted that besides velocity v and mechanical properties 
of the material p and y these stresses depend only upon dimension

less quantities p and a. Henceor and o» will be equal in two geomet
rically identical discs having same p’s. This property enables us to 
replace the actual testing of large discs by testing of small models 
in the laboratory.

In a solid disc, a r and a, are equal at the centre, where r=0. A com
parison of formulas (29.7) and (29.8) indicates that this condition 
can be satisfied only if the constant of integration B is equal to zero. 
The other constant, A , can be found from the following condition: 
at r —ri, i.e. at the external surface of the disc, stress crf must be zero. 
Therefore

Substituting the above value of A and B^O in formulas (29.7) and
(29.8), we obtain

Fig. 411

<V =  P (1 -P 2) (29.16)
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and
or, =  /? (1 — /tip4) (29.17)

The corresponding curves showing variation of <t?= j  and 0 /=
along the disc radius are given in Fig- 411 (curves fk and fed). Both 
stresses are positive for all values of p and increase towards the 
centre. At p=0

(0r)».x =  (<*/)m.x =  P = ^  (29-18)

Thus, in a disc with a very small central hole, stress o, at the edge 
of the hole is two times greater than at the centre of a solid disc on 
account of stress concentration (see formula (29.14)).

The above discussion was based on the assumption that the edges 
of the disc are free of external loading. This assumption generally 
does not correspond to reality. Usually the disc is mounted on the 
shaft in the hot state or by a hydraulic press with an interference 
fit, which ensures that deformation of the disc hole due to centripetal 
forces is always less than the deformation of the opposite sign in
curred during mounting, i.e. the disc sits tightly over Ihe shaft in 
normal working. The external periphery of the disc is usually fitted 
with a rim for mounting turbine blades; during rotation the rim gives 
rise to additional centripetal forces which are transmitted to the disc. 
Thus the internal and external peripheries of the disc are subjected 
to uniformly distributed tensile or compressive forces. The stresses 
caused by these forces may be computed by the formulas derived in 
the analysis of thick-walled cylinders (formulas (25.9), § 144). Upon 
adding the stresses obtained from formulas (25.9), (29.9) and (29.10) 
we can draw a complete diagram depicting distribution of stresses in 
a rotating disc.

§ 169. Disc of Uniform Strength
The formulas derived in the preceding section and the curves drawn 

in Fig. 411 show' that there is considerable variation in the values 
of <jr and or* along the radii of discs of uniform thickness. The most 
non-uniform distribution of stresses occurs in discs of uniform thick
ness with a central hole. The design of such discs is based on the 
maximum stress <r, at the inner edge of the disc, which imposes re
strictions on the limiting value of maximum velocity. For achieving 
high velocity of rotation the discs have to be made of variable thick
ness which decreases from the centre towards the periphery. The most 
economical shape of the disc is one in which the same stress acts on 
all points of the disc. Such discs are known as discs of uniform strength. 
While designing such discs it is assumed that the stresses remain
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constant over the thickness of the disc; this generally gives a small 
error in the calculated stress value.

The basic formulas for designing discs of variable thickness can
be derived as before by ?J<srV‘d8 *i{SrirdB)

CfZdr

consid
ering the equilibrium of an ele
ment abed. (Figs. 410 and 412) of 
the disc. Let us denote by z the 
variable thickness, which is a cer
tain function of the radius, r. 
Faces ad and be of the element 
cut by meridian sections are act
ed upon by forces o*z dr mak
ing an angle d6 with each other, 
face dc of the element is acted 
upon by a radial force OfZrdQ di
rected towards the centre and 
face ab is acted upon by a radial 
force a,zr d0+d (a^r d8) directed 
from the centre towards the outer 

surface of the disc. To these forces we must add the force of inertia 
due to the mass of the element,

t d r n » 2 &
8

acting from the centre towards the periphery.
Projecting all the forces enumerated above on the radius, we get 

the following differential equation for the equilibrium of a disc of 
variable thickness:

Fig. 412

or

d{crzrd&)—atzdrd 0  -i-zdr d& = 0

±(rzor) - z o t +  z & - ^  = 0

If z=const, the above equation transforms into equation (29.4) de
rived in the preceding section.

In a disc of uniform strength stresses ar and cr, are constant at all 
points and are equal. Equating their value to the permissible stress 
la), we can write the following equation of equilibrium:

or
\_&z 
2 dr

y<o8r 
I o]g

2 nr
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where

Upon integrating the above equation, we get
z — Ce-nr%

where C is a constant of integration. If the disc does not have a cen
tral hole then from the condition z=z0  at r—0, it ensues that C=a0. 
The thickness of the disc at the centre {z0) is determined from con
ditions at its outer surface.

A solid disc of uniform strength can be used even at very high 
peripheral velocities. However, from the point of view of convenience 
of manufacturing, discs of variable thickness with central holes are 
generally used. These discs, which in shape are close to discs of uni
form strength, provide the most advantageous distribution of stresses 
along the radius. The methods of analysis of such discs are discussed 
in special courses.

§ 170. Effect of Resonance on the Magnitude 
of Stresses

In the first two problems discussed in §§ 165 and 167, the acceler
ation was assumed to be fixed in direction w.r.t. the element on 
which it was acting; in the last example the acceleration was continu
ously changing its direction through 360° during one rotation of the 
wheel. In this case the srtesses and deformations periodically changed 
their sign resulting in vibrations of the body.

A similar situation will arise if the beam is loaded with a machine 
which has a rotating load having eccentricity w.r.t. the axis of rota
tion (Fig. 413). The force of inertia of the rotating load will give 
rise to stresses and deformations in the beam which periodically change 
their sign. The beam will begin to vibrate with a period which is 
equal to the period of rotation of the load. These vibrations are known 
as forced vibrations. If the period of forced vibrations is the same as 
the period of natural vibrations of the beam, then resonance occurs 
and the amplitude of vibrations increases sharply with the passage 
of time. The amplitude of vibrations is in fact restricted by frictional 
forces and resistance of the atmospheric medium. However, despite 
these restrictions the amplitude may assume large values, which far 
exceed the deformations the beam would have experienced under the 
same acceleration of constant direction.

There was a case when due to resonance the angle of twist of a shaft 
increased six-fold as compared to the angle before resonance. This 
happened with the crankshaft of a motor of the airship Graf Zeppelin 
in its very first flight across the Atlantic ocean.
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Thus, if resonance is not curbed at the very outset but is allowed 
to continue for some time, it results in a gradual growth of deforma
tion and a corresponding increase in stresses ultimately leading to 
failure. Therefore, at the design stage it is essential to prevent reso
nance in structures which are subjected to variable acceleration of 
constant period.

Since tneperiod'of theexciting forces is generally given, the design
er can control only the period of natural vibrations of the structure:

the period of natural vibrations should be selected in such a way that 
it differs considerably from the period of the exciting forces.

Questions concerning the determining of period, frequency and 
amplitude of natural and forced vibrations are discussed in theo
retical mechanics.* Therefore, below (§ 171) we shall apply without 
proof the results of theoretical mechanics in determining stresses and 
checking the strength of elements of structures subjected to vibration.

§ 171. Determination of Stresses in Elements 
Subjected to Vibration

A. An elastic system disturbed from its stable state of equilibrium 
begins to vibrate. The vibrations occur near the position of elastic 
equilibrium in which the loaded system experiences static deformation 
6 g and a corresponding static stress pa (o* or x„ depending upon the 
nature of deformation). In a system subjected to vibration, to the 
static deformation is added dynamic deformation which depends 
upon the type of vibrations and their amplitude. This results in a 
change in the value of pH. Hence, while checking the strength of a 
vibrating system it is essential to determine the dynamic deformation 
and the corresponding stresses in addition to the static deformation 
and stresses.

In a number of cases the nature of vibrations of the system can be 
completely defined by one quantity (one coordinate). Such systems 
are known as systems with a single degree of freedom; the examples 
of such systems are a light stretched or compressed spring with a weight 
suspended at its end performing longitudinal oscillations, a beam of

* See, for instance, L. G. Loitsyanskii and A. I. Lurye, A Course of Theoretical 
Merhanirx Owtpkhizdfti IftRS fin Piwsiont Port II.

Fig. 413
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small (as compared to Q) dead weight (shown in Fig. 414) performing 
oscillations in a direction perpendicular to its own axis, etc.

In vibrating systems having one degree of freedom, the total de
formation of an arbitrary section may be obtained by adding the static 
and dynamic deformations. Obviously, the strength check should

Fig. 414

be carried out for the section where the total deformation is maxi
mum. In the simplest cases the total deformation is obtained by add
ing the maximum static deformation 6flllwx and the maximum am
plitude A of the vibrations:

A = « .» .„ (  1 + T - - )  =  Kofi, (29.19)
\  max /

As long as the system deforms within the elastic limits, the stresses 
are directly proportional to strain. Therefore

p * (l -* - * * - ) =  KdP, (29.20)
°s max /

Kb — 1 + 7 “^—'■ f  m a x (29.21)

is the dynamic coefficient under vibration. The strength condition in 
this case is as follows:

Pd =  K dPs < [ p\ (29.22)

Thus, as in the previously discussed problem, in which forces of 
inertia of constant direction were considered, the determination of 
dynamic stresses and strength check under vibration can be replaced 
by the determination of static stresses and dynamic coefficient 
Since K n depends upon A, we must know how to determine the 
maximum amplitude of vibrations under different situations.

It is well known that the differential equation of an oscillating 
load Q performing natural vibrations, may be written in the form of 
an equilibrium equation which takes into account the forces of iner
tia in addition to the external force (load Q) and the force of elastic
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resistance of the system:

| / + P - ( ? = i / + / )l =  i / + a = 0  (29.23)
® 9 9

Here x is the coordinate which completely determines the location 
of load Q during vibration (see, for example, Fig. 414), P is the total 
elastic resistance of the system to vibrations, P — Q=Pt is the 
restoring force (an additional elastic force which appears in the sys
tem due to the displacement by dx of the point of application of 
force Q on account of vibration) which in the first elastic limit may 
be considered proportional to coordinate x  (F,=cx), and c is a propor
tionality constant which is equal to the force required to cause unit 
static deformation of the system in the direction of force Q. If the
static deformation due to load Q is 6q, then c= £ - .

After solving equation (29.23) we get the following formulas for 
calculating frequency a)0 and period of the natural vibrations /0:

to- /f= V i  ■

Hence, natural vibrations of a weightless body are equivalent to 
simple harmonic motion with a frequency (period) equal to the fre
quency (period) of oscillation of a simple pendulum which is equal 
in length to the static deformation of the system due to load Q. For 
instance, if the load stretches a prismatic bar,

In the case of a simply supported beam loaded by a force Q acting 
at the middle of its span,

B. If in addition to force Q and force of elastic resistance P the system 
is acted upon by an exciting force F and force of resistance of the at
mospheric medium, R , then the differential equation of vibration 
may be written in the form of an equilibrium equation similar to 
equation (29.23):

= | * " + « - F  +  /? =  0 (29.24)

In a sufficiently large number of cases the resistance of the atmo
spheric medium, R , may be considered directly proportional to the
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velocity of the vibrating body: R=rx'. If the exciting force varies 
according to the sine law

where H ^F ^ x  and g> is the frequency of the exciting Force, then 
equation (29.24) may be written as follows:

Here n = ^  is the damping coefficient and o>0 is the frequency of
natural vibrations which occur in the system even when the exciting 
force, F, and the force of resistance, R, are absent.

After solving equation (29.25) we get the following expression for 
amplitude A of tne forced vibrations in the presence of damping:

is the static deformation of the system due to maximum exciting 
force F (Fmi%—H). The ratio of amplitude A of the forced vibrations 
to deformation 8 H is called the amplification factor of vibrations and 
denoted by 0:

Therefore formula (29.21) for dynamic coefficient K d may now be 
written as

F = H sin at

—X? +  rx '+ cx = H sin ait 8
or

x* -{- 2 nx’ -}- ojjlx »  ̂  sin <ot (29.25)

A f f

— Y  ( ^ —<*>*)* 4n*6>*s

(29.26)

Here
gH gH 6q h

*'i max °Q
(29.28)
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The amplitude of natural vibrations has not been accounted for 
in the above expression, because it can have appreciable effect only 
iit the beginning of vibrations; in presence of a resisting medium it 
sharply decreases with the passage of time.

Figure 415 contains curves depicting the variation of amplification.
factor |i as a function of 77 for various values of the damping coef-

, i \ u°
ficient n ratio —J .  If the frequency of the exciting force is close to

the frequency of natural vibrations, i.e. if ^ - « I ,  and if the damping
coefficient is not large, then the denominators in formulas (29.26) 
and (29.27) for determining A  and p will be very small and the am

plitude and amplification factor will be very large (Fig. 415). Under 
such circumstances even a small exciting force will result in high 
stresses (on account of resonance).

With the increase in damping resonance becomes less effective. Jt 
should, however, be noted that damping can considerably decrease 
the amplitude of forced vibrations only under near resonance con*
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ditions (0.75^-^^1.25); the effect of damping is imperceptible if

the ratio — is outside this range.
It is evident from formulas (29.26), (29.27) and (29.28) and Fig. 415 

that if frequency to of the exciting force F is very low, then the am
plitude of vibrations tends to 6 H, the amplification factor tends to 
unity and the maximum stress can be calculated as the static stress 
due to load Q and maximum value of exciting force F (Fmax̂ -H). 
If the frequency of the exciting force is very high, then the ampli
tude of vibrations and the amplification factor tend to zero and force 
Q may be considered as a fixed load. The maximum stress in the 
system is in this case equal to the static stress due to load Q.

This is a factor of great practical importance; it is employed in 
the design of various types of dampers, seismographs, vibrographs 
and other instruments. In machine design the shock absorbers pro
tecting the foundation from vibrations are selected in such a way 
that the frequency of natural vibrations of the machine mounted on 
the absorbers is considerably less than the frequency of the exciting 
force.

§ 172. The Effect of Mass of the Elastic System 
on Vibrations

A. If the vibrating system carrying load Qhas a sufficiently distrib
uted mass (meaning thereby that the number of the degrees of free
dom is large), then the. simplified calculations discussed in the pre
ceding section will give a considerable error. In such cases the differ
ential equations of motion should be written with the mass of the 
system being taken into account. Instead of solving such problems 
from equilibrium conditions, on the basis of which equations (29.23) 
and (29.24) were obtained, it is more convenient to solve them using 
the law of conservation of energy.

Assuming that the energy imparted to a system in disturbing it 
from its stable state of equilibrium is equal to the sum of kinetic 
and potential energies of the load and elastic system and is constant 
for natural vibrations, we get the following equation:

U + T  =  const (29.29)

This equation shows that vibration is accompanied by continuous 
transformation of one type of energy into another without any loss. 
When the elastic system occupies one of the extreme positions, where 
the velocity of vibrations is zero and consequently the kinetic energy 
is zero (7*=0), the potential energy of the load and system is maxi
mum, 0 =  Um3X. On the other hand, when the system is in equi
librium, 0 and T*=Tmax.
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hf*7—$ —*■el
Q

k

It should be noted that the principle applied in deriving equation 
(29.29) is applicable only to systems with a single degree of freedom, 
because the law of conservation of energy does not take into account 
the heat transfer, which occurs in systems with a big number of de
grees of freedom. Hence, the problem of vibration of systems with 
more than one degree of freedom is reduced to the fundamental prob
lem discussed in § 171, and we can approximately determine only

one (principal) frequency of the 
natural vibrations.

Let us discuss a few examples on 
application of equation (29.29). 
B. As the first example we shall 
study the vibrations of load Q sus
pended from an end of a prismat
ic bar of length /, cross-sectional 
area A and specific weight v (Fig. 
416). If the suspended load is dis
turbed from the state of equilibri
um and left to itself, it starts per
forming longitudinal vibrations 
about the position of equilibrium. 
Let us write down expressions for U 
and T  for the vibrating load-bar 
system.

Potential energy of the system changes by U=U(—Ut w.r.t. the 
potential energy in equilibrium; here U« is the potential energy of 
the system at the initial moment (in equilibrium) and Ut is the po
tential energy at instant t.

Let us denote the potential energy of load Q at the initial moment 
by Uq', potential energy of the bar at the same moment Is equal to

where A/, is the static deformation of the bar due to load Q.
Hence

u ,= u 9 + 2 g *

—  ____1

Fig. 416

At instant I when the load has lowered by a distance x  and the bar 
has received additional deformation x, the potential energy of the 
load decreases by Qx, whereas the force of elastic resistance and static
deformation of the bar increase by times. Consequently,

u ,= u 9 - Q x + I q ^ ± m ,

Uq- Q x + ^9 Al,-+ Q x+ Qx*
2 AI,

M s+ x  

U |
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and
U = Ut— U0 =-Qj- (29.30)

Kinematic energy of the system is the sum of the kinetic energy 
Ti of the load and Tt of the bar. Kinetic energy of the load is 7 \—
— While calculating the kinetic energy of the bar, we must
bear in mind that at instant t the load and consequently the lower 
face of the bar are moving with velocity x \  whereas the velocity of 
the upper face of the bar is zero. The velocities of intermediate 
sections will be within these two extremal values.

Let us assume that displacement of bar sections w.r.t. the fixed 
end follows the same law as in static tension, i.e. it is directly pro
portional to the distance of the section from the fixed end. Thus 
(Fig. 416), if the lower face gets displaced by xt then the section at a
distance £ from the fixed end must get displaced by x \ , and the

velocity of this section will be . The kinetic energy of an element 
of length d% cut at a distance £ from the fixed end will be dT2̂

^  * '* ( f  ) ’•
Kinetic energy of the whole bar will be the sum of quantities dTa 

over the bar’s length:

T -  h ± £ x '*i a ~ j \ i )  3o
Thus, the kinetic energy of the bar is equal to the kinetic energy

of a concentrated load of mass i.e. it is equal to the kinetic
energy of a load whose mass is ‘/, of the bar and which moves with 
the same velocity as the bar. The total kinetic energy of the load-bar 
system is:

( q
j a i \

3 )

Substituting T  and U (29.30) in equation (29.29) and differentiating 
the last with respect to t, we get

i  (« +T-r)*"+¥■*-7 (c +sr)*" +Tkx- °
or

tilQq. yA l
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Here Al f is the static deformation due to load < 2 + ^ .  The differ
ential equation obtained above by taking into consideration the 
mass of the vibrating bar differs from equation (29.23) only in the 
factor before x  and both equations become identical once the mass 
of the bar is ignored. Therefore, the correction due to mass of bar, 
which must be introduced in the calculations of the preceding section,

Fig. 417

consists in determining static deformations, required for calculating 
the frequency of natural vibrations, not for load Q but for a load <2 
plus one-third of the weight of the bar. Thus, the weight of the vi
brating bar reduces the frequency of natural vibrations and increases
their period. The quantity ^  is called the reduced mass of the bar.
C. As the second example we shall study a simply supported beam, 
loaded by force Q at the middle of its span (Fig. 417).

Let us denote the maximum static deflection of the beam due to
load Q by and the variable deflection of the middle
section due to vibrations by z. Let us assume that the additional de
flection of the beam due to vibrations varies along its length In the 
same manner as due to the static load <2; the variation occurs according 
to the following equation (see § 85):

y =  4%’j  31,11 r  <31‘x -  4* a> (29-31)

Thus, if with respect to the position of static equilibrium z is the 
additional displacement of the middle section due to vibrations, 
then the displacement of the section at a distance x  from the left 
support will be

i/ =  - (3 /4x —4x3)

The velocity of vibration of the centre of gravity of this section will be
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The kinetic energy of an element of length dx of the beam will be

<*rs = y A d x  4 * V
~ W  \ $ )

and the kinetic energy of the whole beam will be
i/s

Ta= 2 l d z 'ajl j  (3/**—4jc’)ad* =  | g ^  Z'* (29.32)
8  o

Kinetic energy of load Q is:

Since potential energy of bending is calculated by the formula

As the middle section gets displaced by z from the position of static 
equilibrium, Therefore

Substituting the values of U and T=Ti-\-Tt in equation (29.29) 
and differentiating it with respect to t t we get

2" 4 48LV
P

e z = z ' + f z  = 0  
It

It is evident from the above expression that the beam should be
17considered weightless and ^  =0.486 of its weight should be added 

to Q to account for its mass while determining the frequency and 
period of natural vibrations; the quantity is called the re
duced mass of the beam.

Let us point out that if the deflected beam be approximately con
sidered as corresponding to the sine curve y - f  sin j  , then the re

duced mass will be not but j  —  , which is sufficiently close 
to the actual value,
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The reduced mass thus determined has been obtained on the assump- 
tion that the mass of the beam is small as compared to Q, because we 
have neglected the effect of mass of the beam on its deflection. Equa
tion (29.31) of the deflected beam axis corresponds to a situation 
when it is loaded by a single concentrated force acting at the middle 
of its span.
D. Let us now consider the other extreme case, when the mass of the 
beam is very large in comparison with Q or when the vibrating beam 
is loaded by a continuous uniformly distributed force of intensity q 
(which includes the weight of the beam). The equation of the deflected 
beam is as follows (see § 86):

y=  — ^ ( ^ - 2 / * » + * « )  =  _

where /  is the deflection at the middle of the span.
The kinetic energy of an element of length dx at a distance x from 

the left support may be expressed through velocity z‘ of the middle 
section by the following formula:

‘" ' - i t *'’

Total kinetic energy of the beam is:
/

Si*'*
2g

3968
7875

Potential energy of the beam
i . t

n  BJ  (* EJ C r 192 z . .  . .1*  . 3072572*
u — r ]  U S ) * ” - r j  i s - j r -

Substituting these expressions for U and T in equation (29.29) and 
differentiating it with respect to t, we get:

48EJg

$ « ' ) p
2  =  0

The reduced mass of the beam in this case is:
31 _£  
§3 g 0.492 — B

Thus, the equation of the deflected beam axis does not have much 
effect on the period of natural vibrations, as long as the general na
ture of deflection does not change.
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If a simply supported beam deflects along a curve that has no points 
of discontinuity,*then the curve may be assumed to be a sine curve
of half wave length y= f sin™, and the reduced mass of the beam

Thus, while determining the first frequency of natural vibrations 
of a system of distributed mass, the system may be assumed to be 
weightless and its reduced mass added to the mass of the concentrated

force acting on the system; the “reduction” method holds well even 
in such cases of loading when Q=0.

Example. A non-uniform bar of length I carrying load Q at one end 
(Fig. 418) rotates with angular velocity © about an axis to which its 
other end is fixed. The distance between the centre of gravity of load 
Q and the axis of rotation is r. Find a relation between the cross- 
sectional area Ax and distance x  of the section from the free end if 
stresses in all the sections are equal to lo}. Specific weight of the 
material is y.

Each point of the bar with abscissa * experiences centripetal accel
eration ©*(/ — x). Therefore, to determine the stresses all elements 
of the bar must be loaded by forces of inertia acting away from the 
centre and equal to the mass of element multiplied by ©*(/ — x). 
An element of length dx cut by two adjacent sections with abscissas 
x  and x+dx and cross-sectional areas Ax and Ax+dAxt is acted upon
by the force of inertia &&£(/ — *)©*, where g is the acceleration 
of gravity.

The size of the sections should change in such a way that this force 
of inertia give rise to stress lol on the area dAx (see analysis of uni
form strength bars under tension and compression, § 25). We obtain 
the following differential equation for Ax:

may be considered equal to ^ 2 / .

Fig. 418

[a]dAx =  - ^ - ( l - x ) ^

After separating the variables and integrating, we get
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Constant C can be determined from the boundary condition at x=0: 
Ax—At (cross-sectional area of the end faces of the bar). This area 
depends upon the force of inertia of load Q, which stretches the end 
face element:

Substituting In A0=C in the expression for A xt we get

ln A* ~  {2l~ ~ +  ,n A•’ or A*= A» WP [ i f R  ■$ x]

CHAPTER 3 0

Stresses Under Impact Loading
§ 173. Fundamental Concepts

Impact takes place when the velocity of the element under consid
eration or of elements adjoining it changes in a very short period 
of time.

In piling, a heavy load falls on the upper face of the pile from a 
certain height and drives it into the soil; the drop weight comes to a 
stop instantaneously, causing impact. A similar phenomenon takes 
place during forging; both the forged part and the hammer head 
experience impact as the latter comes to a sudden stop when it hits 
the part to be forged. During impact high pressures are created be
tween the colliding bodies. The velocity of the falling body changes 
over a short period and in particular cases fails to zero as it comes 
to a stop. This means that the hammer head is subjected to a large 
acceleration from the forging in a direction opposite to that of its 
movement, i.e. the hammer head experiences reaction P D which is 
equal to the product of its mass and the acceleration.

Denoting this acceleration by a, we can write reaction P D—~ u ,
where Q is the weight of the falling body. In accordance with the law 
of equality of action and reaction a force of the same magnitude acts 
on the forging in the opposite direction (Fig. 419). These forces give 
rise to stresses in both bodies. Thus, the forging experiences stresses 
as if it wore being acted upon by the force of inertia of the hammer 
head; these stresses may be calculated by considering (§ 164) the force 
of inertia P» as a static load acting on the structure. The chief dif
ficulty is how to compute this force. We do not know the duration of 
impact, i.e. the lime during which the velocity falls to zero. There
fore, acceleration a and consequently force Py remain unknown. 
Hence, although computation of stresses under impact loading is a
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particular part of the general problem of taking into account forces of 
inertia (§ 164), a different method based on the law of conservation 
of energy has to be employed to calculate P D, stresses and defor
mation.

During impact there is a sudden transformation of one type of 
energy into another: kinetic energy of the moving body is transformed 
into potential energy of deformation. By expressing this energy as a 
function of force P ti (stress or defor
mation (§ 98)), we can determine 
these quantities.

Engineering problems are gener
ally solved by the theory of elastic 
impact, which makes use of the 
following main assumptions:

(1) The kinetic energy of the 
striking body completely changes 
into potential energy of deforma
tion of the body which is hit; we 
ignore the. energy that is spent on 
deforming the striking body and 
the base on which the hit body is 
placed.

(2) The distribution of stresses 
and strains over the volume of the 
hit body remains the same as under static loading; here we ignore the 
change in distribution of stresses and strains at the point of collision 
and also the stresses and strains arising from high-frequency vibra
tions which appear in the whole volume of the body due to impact.

The first assumption usually leads to a higher safety factor being 
specified, as the hit body is assumed to be in worse conditions than 
it really is; the second assumption does not add to the safety factor 
for the more stressed parts of the hit body.

§ 174. General Method of Determining Stresses 
Under Impact Loading

A. Imagine that a rigid body A of weight Q whose deformation may 
be neglected falls from a certain height H and hits another body B 
which rests on an elastic system C (Fig. 420). As a particular case we 
may consider a load falling on the face of a prismatic bar, the other 
end of which is rigidly fixed (longitudinal impact) or a load falling 
on a simply supported beam (bending impact).

Elastic system C undergoes deformation during a very short period 
of time. Let us denote by 6© the displacement of body B (whose own 
deformation may be neglected) in the direction of impact. In the 
particular cases enumerated above displacement 8^ represents axial

□

5m

m m m m
Fig. 4J9
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elongation &tD in the case of longitudinal impact and deflection 
f D of the section of impact in bending impact. As a result of the im
pact, system C experiences stresses pD (<*d or *d, depending upon the 
type of deformation).

Assuming that kinetic energy T  of the falling body is completely
transformed into potential energy 
of deformation, UD, of the system, 
we may write

T = Ud (30.1)
By the time of completion of de
formation the falling body covers 
a distance therefore its ki
netic energy can be expressed in 
terms of the work WD done by it:

T = WD= Q (H + d D) (30.2)
Let us now calculate UD. If the 

deformation is static, potential en
ergy U» is numerically equal to half 
the product of the acting force and 
corresponding deformation (§ 98):

(30.3)

Static deformation 8, of the section of impact may be calculated 
by Hooke’s law and in general is written as

or Q =  c6.

Here (see § 171) c is a proportionality factor (sometimes also know 
as rigidity of the system); it depends upon the properties of material, 
shape and size of the body, type of deformation and location of the 
section under impact. Thus, in simple tension or compression 64=
=A /4= ^ a n d c =  in bending of a simply supported beam loaded
at the middle of its span by a concentrated force Q, static defor-Aii ioc /
mat ion 6a= /  8  m#x= and c =  ^ —; etc.

Thus, formula (30.3) may be rewritten as follows;

U ,= T  Q 6 .= |-6 ;

This formula is based on two assumptions: (a) Hooke’s law must 
be applicable, and (b) force Q, stress pe and corresponding deforma
tion 6, must increase gradually from zero to a finite value.
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Experiments on determination of the modulus of elasticity in 
bars subjected to vibrations within the elastic limits show that 
Hooke’s law remains valid and the modulus of elasticity remains un
affected by the dynamic nature of loading. Of the nature of increase 
of stresses it must be said that although the increase is fast it is not 
instantaneous even in the case of impact loading: dD increases grad
ually during a very short period of time from zero to a finite value, 
and the increase in stresses p D runs parallel with the increase in de
formation.

Reaction of system C to the falling weight Q (let us call it PD) 
appears as a result of the development of deformation 6 D. It in- 
erases with 6D from zero to a finite maximum value and, if stress 
pD does not exceed the limit of proportionality, is related to it by 
Hooke’s law:

where c is the same proportionality constant, which retains the same 
meaning under impact loading also.

Thus, both conditions necessary for the validity of formula (30.3) 
are satisfied by impact loading too. Consequently, it may be consid
ered that the formula for UD under impact loading must be the same 
as obtained by loading system C with a static force of inertia P D, i.e.

Ud = T />i>6o= T 6b “ ^ : 6“ (3°.4)

(here, as before, we consider c—Q.16,). Substituting the values of T 
and Uj> in equation (30.1), we get

Q (f f+ 6 ® )= ^ « >  (30.5)

or
6o—26,6^—2//6s =  0 (30.6)

wherefrom
8i) =  8 ,± K 6 J  +  2ff6J

or, keeping the positive sign before the square root to determine the 
maximum deformation in the direction of impact, we obtain

«o=*6. ( '  +  ] / l + ^ r ) = K j > 8 ,  (30-7)

Since according to Hooke’s law stresses are proportional to de
formation,

Ps ( l  4- Y  , + X ‘)  ~  KdPs (30.8)
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and ______

P » = c ( l  +  (30-9)

It is evident from these formulas that impact strain, stress and force 
depend upon static deformation, i.e. upon the rigidity and longitu
dinal dimensions of the body under impact. This statement wifi be 
proved below with the help of individual examples. Constant

K o = l +  J / h ~ 7 7  (30.10)

in this case represents the dynamic coefficient. Substituting H in 
formula (30.10) by where v is the velocity of the body under im
pact at the beginning of impact, we get

Besides, since
(30.11)

where To=QH is the energy of the body under impact at the beginning 
of impact, the expression for the dynamic coefficient may also be 
written as foilows:

/Ca” i +  Y  i (3tu2)

B. If in formulas (30.7) and (30.8) we put H =0, i.c. if wc apply force 
Q instantaneously, then and Pd= 2 p»; if force Q is applied
suddenly, then the deformation and stress are two times the defor
mation and stress due to a statically applied load of the same mag
nitude.

On the other hand, if height H (or velocity u) from which the load 
falls is large as compared to 6«, then 1 may be neglected as comparedOff
io j -  in the radicand in formulas (30.7) to (30.11). The expressions 
for 6j) and may be written as follows:

8 „= 8 s( l  +  Y i Y )  ■ PD=P* ( { + Y t : )  (3 n l3 )
Of f

If ratio is very large, then the first term in the parentheses may 
also be neglected and the expressions are written as follows:

»'’= p‘ Y ^ (30.14)
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The dynamic coefficient in this case is:

* - > = / ! f30-' 5)
2 H

It should be noted that unity in the radicand be ignored if -^ ^ lO
(the error of the approximate formula will not exceed 5%), but unity 
in the radicand can be neglected only for very high values of the
ratio For example, in order to ensure that the error of approxi- 

®s o H
mate formulas (30.14) and (30.15) does not exceed 10%, the ratio
must be greats than 110.

Formulas &d= K j£ ,  and pD=KnP» in which Kd is expressed in
terms of (30.12), may also be used for solving the problem on
collision between bodies moving with a certain velocity, for deter* 
mining the stresses in the cylinder of an internal combustion engine 
due to a sharp increase in gas pressure on account of ignition of fuel, 
etc. On this basis these formulas may be considered as general for
mulas for impact analysis.

Generalizing what has been said above, we can suggest the follow
ing method of determining stresses under impact. Applying the law 
of conservation of energy, we must (1) calculate kinetic energy T 
of the body under impact; (2) calculate potential energy Uu of the 
bodies experiencing impact, when they are loaded by the inertial 
forces (the potential energy may be expressed through stress (cD, Tj>) 
in a particular section, through deformation (elongation, deflection) 
or through the force of inertia P n of the body under impact; and (3) 
equate UD and T  and from this equation determine either the 
dynamic stress directly, or first determine deformation and then 
applying Hooke’s law find stress or force PJ} and finally calculate the 
corresponding dynamic stress and deformation.

The method outlined above is based on the assumption that the 
kinetic energy of the body under impact is fully transformed into 
potential energy of deformation of the elastic system. This assumption 
is not very accurate. Kinetic energy of the falling body is partially 
transformed into heat and partially into the energy spent on inelastic 
deformation of the foundation on which, the elastic system rests.

In addition, if impact occurs at a high velocity, then the defor
mation of the body suffering this impact does not get enough time 
to spread over the whole body, and local stresses of considerable 
magnitude, which sometimes exceed the yield stress of the material, 
appear in the region of impact. For example, if a steel beam is hit by 
a lead hammer, then a large portion of the kinetic energy is trans
formed into the energy' of local deformation. A similar phenomenon
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may occur even at low velocity of Impact if the body suffering impact 
is very rigid or heavy.

All the situations discussed above pertain to a high value of ^ . 
It may be stated that the method of analysis described above is ap
plicable until ^  does not exceed a certain value. Accurate inves

tigations confirm that the error does not exceed 10% if ^ -dO O .

Now, since this ratio can be expressed in terms of (see earlier
discussion) it may be stated that the above method is applicable 
until the energy of impact does not become more than 100 times the 
potential energy of deformation due to static loading of the elastic 
system suffering impact by a force equal to the weight of the impacting 
body. Consideration of the mass of the body under impact (see § 178) 
helps in somewhat increasing the limits of applicability of this method 
in such cases when the impacting body has a big mass.

A more accurate theory of impact is given in the theory of elas
ticity.

§ 175. Concrete Cases of Determining Stresses
and Conducting Strength Checks Under Impact

A. The formulas derived in § 174 show that qualitative changes may 
occur due to a quantitative change in the period of the force acting 
on a body.

Let us study some simple cases of deformation under impact loading. 
In this study we shall determine the dynamic coefficient with the help 
of formulas (30.10) and (30.12) and the approximate formula (30.15). 

We shall determine 5^, pD and PD by the following relations:

Pd ^ K oP^ Pd^ K dQ
In the case of an axial tensile or compressive impact (Fig. 421),

6, =  Als Ps Q_ 
A ’

Q*l _  o\Al U$EA
Us =  W a “IF " * 5 21

Dynamic coefficient K d may be calculated from one of the following 
expressions:

i + / ' + x - - i +  / i + i W -

=  1 +  / , + ^ -  = I + | / I + ^ T  <30I6>

Having calculated Kd we can easily determine oD and PD and
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The approximate formula for determining stresses in this case is 
as follows:

Kd = ~ Y ^ ^ .  o0 = o, K „ = Y ~ ^ -  {XA7)

It should be noted that under static as well as dynamic loading 
the stresses in the compressed bar depend upon the compressive force 
and the cross-sectional area of the bar.

If load Q is applied statically to the bar, then the force transmitted 
to the bar is equal to Q and does not depend upon its material and 
size. In the case of impact loading P D, wnich gives rise to stresses in 
the bar, depends upon the accelera
tion with which the body suffering 
impact resists the impacting body, 
i.e. P D depends upon the time 
during which the velocity of the 
impacting body changes. This pe
riod depends upon the axial dynam
ic deformation A/D and upon the 
pliability, of the bar material. The 
greater the pliability, i.e. the smal
ler the modulus of elasticity E and 
the greater the bar length /, the 
longer is the duration of impact and 
the smaller are acceleration and 
force P D‘

Thus, if stress distiibution is 
uniform in all the sections of the 
bar, dynamic stresses decrease with the increase in cross-sectional 
area and pliability (i.e. increase in length and decrease in modulus 
of elasticity E). Only due to this reason springs placed between im
pacting bodies are able to damp the impact. The formulas derived 
earlier express the same idea. For example, formula (30.17) with 
certain approximation expresses the idea that in longitudinal impact 
the stresses depend not upon the cross-sectional area, but upon the 
volume of the bar.

Having determined the dynamic stress from formulas (30.8) and
(30.16) or (30.17), we can now write the strength condition as fol
lows:

<JD ̂  \?d\ (30.18)

where lo^l is the permissible normal stress under impact, which for
a ductile material is equal to The safety factor k D may
be considered equal to the primary safety factor &0 under static load
ing (i.e.» 1.5-1.6; § 16), because the dynamic nature of loading has
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Fig. 421
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already been accounted for in formulas (30.16) and (30.17). However, 
keeping in mind the not too accurate theoretical basis of their deri
vations, a slightly higher value, up to 2, of the safety factor is iin- 
ployed. In addition, a better material is generally used in such cases 
(more uniform material having better plastic properties).
B. In bending, static deformation which represents static deflec-

In a cantilever experiencing impact at its free end from a falling 
weight Q (Fig. 422(6))

Substituting the values of 6s=f#m8X and U» in the expression for Kr>* 
we first determine K d and then through it the dynamic stresses and 
deformation. For example, o Dm;iX for a simply supported beam can 
be calculated by the following formula:

Strength condition (30.18) may, in this case, be written as

tion / ,  of the beam in the section of 
impact, depends upon the type of 
loading and constraints.

Thus, in a simply supported beam 
of span / experiencing impact at 
its middle from a weight Q, falling 
from height H (Fig. 422(a)), we 
get:

■ 9}

Fig. 422

and

and
IJ -  Q / t  mix QSP 

* 2 li CJ

(* +  (3o.i9)
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In case of impact on a simply supported beam (Fig. 422(a)) the 
approximate formulas for calculating ffnmax and fo max are as follows:

and
(30.21)

(30.22)

Identical expressions for f D,nix and ODmax can be obtained in case 
of impact on a cantilever (Fig. 422(b)). Keeping in mind that

zmix

and
J

)
» I 
~X

we can modify formula (30.22) as follows:

Oom*x
- . /  67\E 
V Al (30.23)

From the approximate formula (30.23) it is obvious that the dynamic 
stresses in bending depend upon the modulus of elasticity of the beam
material, volume of the beam, shape of cross section (ratio I f *  j
and the type of loading and constraints (in this particular example, 
the radicand contains 67\>; in beams loaded and constrained in a 
different manner the numerical constant before To will be different). 
Thus, in a rectangular beam of height h  and width b, the dynamic 
stress will be the same irrespective of whether the beam is placed on 
the thin or flat face and its magnitude is (according to the approxi
mate formula): _____

"i/*
- "D  m a x =  Y  — J T "

because in both cases
h b

It should be recalled that under a similar static load the maximum 
stress in a beam placed on its flat face is y  times more than the stress



in a beam placed on its narrow face. Obviously, the above statement 
is true only if the impact occurs within the elastic limits.

The resistance of beams to impact loading also depends upon their 
section modulus and rigidity. The greater the pliability (deformabil- 
ity) of a beam, the greater is the kinetic energy of impact which it 
can absorb at the same permissible stress. Maximum deflection oc
curs in a beam in which the maximum stress is the same in all sections, 
i.e. in beams of uniform strength. Such beams are capable of with
standing greater deflection than uniform beams having the same 
permissible stress; this means that uniform strength beams can ab
sorb greater amount of impact energy. Precisely for this reason, springs 
are made in the shape of uniform strength beams.
C. Let us now study the problem of determining stresses under a 
twisting impact. If a rotating shaft is suddenly stopped by applying 
brakes at one of its ends and the other end is acted upon by force T% 
of the flywheel which twists the shaft, then stresses in such a shaft 
can be determined by the method explained above. The shaft is twis
ted by two force couples (the force of inertia of the flywheel and 
the frictional force of the brakes) each of moment M.

In this example
st A1  M

“  9a *= » Ps = ’*s m« =  - ^
and

U  -  -  * sm e * W p l  <?sGJP
2GJp 26j p “ * 21

Therefore

Y v j - V W  <30-24)
and '  P

Pd - To«™=  Kd-**m„“ ».* j / l t  “ = 2
(30.25)

because
j  -  nr* tv  — nr* j p — 2 _  2

P 2 ’ w p 2 ’ "W p ~  nr* ~  A

Keeping in mind that kinetic energy T, of the flywheel is:
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where J 0  is the moment of inertia of the flywheel, and to its angular 
velocity, we may write

Y ^ r  <30-26)
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It should be noted that even under twisting impact the maximum 
dynamic stresses depend upon the modulus of elasticity and volume 
of the shaft.

§ 176. Impact Stresses In a Non-uniform Bar
It was explained in § 175 that the volume of the bar should be 

increased to reduce the stresses due to longitudinal impact. However, 
this is true only when the cross-sectional area of the bar does not change 
along its length—the stresses are equal in all sections. The situation 
will be entirely different if various
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portions of the bar have different 
areas of cross section (Fig. 423).

We know (formulas (30.16) or 
(30.17)) that dynamic stress in lon
gitudinal impact depends upon the 
cross-sectional area of the bar as 
well as its pliability (deformabil- 
ity). The maximum stresses in a 
necked bar (Fig. 423(a)) must, for 
example, be determined for the mi
nimum cross-sectional area (at the 
neck) taking into consideration the 
compressibility of the bar, which 
depends upon the deformation of 
the whole bar and not only the 
neck portion.

Stresses in this case may be brought down in two ways. Firstly, 
by increasing the cross-sectional area of the neck portion (if this is 
permissible from design considerations) by using a bar of diameter 
di (Fig. 423(b)); in doing so we increase the cross-sectional area and 
to a smaller extent decrease the compressibility of the bar. There is 
a slight increase in the force of inertia, but the cross-sectional area 
of the neck portion increases by a higher degree, thus resulting in 
an overall reduction in stress.

However, this (first) method cannot generally be applied because 
the design of structures demands that the neck be retained. In such 
cases the strength of the bar is increased by reducing its cross-sec
tional area in the thick portion, thus increasing its pliability. If 
we reduce the diameter of the whole bar to d t  (Fig. 423(c)), we auto
matically increase its compressibility and consequently decrease 
the dynamic force P D as well as the dynamic stress. Thus, a reduction 
in the magnitude of stresses may be achieved by two methods, both 
of which make the stresses uniform: by increasing the volume with 
the addition of material at the neck or by decreasing the volume 
with reduction in cross-sectional area of the thick portion.
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These conclusions can be easily checked analytically. Let us deter
mine the maximum dynamic stress in each of the three bars shown in 
Fig. 423(c), (b), and (c), caused in each case by a longitudinal impact 
of energy T0 =QH. For the bar shown in Fig. 423(c) let At be the 
cross-sectional area of the thick portion and As the cross-sectional

A Iarea of the neck; let -r- = q  and - r — p . We shall calculate thestres-
ses by approximate formulas (30.14) and (30.17). According to 
formula (30.14) the maximum dynamic stress in the bar shown in 
Fig. 423(a) is:

PD—aa — as

Since
Qti i Q 
liAt ~ EAl | £ - [ p + 9 (< - /0 ]

we find that

Stresses in the uniform bars shown in Fig. 423(b) and (c) may be 
calculated from formula (30.17):

° ' - V W = V W  ^
Since [p+q(l—p)1<<?<l, we find that oax r cx r ft. For instance,
if —0.8 a n d 0.1, then <7=0.64 and p—0 ,1; after computing
we get cr0=1.52ff& and oe=0.82o„=I.25or6. Thus a neck which re
duces the diameter by 20% over one-tenth of the total length of the 
bar results in a 50% increase in stresses; if the bar is made of a uni
form section corresponding to the minimum diameter, the stresses 
reduce by 20%.

Although 'these calculations have been done on the basis of approx
imate formulas, the relation established between a„, ab> and a 0 
is quite close to the relation which we would have obtained by using 
the accurate formula (30.8) for a not very low value of impact energy 
T0.

§ 177. Practical Conclusions from the Derived Results
The results of the preceding computations are of great practical 

importance. First of all they show that the nature of resistance of 
bars considerably differ from their resistance to static deformation.
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Under static compression, thickness of a portion of the bar does no* 
affect the stresses in sections of the remaining portion; under impact 
it increases these stresses. Reduction of cross-sectional area over a 
small length results in a sharp increase in stresses throughout the bar.

fa) (b) (c)
Fig. 424

The endeavour should be to reduce the stresses by increasing the 
pliability of the bar by increasing its length, adding a shock-absorber, 
using another material of lower modulus of elasticity and using a 
uniform cross-sectional area along the bar length. Generally, the 
most effective way is to reduce the bar to a uniform diameter equal to 
the minimum.

Therefore, while designing bars working under impact loading, 
it is essential to have a uniform section all along the bar length;

Fig. 425

greater thickness of some portions is permissible over a small length, 
but necking is highly undesirable even over a very small length. If 
a sufficiently strong bar cannot be designed under such conditions, 
then it is essential either to increase the length of the bar or to increase 
its cross-sectional area uniformly.

As an example let us study a bolt transmitting tensile impact 
from one part of the structure to another. The design shown in Fig. 
424(a) has poor impact resistance, because the threaded length of 
the bolt having smaller diameter acts as a neck. The greater part of 
the impact energy is absorbed by the threaded portion of the bolt. 
The chances "of la i lure are high.

In a properly designed bolt the impact energy should be absorbed 
more or less uniformly by the whole bolt; this can be achieved by 
making the bolt diameter uniform over the whole (or almost the whole)
19—3310
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length and equal to the minimum diameter of the thread. For this 
we may either machine the bolt shank (Fig. 424(6)) or drill a hole 
in it (Fig. 424(c)).

As an example of increasing impact resistance of bolts by increasing 
their length we may study the design shown in Fig. 425(a) and (6). 
The cylinder cover of a boring tool is sometimes subjected to strong 
impact from the boring tool. Small bolts securing the cover to the 
cylinder according to Fig. 425(a) fail easily. Failure can be prevented 
by increasing their length as shown in Fig. 425(6).

§ 178. The Effect of Mass of the E lastic  System  
on Im pact

Let us study how the mass of the body subjected to impact affects 
the impact stresses. As an example we shall consider impact in bend
ing (Fig- 422). Weight Q drops on beam A B  and at the moment of 
impact has a velocity vw= V 2 g H ,  at the same instant the beam has 
a velocity (it Is stationary). On account of impact all elements 
of the beam will acquire a certain velocity (different for each element) 
in a short time while the weight will correspondingly slow down. 
At the point of impact the weight and the beam material in imme
diate vicinity have identical velocities equal to vm. Medium velocity 
t/m may be found from Carnot's theorem:

_  MttOw
0  -f-ccQo (30.29)

Here Q and Mw are the weight and mass of the striking body, Q« 
and M0 are the weight and mass of the body subjected to impact (beam), 
and a  is the mass reduction coefficient (less than unity) which has 
to be introduced to account for the fact that not all parts of the body 
suffering Impact move after impact with the same velocity, vm (see,
for example, Fig. 422). For tension and compression a = y ;  If the 
beam is subjected to bending as shown in Fig. 422 (a), then a —17/35« 

etc.* It is evident from (30.29) that vm< vw—V 2 gH\ the grea
ter mass Mo of the body suffering impact the less is vm as compared 
to i/lP. Kinetic energy that remains in the beam-weight system after

* Detailed derivation of the expression for coefficient a  for the beam shown in 
Fig. 422(d) is given in $231 of N. M. Belyaev, Strength of Materials, Nauka, Edi
tions 7-14 (in Russian).
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impact is:
QM&m

l + « - ^

Y (Mw+aA !#) 

T«
1t + F

Alw Pm
(M.+aAf.)*

(30.30)

i.e. l+ P  times less than the kinetic energy of the weight if the lat
ter strikes a weightless beam. Hence, if the mass of the body suffer
ing impact is taken into consideration, the dynamic coefficient should 
be calculated not by formulas (30.10), (30.11) and (30.12), but by the 
formula

K o = l +  V 1 + l/* (i+17 = 1  + V X +
(30.31)

i.e. if the mass of the body suffering impact is taken into account, 
the design stresses due to impact are reduced.

As an example of analysis of a complicated structure under im
pact, let us study the impact load Q at the middle of a beam which

is constrained by a fixed hinged support at end A and another hinged 
support at point B mounted at the middle of the second beam (Fig. 426). 
The first beam has span It, moment of inertia J t and modulus of 
elasticity £ , and the respective quantities for the second beam are 

J i, and £. The maximum dynamic stresses occur in the outer fibres 
of the middle sections of the beams (first as well as second). Our aim 
is to determine these stresses.

We shall solve this problem by multiplying the static stresses due 
to load Q in the first (AB) and second (CD) beams with the dynamic 
coefficient ______

*£.= '+  V l + T T

\9*
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The static deflection of the first beam in the section of impact is 
determined by the deformation of the whole structure and is equal
to /o=*/i+y/s, where is the maximum static deflection of the first
beam due to force Q, and /* is the corresponding deflection of the
second beam due to force Since

we get

and

h Qi\
48 EJ, and /

96EJ2

f - Qfi I Qft Qt
/o  48EJ, 192EJ„ ™  4 8 £ ^ ,

/Q>=1 +
%LJ,H

The maximum stresses in the first and second beams are 

°Ui =* KDah -o Kd and oo, =  KpPs,= Kq

As the potential energies due to impact accumulated by the first 
beam (UD), the second beam {Un) and both beams combined (UD=  
= UDt+U»=To) are proportional respectively to i /v  U9t, and Ut 
(the square of the dynamic coefficient serves as the constant of pro
portionality), we get

and

_  /.
Uo ~

Us Y Qf ' +  T Qfi f i + i f f t

Up. T '«
ilfl 7 \ t; I »

* j Q f t +  ~ Q h y / i

h

fpj
u

(a)

(b )

Deflection /„ represents the total pliability of the whole structure at 
the point of impact, deflections f01 and fot represent fractions of the 
total pliability which depend upon the deformation of the first and 
second beams separately. It follows from formulas (a) and (b) that

U o .~ T .ljL  and U„, = T , l j j

Thus, distribution of impact energy between the beams is directly 
proportional to their pliability as a fraction of the total pliability
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at the point of impact. If the dimensions of the beams are selected
in such a way that /oi =/o2, then V D = UD= ^ T 9. Had there been
a rigid support in place of the second beam, the total impact energy 
would have been absorbed by the first beam; the second beam helps 
in damping the impact on the first.

The same effect would have been observed if instead of rigid sup
ports we had used very pliable supports made of rubber spacers or 
helical springs for constraining the beam ends.

§ 179. Impact Testing for Failure
It was pointed out earlier that dynamic action of force is distin

guished not just by the fact that stresses (within elastic limits) under 
dynamic loading are different from stresses under static loading.

The material itself reacts to dynamic loading in a different way than 
to a load which increases gradually. This is especially noticeable in 
impact loading.

Experiments on failure of specimens under impact loading show 
that the tension test diagram in this case is completely different from 
the tension test diagram under static loading. Figure 427 shows the 
tension test diagrams for mild steel under static and dynamic loads; 
the curve of Impact loading is distinguished by a sharp increase in 
the yield stress and by a displacement of the maximum load towards 
the left. This shows that the velocity of impact also affects the me
chanical properties of the material. There are cases when materials 
having excellent plastic properties under static loading behave as 
brittle materials under dynamic loading. Therefore, materials for 
elements subjected to dynamic loading are selected after conducting 
an impact test. In impact test specimens of the material are subjected 
to impact failure under tension, but more often under bending, and 
the energy required for breaking the specimens acts as a pointer to 
the properties of the material. Impact test under bending is most 
commonly employed.*

* For details see N. M. Belyaev, Laboratory Experiments on Strength of Mate
rials, Gostekhizdat, 1951 (In Russian), §89.

I ? * —3310
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If T is the energy spent on breaking the specimen and A is the 
cross-sectional area of the specimen in the section of failure, then 
the impact strength oi the specimen material is obtained by dividing 
T by A:

Ta/—-jkgf m/cm*

To reveal the properties of the specimen material during an impact 
test, the specimen is given a particular shape—a cut is made in the 
section of impact. Cuts of various shapes shown In Fig. 428 can be 
made; the one shown in Fig. 428(b) is generally used at present.

Fig. 428
I

The idea behind making the cut is to subject the specimen mate
rial to dynamic loading under the most unfavourable circumstances. 
The cut creates considerable weakening of the sections in the middle 
of the span, causing a sharp increase in bending stresses over a small 
length of the specimen.

We have already seen (§ 176) the strong effect which any local weak
ening of the section can have on the stresses. Almost all the energy 
of impact is absorbed by a small volume of material around the weak
ened section, causing a sharp increase in the dynamic stresses. In 
addition, the cut also gives rise to a local increase of stresses at its 
base, which are similar in. nature to local stresses at the edges of 
holes (§15).

Figure 429 shows distribution of stresses in the section of a beam 
weakened by a cut. Curve a shows the diagram of stresses Oj in a sec
tion without a cut; curve b shows the distribution of normal stresses 
in the section with a cut without taking into account the local stres
ses; finally, curve c shows the complete picture of variation of normal 
stresses o, under bending.

We see that jusl the decrease in the height of the section increases 
the stresses 2.25 times; if the local stresses are also taken into ac-
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count, the coefficient of stress concentration comprises 5.22 w.r.t. 
the parent beam and 2.32 w.r.t. the beam of reduced height.

Generally, the local stresses result in the working of the material 
in three-dimensional stressed state; these conditions are not con* 
ducive to development of plastic deformation, and the material fails 
as it it were brittle.

Thus, in the example under consideration, in addition to normal 
stresses Oi in sections perpendicular to the specimen axis there act 
tensile stresses o2 in sections parallel to the axis. The distribution

T ensrn C ffliirtsseh

curve for these stresses is also shown in Fig. 429. Besides, inside the 
specimen acts the third principal stress, o8, also tensile. Thus, the 
material near the base of the cut is subjected to three-dimensional 
tension, under which plastic deformation is very difficult. If the 
yield stress of the material under tension, o„, and stresses o, and <r» 
are less than o^ for example 0.2o», the beginning of yielding in a 
three-dimensional stressed state is determined by the third theory 
of strength according to the following equation:

a,—0 ,«»ow, or Of—0.2cr, =  0.8o,<*<jv
Hence, the material at the base of the cut can undergo plastic 

deformation only (or values of o, greater than o„, namely at o, equal 
to 1.25o„. Due to such restrictions to plastic deformation the mate
rial may start behaving like a brittle material. This further aggravates 
the effect of Impact loading.

Thus, the cut helps in a clear classification between materials 
which are more sensitive to adverse action of impact and those which 
are less sensitive. Here the various types of cuts show a varying degree 
of effect; for example, a sharp cut enhances the adverse effect of im
pact more than a round cut. Therefore, impact strength of various 
materials can be compared only if the specimens are alike.

The drawback of specimens shown in Fig. 428 is that the base of 
the cut falls in the stretched zone, where failure starts. Obviously, 
the strength of such a specimen depends upon the quality of the cut;
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on the other hand, the cut makes it impossible to test specimens 
which must retain the contours of the actual part (this is sometimes 
of great importance).

The specimen (Fig. 430) prepared in the Strength Testing Labora
tory of the Leningrad Institute of Railway Engineers is free of these

drawbacks, when this specimen 
fails, the cut develops parallel to 
the direction of impact. Also, in 
this specimen almost all the energy 
of impact is concentrated in the 
weakened zone, but the failure is 
more close to the real one.

There is a sharp difference be
tween such broken specimens of duc
tile and brittle materials; consider
able plastic deformation may be 
observed in the stretched zone for 
materials having low sensitivity to 
impact. However, failure of brittle 
materials occurs almost without 
an permanent deformation.

§ 180. Effect of Various Factors on the Results 
of Impact Testing

As a rule impact testing is carried out at room temperature on at 
least four identical specimens. This restriction on the minimum num
ber of specimens to be tested is necessary to keep a check on random 
errors of manufacturing and testing, which may sometimes seriously 
affect the impact strength of the specimen.

As an example, Table 21 shows values of impact strength for a 
number of materials at room temperature; the tests were conducted 
on the type of specimen shown in Fig. 428(6).

It can be easily noticed that impact strength is greatly affected 
by a number of factors, namely shape of the specimen, velocity of 
impact and most of all temperature of the specimen.

Impact strength of specimens of the same material falls as the tem
perature. of testing is reduced. In some materials (mild steel) the fail 
is very sharp; in hardened and alloy steels (chrome-nickel) the fall 
is comparatively smooth. In Fig. 431 curves a, b, c show the varia
tion of impact strength; the curves were obtained at the Strength 
Testing Laboratory of the Leningrad Institute of Railway Engineers 
(LI R E).

Before testing, the specimen is brought to the required tempera
ture in a trough which can be heated by placing on an electric heater 
and cooled with the help of liquid air. Curves a, b, c shown in Fig. 431

Fig. 430
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Table 21
Impact Strength for Some Materials

Heat treatment

Type o( (tee) and its  chem ical 
com position

annealing hardening and 
tem pering

obO c g t / m m ' ) at
(kgf -m/cra*)

0(1
(kgl/m m 'j

at
(kgi -m/em*)

Carbon steels (carbon content)
<0.15 35-45 > 2 5 36-50 > 2 5
0.15*0.20 40-50 > 2 2 45-65 > 2 0
0.20-0.30 50-60 > 2 0 55-75 > 15
0.30-0.40 60-70 >  16 70-85 >  12
0.40-0.50 70-80 > 12 80-95 >  8
0.50-0.00 80-90 >  10 90-105 >  5
0.60-0.70 85-95 > 8 >  100 > 3
>  0.7 > 95 > 6 >  105 > 2

Alloy steels
Nickel steel: C 0.20, Ni 3.0 50-58 25-20 70-80 24-18
Chrome-nickel steel: C 0.3, > 6 5 > 7 75-90 > 2 0

Ni 2 .5-3.0, Cr 0.5-0.8
Chrome-nickel molybdenum 65-70 13 95-100 20-16

steel: C 0.25-0.35, Ni 
2.5-3.5,Cr 0.8-1.2,Mo 0.3-0.5

make it clear that a reduction in temperature may cause a sharp 
reduction in impact strength and thus cause brittle fracture of parts 
of structure. This phenomenon has been often observed in practice; 
cold brittleness of rails, rims and other elements used in railway 
transport has often been the cause of a number of problems.

A very important point in this context is that for quite a few ma
terials (Fig. 431, curve a) the transition from plastic failure, having 
high impact strength, to brittle failure takes place in a small temper
ature interval. For instance, a material having good impact strength 
at room or nearly room temperature may experience brittle failure 
even with a small reduction in temperature. Therefore, results of the 
usual impact tests at room temperature cannot be considered sufficient 
for assessing the resistance of material to dynamic loading; it is nec
essary to obtain a more complete picture of impact strength as a 
function of temperature (Fig. 431, curves a, b, c).

The more to the left is the “critical1' interval of fall-off of impact 
strength, the lower is the sensitivity of the material to temperature 
changes under dynamic loading and the greater is its reliability.

Variation of the shape of the specimen can, to some extent, be uti
lized to replace testing at various temperatures. Experiments show



670 Dynamic Action of Porta {Part IX

that in wider specimens the “critical” temperature interval shifts 
towards the right, i.e. towards higher temperatures. Therefore, if 
the usual impact test at room temperature gives satisfactory results, 
then tests may be conducted on wider specimens to check whether 
the temperature of conducting the experiment is close to the critical

interval. If brittle fracture oc
curs after this test, it means 
that the temperature of exper
iment is close to the critical 
interval.

Finally, it should be noted 
that ductile properties of a 
material may be seriously af
fected by residual stresses, 
which appear in the material 
after quenching, cold rolling, 
or rolling at low temperatures 
resulting in strain-hardening 
ol the material. As a rule, these 
stresses cannot be assessed 
by simple tension test. Resid
ual stresses generally occur in 
a three-dimensional stressed 
state of the material; this may 

result in brittle fracture. Situations like this have been observed in 
manufacturing large I-beams having thin Ranges. In the course of 
our experiments an I-beam No. 50 failed due to brittle fracture when 
it was dropped on earth on a frosty day. Tests under static loading 
and the chemical and metallurgical analysis revealed that the mate
rial of the beam was of good quality. Only under dynamic loading 
at different temperatures was cold brittleness observe! in specimens 
cut near the flange edge—in the maximum hardened region. As for 
the effect of chemical composition of steel on brittleness, the impact 
strength decreases, as can be seen from Table 21, with an increase in 
carbon content, i.e. with an increase in ultimate strength and decrease 
in plastic properties of steel. Phosphorus has an extremely adverse 
effect on impact strength, especially at low temperatures. Therefore 
the percentage of phosphorus in steel should be restricted in every 
possible way if the steel is to be used in the manufacture of elements 
working under impact.
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CHAPTER 31

Strength Check of Materials 
Under Variable Loading

§ 181. Basic Ideas Concerning the Effect of Variable 
Stresses on the Strength of Materials

The resistance of materials to loads which systematically change 
in magnitude or magnitude and sign is considerably difTerent from 
the resistance of the same materials to static and dynamic loads. 
Consequently, the problem of checking strength of materials under 
variable loads requires to be studied in a special chapter.

It is well known that machine parts subjected to cyclic loads some
times fail suddenly, without any noticeable permanent deformation, 
al stresses which they reliably withstand under static loading. The 
attention of engineers was first directed to this problem by the obser
vation that machine elements manufactured from materials showing 
under static tests excellent plastic properties—elongation, contrac
tion and impact strength—failed without any noticeable plastic 
deformation, as if they were made of some brittle material.

When the engineers first started studying the causes of such fail
ures (first half of the nineteenth century), they still did not have a 
clear idea about the structure of metals; it was assumed at that time 
that plastic metals have a “fibrous” structure, whereas brittle metals 
have a “crystalline” structure. As the failure of elements generally 
occurred not immediately but after a certain, considerably long, 
period of operation of the machine, it was assumed that under vari
able stresses the metal gets “fatigued” and changes its structure from 
fibrous to crystalline, becoming brittle in the process.

The surface of fracture itself seemed to support this hypothesis. As 
a rule, the surface had two distinct zones: a smooth, ground surface 
(the surface in which the crack developed gradually) and a coarse 
grained surface (surface of final failure of the section weakened by 
the crack). Figure 432 shows the surface of failure of a wagon axle; 
we can see the outer ring-shaped smooth surface and the inner coarse
grained surface, which is characteristic of brittleness.

However, at the beginning of the twentieth century, the study of 
the microstructure of metals under microscope proved that the hy
pothesis was not correct. It was observed that metals have a crystalline 
structure in the ductile state. Observations showed that when the ele
ment is subjected to variable stresses, no principal changes in the 
microstructure or in mechanical properties occur The materials 
of the piston rods of steam engines and of the wagon axles retained 
their structure irrespective of how long they worked.

This precludes any talk of “recryslalllzation” from one form to 
another under the action of variable stresses.
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The nature of failure under variable loading was discovered at the beginning of this century. Numerous experiments revealed that under the action of variable stresses, a crack appeared in the metal and gradually penetrated into its interior. Under variable deformation the edges of the crack approach each other at one instant and move away at another; this explains the ground, smooth surface in the zone of failure. As the fatigue crack develops, the cross section weakens more and more, and finally a chance impact is enough to cause complete failure, which occurs when the strength of the weakened cross section becomes insufficient.The fatigue crack is a sharp cut on the surface of cross section, similar to (he cut made on specimens used in impact testing The base of the crack findsitself in a three-dimensionalstressed state, which is conducive to brittle failure under impact (see § 179). This explains the presence of coarse-grained structure in the zone of failure, caused by brittle fracture.Thus, brittle failure under variable loading is caused not becausethe material changes its microstructure and becomes brittle, hutbecause of the appearance of a fatigue crack in the three-dimensional stressed state, which is conducive to brittle failure without any plastic deformation.The failure under variable loading is of a localized nature and does not involve the material of the whole structure. Therefore, if a crack is seen to develop under variable loading, in many cases it is not necessary to change the whole structure: it suffices to replace the damaged part and remedy the factors which caused the crack.The theory of failure discussed above is now accepted by engineers throughout the world. Consequently, the term “fatigue ot material” has last its physical meaning: while describing the process of failure under dynamic loading we must talk not about failure due to fatigue but about failure due to gradual growth of crack.However, on account of its brevity and widespread use in technical literature, the term “fatigue of materials” is still in vogue, although it expresses a different meaning: from now on whenever we speak about “fatigue of material”, it will mean failure due to gradual development of a crack.Our aim now is to expose the factors which cause the crack, and
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lay down such rules for design of machine elements and structures 
and strength check that guarantee safe working under variable loads.

This problem (s very important, especially in machine building, 
where most often we have to deal with cyclic stresses- It can safely 
be assumed that approximately 90% of the total failures of machine 
parts occur due to development of the fatigue crack. These failures 
are very dangerous and often result in serious accidents, because it 
is not always possible to notice the developing hair-thin fatigue crack 
in time. Failures of wagon and engine axles are chiefly caused by these 
cracks and invariably result in derailment, accompanied by tragic 
consequences. Similar failures have been observed in aircrafts as well 
as in other branches of machine building.

§ 182. Cyclic Stresses
Stresses in the parts of machines and structures may change either 

due to change in the magnitude of load (for instance, stresses in the 
connecting rod and the cylinder wall of an internal combustion en
gine change due to change in pressure of gas mixture inside the cyl
inder) or due to change in position of the part under action of a con
stant load (for instance, if the constant weight of a wagon acts on 
the axle which is rigidly connected with the wheels, the bending 
stresses at any point of the axle’s cross section vary as the point 
changes its location due to rotation of the axle).

The variation of stresses in parts of machines or structures may be 
unstable (for example, changes in stresses acting in a part of bridge 
due to moving trams, automobiles, pedestrians) or steady (for example, 
change in stresses acting in the connecting rod and cylinder wall of 
an internal combustion engine, rotating wagon axle, transmission 
shaft, etc.). From among the various types of steady variable stresses, 
cyclic stresses are the most important; besides, these stresses are the 
most widely investigated. A single repetition of stress (from mini
mum to maximum and back) is known as the cycle of variation of 
stress', if such a cycle is continuously repeated during functioning of 
a part, the stresses acting in the part are called cyclic stresses. Cyclic 
stresses act in wagon axles, shafts, connecting rods, turbine blades 
and many other parts of machines and structures.

Figure 433 depicts various types of cyclic stresses in “stress p (o or t )  
versus time t” coordinates: (1) constant sign cycle (Fig. 433(a)), in 
which stresses vary only in magnitude; (2) fluctuating (zero base) 
cycle (Fig. 433(d)), in which stresses vary between zero and a certain 
maximum value; (3) constant stress (Fig. 433(c)); (4) alternating 
cycle (Fig. 433(b)), in which stresses change in magnitude and in 
sign (all the cycles enumerated above are known as asymmetrical 
cycles)', (5) symmetrical cycle (Fig. 433 (a)), an alternating cycle in which 
the upper and lower ‘limits of stress variation have the same abso-
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lute values. The curves which describe the variation of stresses in 
time may considerably differ in appearance; variation of stresses in 
machine parts often follows the sinusoidal law.

The maximum absolute stress in the cycle is denoted bv / w  (amax, 
W ) .  while the minimum is denoted by pmla (onlB, The ratio

*

Fig. 433

of minimum stress to maximum with the signs taken into account Is 
known as the cycle characteristic, or the coefficient of asymmetry of 
cycle, This coefficient varies between —1 and +1;
in Fig. 433 the coefficient of asymmetry is given for all the cycles. 
The half of the sum of maximum and minimum stresses of a cycle 
(taking their signs into consideration) is known as the constant compo
nent of cycle, or mean cycle stress:

The hall o! the difference of maximum and minimum stresses (also 
taking their signs into consideration) is known as the variable com
ponent of cycle, or the amplitude of stresses in the cycle:

n  _Pmax"-Pmii) __ * — r _
r a  j  r m t x (31.2)
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Thus, any cycle of stress variation may be obtained by superimposing 
a symmetrical stress cycle pmtx= —Pmi,,—pa on a constant stress 
P max =Pm l0 ~ P m *

§ 183. Strength Condition Under Variable Stresses
Experiments show that gradually developing cracks appear only 

under variable stresses, oscillating systematically between extreme 
values.

It is also known that a large number of elements of machines and 
structures exhibit good resistance to variable loads over a long du
ration, provided the stresses remain within certain limits. Hence, 
just the fact that the stresses are variable is not enough to cause a 
crack—for the crack to appear it is essential that the maximum value 
of the variable stresses should exceed a particular value, which is 
known as endurance strength, or endurance limit. Endurance limit 
pr represents the maximum value of a periodically changing stress 
which the material can withstand for a practically infinite period of 
time without fatigue cracks appearing in it.

The endurance limit for a variable stress cycle wilLbe denoted by 
pn or, or Tr with a subscript representing the cycle characteristic: 
P -1 is the endurance limit of an asymmetrical cycle of characteristic 
/*=—1; po.s is the endurance limit of an asymmetrical cycle of charac
teristic r = 0.2; etc.

Thus, the possibility of failure due to gradual development of a 
fatigue crack is subject to the following two conditions: (1) periodic 
oscillation of the variable stresses between two extreme values, and 
(2) the maximum value of the actual stresses in the element of 
structure exceeding the endurance limit of the material.

The strength condition in this case must-express the fact that the 
maximum actual stress must be less than the endurance limit pr 
and ensure a certain margin of safety:

where kr is the safety factor.
At present the endurance limit can be determined only experimen

tally. It depends mainly upon the (a) material (steel, iron, non-fer
rous metals); (b) nature of deformation (bending, torsion, etc.); and
(c) degree of asymmetry of the cycle, i.e. the interrelation between 
the extreme values of the variable stress.

A few additional factors affecting the endurance limit (corrosion, 
dimensions of elements) will be discussed separately (§§ 186 and 187).

As for the maximum dynamic stress pmtx, experiments show that 
contrary to failure under static loading the fatigue cracks in brittle 
as well as ductile prismatic bars appear not due to the maximum
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design stress, pnn  (for example, in bending oBlx® ^ ,  but due to
the local stresses (§ 15) which occur at places of deviation from the 
prismatic shape {cuts, scratches, holes, transition from a thin portion 
to a thick portion, etc.)

These local stresses pt are considerably greater than the maximum 
stress and may be expressed by the following formula:

here a e is the coefficient of stress concentration; its value depends 
upon the nature of deviation from the prismatic shape.

In the next sections we will explain how to determine the en
durance limit and the coefficient of stress concentration.

§ 184. Determination of Endurance Limit 
in a Symmetrical Cycle

Of maximum interest is the determination of the endurance limit 
In a symmetrical cycle (pm—0), because this value is minimum. The 
endurance limit also varies depending upon the type of deformation- 
bending, axial deformation (tension and compression) and torsion.

Endurance limit in bending is determined on machines in which 
a round specimen is loaded through ball bearings or as a cantilever 
with a force acting at one end or as a simply supported beam acted 
upon by two symmetrical equal forces; the specimen rotates at 2000- 
3000 rpm. During each rotation the maximum stressed portion of 
the specimen material undergoes a symmetrical change of stress from 
maximum compressive to an equal maximum tensile, and vice versa. 
The number of cycles of the specimen is determined by its rpm, which 
can be registered by a special counting device.* The contour oi the 
specimen must be smooth, ruling out any possibility of occurrence 
of local stresses. The experiment for determining the endurance 
limit is carried out as follows. A batch of specimens consisting of 
6-10 pieces is prepared from the material to be tested; the specimens 
are numbered /, 2, 3, . . . .

The first specimen is placed in the machine and loaded in such a 
way that a particular value of maximum normal stress o' is obtained; 
this value is generally taken 0.5-0.6 of the ultimate strength of the 
material. The machine is put into operation, and the specimen ro
tates experiencing variable stresses oscillating between + o ' and —o' 
until ultimate failure. At this moment a special device switches off 
the motor, the machine stops and the counting device indicates the 
number of cycles, Nu required to break the specimen at stress o'.

* For details see N. M. Belyaev, laboratory Experiments on Strength of Mate
rials, Gostekhizdat, 1956 (in Russian).
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The second specimen is similarly tested at a stress o ', less than o'; 
the third specimen is tested at stress o"<or*, and so on. The number 
of cycles required to break the specimen increases respectively. Thus, 
if we go on reducing the test stress for each successive specimen, 
we reach a stage when the specimen does not fail even after withstand
ing a very large number of cycles. The stress corresponding to this 
stage is very close to the actual endurance limit.

Experiments show that if a steel specimen does not fail after 10? 
cycles, it can practically withstand an infinite number of cycles 
(10*-2xl0*J. Therefore, while determining the endurance limit of a
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material, the experiment is stopped if the specimen does not fail 
after 10T cycles. In a number of cases the tests are stopped after a 
smaller number of cycles, but never before completing 5x10* cycles.

A similar dependence does not exist for non-ferrous metals, and to 
make sure that the specimen can really withstand a very Jaqre num
ber of cycles at the given stress the experiment is stopped only after 
subjecting the specimen to 2x 10“ and even 5x10s cycles. Therefore, 
in the case of non-ferrous metals the endurance limit can be speci
fied only for a particular number of cycles, say for 107 cycles, the ma
terial has one endurance limit and for 3 x l0 7 cycles a different en
durance limit.

The experimental results have to be processed graphically in order 
to determine the numerical value of endurance limit. Figures 434 
and 435 show two such methods. In the first method stresses cr\ cr\ 
. . .  are laid off the |/-axis, and Nu . . . are laid off the x-axis. 
The ordinate of the horizontal tangent (asymptote) to the curve gives 
the endurance limit o^ . In the second method, we lay off the quan
tity 10*/N along the x-axis. In this case the endurance limit is deter
mined as the segment cut off on the y-axis by the extended curve.
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because in this case the origin of coordinates corresponds to Af—oo. 
The second method is now more commonly used.

The endurance limit can be similarly determined under axial load
ing (tension and compression) and torsion; special testing machines 
(pulsators *) are used for this purpose.

An enormous amount of experimental data is now available on 
determination oi endurance limits of various materials. A greater 
part of the experimental studies pertain to steel, because steel is the 
most commonly used material in machine building. The results of 
these experiments show that for all grades of steel the endurance 
limit is related by a definite law to the ultimate tensile strength ou. 
For rolled and forged steels the bending endurance limit under a 
symmetrical cycle comprises (0.40-0.60)ou; lor cast steel the en
durance limit varies between (0.40-0.46)ou.

Thus, with sufficient practical accuracy, we may write the following 
relation for all grades of steel:

ot, «=0.4o„ =»fJro0

If the specimen is subjected to axial loading under a symmetrical 
cycle (variable tension and compression), then the corresponding 
endurance limit ol, is found to be less than the endurance limit under 
bending; the ratio between the two endurance limits may be taken 
equal to 0.7, i.e.

o t.^O T o t.

The reduction may be explained by the fact that In tension and 
compression all sections of the specimen experience equal stresses, 
and in bending maximum stresses occur only at the outer fibres (the 
remaining material remains underloaded and thus somewhat impedes 
the emergence of fatigue cracks); besides, there is always bound to be 
some eccentricity in the application of axial loads.

Finally, the torsional endurance limit under a symmetrical cycle 
comprises 0.55 of the bending endurance limit. Thus, under a sym
metrical cycle we get the following values for steel:

o t.-0 .4 0 o . )
oti =* 0.7ot. ■* 0.28ob I (313)
at, ™ 0 55at, = O.22o0 j

These relations can be employed for obtaining formulas for the strength 
check.

In the case of nonferrous metals we get a more flexible relation 
between endurance limit and ultimate strength; the empirical for-

• Ibid.
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mula is
ô ., =  (0 24-0.50) oK

While using expression (31.3), it should be borne in mind that the. 
endurance limit of a material depends upon a large number of factors 
(§ 187); the relations given in expression 131.3) were obtained on 
specimens of small diameter (7*10 mm) having a polished surface 
and no sharp changes of shape along the length.

§ 185. Endurance Limit in an Unsymmetrica! Cycle
The equipment required for determining endurance strength under 

an unsymmetrical cycle is much more complicated than the equip
ment used for symmetrical cycles.

A special spring capable of stretching and compressing the specimen 
should be added to the simple testing machine discussed earlier, in 
which the specimen only rotates. Quite often we have to employ 
even more complicated machines, which are capable of exerting 
axial load on the specimen (tension, compression) under different 
extreme values of the variable stresses.

However, we now have at our disposal sufficient experimental 
data to obtain a graphical or analytical relation between the en
durance limit and the cycle characteristic r, i.e. £ssla.

PjJlBX
Let us remind the reader about the notations used here: p„ repre

sents the ultimate strength of the material, p„ the yield stress, pr 
the endurance limit corresponding to a cycle of characterisi ic r, 
p_, the endurance limit in a symmetrical cycle, pmtx and pmiu the
upper and lower extreme values ol the cycle, pw— the

mean stress in the cycle, pg= Pm-̂ Pm)fl the amplitude of oscflla
tions of the cycle, 2pg the double amplitude of the cycle, and 
^PmiJPnax the characteristic of the cycle.

The values of pmax, pmln, pa and p m which correspond to working 
of the material at the endurance limit will be denoted by a subscript r.

Pr max* P/mim Prm' Pra
(the maximum absolute value of p ,max or p^,,, must coincide with p,>.

The results of experiments for determining endurance limit under 
different cycles are conveniently represented in the form of diagrams. 
The simplest among these diagrams is the diagram in the pm- and 
/^-coordinates (Hay’s diagram) shown in Fig 436. On this diagram 
the values of pm are laid off on the x-axis to a certain scale and the 
values of pa are laid off on the y»axis in the same scale. Curve ABCD 
has been plotted on the basis of experiments for determining the en
durance limit under different cycles of variable stresses. For deter-
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mining with the help of this diagram the endurance limit pr for a 
cycle having coefficient of asymmetry r we draw from the centre of 
coordinates 0 a straight line OS at an angle p, so that (see (31.1) 
and (31.3))

tan0 pu _  1—'  
Pm 1 + '

(31.4)

and extend it until it intersects curve ABCD at point C; from this 
point we then drop a normal CE on the abscissa. The sum of segments 
CE and EO, which are respectively equal to Pac and pmc* gives the 
endurance limit

PrC—Pmix^PaC + PmC (31.5)
Thus, point A having ordinate OA=pa—p^± and abscissa pm—0 

represents the endurance limit under a symmetrical cycle: r*=—I,

P=n/2, while point D having ordinate pa= 0 and abscissa OD=pm=  
=P*i=Pu represents the endurance limit under static loading (r—+1, 
p=0), which is equal to the ultimate strength of the material. If we 
draw a straight line OT at 45° inclination through the centre of coor

dinates, point B, where this line intersects curve ABCD, represents 
the endurance limit under fluctuating (zero base) load, because or
dinate BF=*paB of point B is equal to abscissa OF—pmB, i.e. from 
(31.1) and (31.2) I + r = l—r, and r= 0.
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Figure 437 depicts Hay’s diagram lor common low-carbon steel, 
and Fig. 438 shows the same diagram lor grey iron having the follow
ing properties: aue=78 kgl/nim*, ou(= 22 kgf/mm*, o_i=<7.3 kgf/mm*, 
and a0c=*46 kgf/mm* (oCfl is the endurance limit under fluctuating 
cycle in compression). This diagram proves that under variable loading 
too cast iron has a much higher strength in compression to that in 
tension.

The endurance limit should be looked upon as a critical stress 
similar to ultimate strength under static loading, because a stress 
slightly greater than the endur
ance strength can cause failure 
within a practically feasible num
ber of variations of the load.
Therefore, curve ABCD in Fig.
436 represents a curve of crit
ical (limiting) stresses for mate
rials that do not have a yield 
zone. If the material is ductile 
and the critical stress for it un
der static loading is yield stress 
py, then it can be easily estab
lished from Fig. 439 that line AGH 
should be taken as the line of criti
cal stresses. In the endurance lim
it diagram ABD (Figs. 436 and 439), If we cut segments OH and ON 
equal to yield stress pv on the x• and y-axis, respectively, and join 
points N and H by a straight line NH, then the sum of the abscissa 
and ordinate of any point on this line is always equal to pa (for in
stance, forpoint K, OLJt-LK=pm̂ paH  a OL+LH—p„, as LK—LH). 
Hence, straight line NH determines the critical limit of stresses under 
static loading, while curve ABD determines if under variable loading. 
In the region in which straight line NH lies above curve ABD (from 
the axis of ordinates to point G, the point of intersection of these 
lines) the critical limit of stresses is determined by curve i4G. But 
where line NH lies below curve ABD, the critical limit of stresses 
is determined by the straight line NH. In Figs. 436 and 439 the 
critical stress lines are hatched.

On account of the fad thal usually we determine experimentally 
pyt pu, and /?_i while the endurance limits for other values of r are 
generally not determined, straight lines AD (Fig. 436) or AH (Fig. 
439) have often to be accepted as the critical stress lines in the absence 
of experimental data. The critical stress curve is sometimes replaced 
by a straight line in order to simplify calculations; let us note that 
such an approximation adds to the existing safety factor.

A fairly large number of formulas were proposed for establishing 
the analytical relationship between endurance limit, ultimate strength
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and the cycle's characteristic. Those deserving attention are:

Pr=“ >“ '+ < !+')4. Pa (31.6)

pr (l+Oa9, Pa (31.7)

(31.8)

where q\=p,^lpu. Coefficients «i and n% in the last formula have differ
ent numerical values depending upon the material. For low-carbon 
steel tti=0 and n*=l, and a parabolic relationship exists between 
pra and p,m. On the other hand, for steels with high ultimate strength 
r ti^ l, rti=0, and expression (31.8) is represented by a straight line.

As already mentioned, endurance limit pr depends not only upon 
the material, nature of deformation and type of cycle, but also upon 
the shape of part and the condition of its surface, upon its dimensions, 
and so on. From among the factors listed the endurance limit pr is 
affected most by the shape of part and the condition of its surface. 
As these factors are equally important in static loading also, they 
deserve a detailed discussion.

§ 186. Local Stresses
Uniform distribution of stresses over the section of the part under 

tension or compression and linear variation of normal stresses over 
the section of a beam subjected to bending or shearing stresses along 
the radius of section of a shaft subjected to torsion are valid only 
for uniform prismatic rods which are free of internal or external flaws 
and damages and only in sections that are sufficiently far away from 
the point of application of load. The distribution of stresses is violat
ed at the point of application of load and also where the part has 
holes, recesses, transitions from one dimension and shape to another, 
internal and external flaws and damages, non-uniform structure of 
material, etc.

For instance, in a plate (Fig. 440(a)) stretched by forces P acting 
along its axis the normal stresses in section mn located sufficiently 
far from the point of application of force are distributed uniformly. 
In section mi«i, where there is a small circular hole in the plate, the 
distribution of stresses will be different. Near the edge of the hole the 
stress will be considerably (about three times if the hole is small) 
higher than in section mn. However, the high stresses act only on a 
small area of section mmi near the hole; in the remaining area of the 
section the stresses are approximately the same as in section mn. 
These high stresses are known as local stresses pt (a, or t{); the sources
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of local stresses (holes, recesses, damages, etc.) are called factors 
(sources) of stress concentration. The ratio between the maximum 
local stress p/mM to the nominal stress pnom, i.e. to the stress at the 
same point in the absence of stress concentration source, is known as 
the coefficient of stress concentration, a c:

q  a  max 
c Pnom

(31.9)

Even in a uni-axially loaded element the local stresses create a 
three-dimensional stressed state. In Fig. 440 it is shown that besides 
stresses in sections perpendicular to the bar axis additional normal 
stresses of smaller magnitude appear around the hole in a plane nor
mal to the first (o*).

The coefficient of stress concentration depends chiefly upon how 
fast the prismatic shape changes. If the transition frun a large di
ameter to a smaller diameter takes place sharply, at right angles, the

Fig. 440

maximum value of a e is obtained. If the transition is smoothened 
by making a fillet of certain radius, the value of a e becomes smaller 
and may even become equal to unity (Fig. 441 (a) and (b)).

Figure 440 depicts a few examples of stress concentration due to 
holes and recesses in parts subjected to tension or bending.
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The following methods are employed for determining the coefficient 
of stress concentration. In a number of cases (for example, in tension 
and bending of bars with holes and necks) it is possible to determine 
the local stresses by the theory of elasticity. Another popular method 
is the experimental determination of local stresses in a planar stressed 
transparent model (madeof glass, celluloid or bakelite) under polar*

ized light; from the colour of
various portions oi the model we 
can find the difference between 
principal stresses at various 
points and then through some 
additional measurements and 
computations determine the prin
cipal stresses.

The experimental methods in
clude determining local stresses 
with the help of lacquer coatings 
or meshes * (quadratic or circu
lar of small diameter), which 
are applied to the surface of the 
specimen, and studying brittle 
(gypsum) models.

If we tesl the strength ol a 
material (Fig. 441 (a) and (b)) on 
two specimens, one with local 
stresses and the other without, we 

find that au of the first sped men is less than ou of the second specimen 
(of course, using the same modulus of section of diameter d); the ratio 
of these two values of ultimate strengths gives us the required coeffi
cient of stress concentration, <xc.

However, a more reliable method of obtainirg a r is by determining 
the endurance limit of two specimens, one with local stresses and the 
other without. The first specimen gives a lower (on account of local 
stresses) endurance limit o', as compared to the second a’r% the ratio

determines coefficient a c. It was noticed that the value of the
stress concentration coefficient differs with the method employed, 
although the factor causing local stresses was the same in each case.

The first two methods—one based on the theory of elasticity and 
the other on optical study—give almost equal values of a c. This is 
obvious, because in both cases the results pertain to isotropic elastic 
materials. Also, the values of a c determined from endurance tests 
are found to be quite close to the values obtained by the first two

• See. for example, G. A. Smirnov-Alyaev, Strength of Materials Under Plastic 
Deformation, Mashgiz, 1961 (in Russian).
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methods for some materials (chrome-nickel, high strength carbon 
steel) and considerably less for other materials (tnild steel). It was 
found that the coefficient of stress concentration depends not only 
upon the shape of the specimen, but also upon its material. The great
er the ductility of materia), the lower is ils coefficient of stress con
centration. The reasons for this have already been explained in § 16; 
the plasticity of a material creates a sort of buffer, which to a certain 
extent mitigates the effect of local stresses.

Thus, we have two coefficients of stress concentration: first, the 
theoretical one, ac t, takes into account only the shape of the spec
imen and is mainly determined by any of the first two methods; 
the second, the actual one, a c-0 is determined by the test on endur
ance and takes into account not only the shape but also the material 
of the specimen.

As this consideration affects only the amount by which the local 
stresses exceed the general, i.e. the quantities (ac ,—1) and (ae a—1), 
the sensitivity of a material ‘to local stresses may be determined by 
the ratio of the two, known as the sensitivity factor of the material:

i
9 “ a  c . t— 1

(31.10)

This factor depends upon the material; it may be equal to unity in 
high grade, heat-treated alloyed steels and may be as low as 0.5 in 
case of mild steels. It is found that iron is the least sensitive to local 
stresses; in the case of iron q is close to zero and the actual stress con
centration factor, a c.0, is almost equal to unity. This can be explained 
by the fact that the ultimate strength of iron is strongly affected by 
microscopic graphite inclusions, which are .actually nothing but 
sharp cracks in the base metal. The effect of these cracks, which are a 
regular feature of iron, is so strong that it almost completely makes 
iron immune to the effect of other stress concentration factors.

The sensitivity factor, however, depends not only upon the mate
rial but also upon the shape and size of the part, and q increases with 
the increase in dimensions of the :body.

Sensitivity factor q for steel may be determined approximately 
(without accounting for the absolute dimensions of the body) with 
the help of the curves in Fig. 442, depending upon the ultimate strength 
of the material (between 40 and 130kgf/mm9) and the theoretical 
stress concentration coefficient a c. t (Figs. 443 and 444). This diagram 
was obtained from experimental data on endurance testing of small 
(diameter of 7-10 mm) specimens of various grades of steel for differ
ent values of the theoretical stress concentration coefficient. It is 
evident from the diagram that ’the sensitivity factor increases with 
ultimate strength and theoretical stress concentration coefficient. 
The increase of ae.t beyond 1.8 ceases to have any effect on the sen
sitivity factor. For a highly alloyed steel having high ultimate strength
20 —3310
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(130 kgf/mm*), coefficient q may be considered equal to unity, and
®c.a!P®c. /•

Aftteh less data on the sensitivity factor for nonferrous metals are 
available. For cast Electron (an alloy of magnesium with aluminium,

W 60 80 100 1W

Fig. 442

zinc and manganese) this coefficient is 0.15; in rare cases it may go 
up to 0.25. The sensitivity factor is higher for rolled and stamped 
Electron and varies between 0.35 and 0.50. In case of aluminium 
alloys the values of this coefficient are still lower.

The curves in Figs. 443 and 444 showing the variation of ae,t as a 
tunction of may be used for determining the theoretical stress 
concentration coefficient in more common situations of stress con-



Ch. 31) Strength Check for Variable Loading 587

centration (holes, necks, fillets) depending upon the sharpness of 
change in shape of the part under tension or compression (Fi^*443) 
and pure bending (Fig. 444). The coefficients were determined for 
rectangular specimens by the optical method. In round specimens 
with necks and fillets the corresponding values of a r>( are found 
to be somewhat less. Some values of aCnl for round specimens are 
given in Table 22.

Table 22

Coefficient of Stress Concentration

Type of deform ation and source of stress concentration  a ?

I. Bending and tension
1. Semicircular neck on shaft, ratio of radius of neck to dia- 

meter of shaft
0.1 2.0
0.5 1.6
1.0  1.2
2.0 1.1

2. Fillet, ratio of radius to height of section (diameter of 
shaft)

0.0625 1.75
0.125 1.50
0.25 1.20
0.5 1 .10

3. Transition at right angle 2.0
4. Sharp V-shape neck 3.0
5. Whitworth tnread 2.0
6 . Metric thread 2.5
7. Hole, the ratio of hole diameter to cross-sectional dimen*

sions varies from 0.1 to 0.33 2.0
8 . Scratches on surface due to cutting tool 1.2-1.4

II. Torsion
1. Fillet, the ratio of fillet radius to the minimum shaft 

diameter
0.02 1.8
0.10 1.2
0.20  1.1

2. Keyways 1.6-2.0

It should be emphasized that the curves in Figs. 443 and 444 and 
Table 22 help determine the theoretical, i.e. the maximum possible, 
values of the concentration coefficient. Knowing the theoretical stress 
concentration coefficient, ae.t, the actual stress concentration coef
ficient, a e.a, can be computed by the following formula:

«*.«. =  l + t f K . t — 1)
20*

(31.11)
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which ensues from expression (31.10). However, if the sensitivity 
factor q is determined approximately from the curves in Fig. 442, 
then the actual stress concentration coefficient, can also be 
determined only approximately. It is therefore desirable to determine 
a c a directly by conducting endurance tests on specimens of required 
shape. The stress concentration coefficients, a c.< and a r,fl, for a wide 
range of sources of stress concentration are given in handbooks, and 
the methods of their determination are a subject of study in special 
courses.*

Quite a few simple approximate empirical formulas were proposed 
for determining the actual stress concentration coefficient of steel 
versus its ultimate strength. When the part does not have sharp 
angles, necks, or keyways and has a good finished (but not polished) 
surface,

These formulas are valid for steel with ultimate strength between 
40 and 130 kgf/mm3 and are sufficiently accurate for practical appli* 
cation; ow is expressed in kgf/mm4.

While talking of local stresses, it is necessary to emphasize the 
effect of surface damages on the endurance limit. Experiments show 
that the endurance limit of forged parts which do not undergo subse
quent heat treatment is less than that of parts of the same materials 
in which the outer layer is machined and polished; in mild steels the 
difference may be 15-20%, and in high grade steels it may be as high 
as 50%.

A similar phenomenon is observed in springs made from high grade 
alloy steels if the spring wire is not machined after heat treatment 
(hardening and annealing). Such a surface can sometimes reduce the 
endurance limit two-fold. Even notches and scratches reduce the en
durance limit by 10-20%.

A very important cause of considerable stress concentration is the 
interference fit between two parts, for example, the fit between disc 
or pulley hub and shaft or axle. Numerous experiments reveal that in 
interference fits the actual stress concentration coefficient may reach 
1.8-2. It may be reduced by proper designing of the two parts (§ 191).

Poor surface finish can be the source of considerable stress concen
tration in machine parts made of high strength steels. For example.

* Sec, for example. S .V . Serensen, l.M . Telelbaum. and N. I. Prigorovskii, 
Dynamic Strength in Median tea t Engineering, Mashinostroenie, 1975 (in l(ussian).

(31.12)

and when the part has sharp angles, necks, or scratches,

(31.13)
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for steels having ultimate strength between 50 and 140 kgf/mm* 
milling (denoted by V )  without subsequent grinding and polishing 
creates a stress concentration equivalent to a r=  1.25*2 (here and 
farther on the lower value refers to steel having ou=50 kgf/mm* 
while the greater value refers to steel having crtt= l40  kgf/cm1. Rough 
grinding (denoted by W )  reduces the stress concentration coefficient 
to 1.1*1.45; fine grinding and rough polishing (denoted by V V V )  
correspond to a c=1.05*1.15, and only after fine polishing (denoted 
by V V V V ) &r— I. Nonferrous metals and alloys are somewhat 
less sensitive to the effect of surface finish on stress concentration.

The combined effect of local stresses and chemical reactions can 
result in a sharp reduction in the endurance limit of elements sub
jected to corrosion. Experiments reveal that the endurance limit 
registers a sharp reduction if the tests are conducted in water or some 
other fluid which can cause corrosion. However, this effect is less 
pronounced in case of stainless steel parts.

Finally, the microstmclure of steel is another factor affecting the 
local stresses and consequently the endurance limit. The metal is a 
conglomerate of crystal grains of various sizes and arbitrary orien
tation; therefore the actual stress distribution is to some extent non- 
uniform even under simple tension. The degree of non-uniformity of 
stress distribution increases with the non-uniformity of grain size. 
Therefore, a fine grained homogeneous structure obtained by proper 
heat treatment helps to increase the endurance limit of the material.

In conclusion, it must be emphasized once again that the higher 
the strength of a steel the greater is its sensitivity to ail types of cuts 
and surface damages and the higher is the quality of machining which 
it requires.

The expressions of endurance limit and coefficient of stress concen
tration derived in this section will be used in subsequent sections 
for laying down rules to be followed in selecting permissible stresses.

§ 187. Effect of Size of Part and Other Factors 
on Endurance Limit

The values of endurance limit in the preceding section were all 
obtained for small specimens of a diameter between 7 and 12 mm. 
In recent experiments endurance limits have been determined on 
larger specimens having diameter between 40 and 50 mm. There are 
fatigue testing machines which are capable of testing wagon axles 
of diameter 150 mm or even 300 mm.

The experiments reveal that, firstly, there is a large spread in data 
if a big specimen of this size is used for determining the endurance 
limit by the method given in Fig. 435. Secondly, the endurance 
limit, though not accurately known on account of the large spread,
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is found to be less and sometimes much less than the endurance limit 
determined on small specimens. This decrease in endurance limit is 
more pronounced in alloyed steels; the effect of absolute dimensions 
on endurance limit is less in case of carbon steels.

The experimentally established fact that the endurance limit of 
parts is less than the endurance limit of small specimens tested in 
the laboratory is of utmost importance, particularly so, because this 
factor is not accounted for while determining the strength factor.

Unfortunately, the reduction has until now eluded a sound scicn* 
title explanation; obviously, it is due to a number of factors, which 
include the following:

(a) There is a greater possibility of the presence of internal sources 
of stress concentration in large specimens (inclusions, bubbles, etc.); 
the smaller specimens are more clear in this respect.

(b) In the process of manufacturing, the surfaces of specimens get 
work hardened, and work hardening is more pronounced in specimens 
of small size; it has been established experimentally that work 
hardening results in an increase in endurance limit.

(c) Finally, for the same value of maximum stress (in outer fibres), 
the decrease of stress as we move towards the interior of the body is 
more intense in case of small specimens than in large specimens, 
and their crystal grains work under less severe conditions.

All these ideas are, however, only assumptions. Experiments on 
determination of actual stress concentration coefficient with speci
mens of various sizes show that increasing the specimen size is to a 
certain extent equivalent to increasing the sensitivity factor of its 
material. These facts are of practical importance, because they show 
that sources of stress concentration causing local stresses are actually 
more dangerous than laboratory experiments on small specimens 
make them to be.

Hence, while checking the strength of a material, the effect of ab
solute dimensions on endurance limit must always be taken into ac
count. Such a consideration can be avoided only if we determine the 
endurance limit on specimens of natural size. This, however, is not 
always possible. Moreover, sufficient experimental data is now avail
able on comparative fatigue tests conducted on small (diameter 7- 
10 mm) and large specimens of the same material. Making use of this 
data and assessing the reduction in endurance limit due to increase 
of absolute size by the scale factor, oc5, which represents the ratio of 
endurance limit pr of a small specimen to pf of a larger specimen or 
the element itself, \ye can approximately calculate the endurance 
limit of the element if the endurance limit of the smaller specimen is 
known. Since a.t=prlp,rt

(31.14)
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The scale factor a , can be determined as a function of absolute 
dimensions of the specimen or element by the curves shown in Fig. 445. 
The reduction of the endurance limit of the element is expressed 
through the endurance limit of a lQ-mm diam. specimen obtained 
by fatigue testing. The value of a„ depends not only upon the abso
lute dimensions of the element, but also upon its material and the 
sources of stress concentration. In Fig. 445 curve / is used for deter

mining the scale factor for carbon steel elements in absence of stress 
concentration, curve 2  is used for carbon steel elements with mild 
stress concentration (ac.«<2) and alloy steel elements with no stress 
concentration, curve 3 is used for alloy steel elements with stress 
concentration. The curves in Fig. 445 can be used for smooth speci
mens only in bending and torsion, but can be used for specimens 
with stress concentration in all states of stress.

The production processes employed in manufacturing of parts (heat 
treatment and chemical heat treatment, metal cutting, roiling, drop 
forging, press fits, welding of joints, etc.) also create factors that 
influence the strength of materials to variable loading.

Some of these processes can lead to a reduction of the endurance 
strength; on the other hand, there are methods of surface treatment 
which improve the endurance strength of material. These methods 
are: (a) work hardening of the surface layer of finished part by bur
nishing with rolls or by shot preening; (b) chemical heat treatment 
of the surface: nitriding, case-hardening, cyaniding; (c) hardening 
of the surface layer by high frequency current (induction hardening) 
or by gas flame. The strengthening effect of these processes lies in the 
fact that residual compressive stresses are set up in the surface layer: 
when the latter add up with the alternating stresses due to external
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load, we get asymmetrical sitress cycles with a compressive mean 
stress pm, which 4s less dangerous (for the part.

The effect of production process -and surface treatment may be 
taken into acoount >(!1>) while determining 'the endurance limit on 
small laboratory specimens which are subjected to identical treat ment 
before they are used for fatigue tests, .(2) (by correspondingly changing 
the stress concentration coefficient or by introducing a  special coeffi
cient for production processt Kp, which may have a value greater than 
unity (when the resistance of the part to variable loading decreases) 
as well as less than unity.

In a number of cases the conditions in which the part functions 
also considerably affect the (endurance limit of the material. The most 
important are the effect of corrosion and temperature, as well as 
breaks, underloading and overloading of the part during its working.

If the part works in conditions that are conducive to corrosion (for 
example, if the part is under water), its resistance to variable loading 
decreases and the fatigue curve plotted in p-N coordinates does 
not have a portion which asymptotically approaches the horizontal, 
in such a case the part oan have -only a limited endurance strength 
corresponding to a definite number of cycles. The harmful influence 
of corrosion may be reduced by work hardening, nitriding, oxidation, 
chromium plating and some other methods of surface treatment. 
At the design stage the effect of corrosion may be taken into account 
by a corresponding increase in the coefficient of stress concentration.

The change in endurance limit of material must also be taken into 
consideration when the part functions in conditions with high or 
low temperatures. The endurance limit of metals (steel, cast iron, 
nonferrous metals) slightly improves at low temperatures, and this 
is true for smooth specimens as well as specimens having'stress con
centration. The same metals suffer a drop in endurance limit, at 'first 
gradually and then faster as the temperature is increased. If the 
part functions temporarily in conditions with tow or Ji’igh tempera
tures, this can be taken into account by introducing a special coeffi
cient.

Parts of machines and structures are quite often subjected to short
term underloading and overloading. -Breaks'in operation, underloading 
and overloading for a relatively short period of lime generally have 
a positive effect on the endurance limit of part material, i.e. they 
increase the endurance limit; overloading (stretching over a long 
period of ’time) reduces the endurance strength. Safe overloading 
value for a certain period of time or safe duration of overloading 
for a given load are found by plotting special curves known as damage 
susceptibility curves, hut we shall not elaborate on this here. We also 
note the positive influence of the so-called “(raining”: the part is 
made to work during a certain number of cycles under stresses that 
are just a little below the endurance strength.
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While designing a part the effect of its operating conditions may be taken into account by a special coefficient K„ c, which as coefficient K,, may be greater or less than unity.The effect of the frequency of a variable stress cycle on the endurance limit is usually considered when the endurance limit is being determined. The existing fatigue testing machines give, as a rule, about 3000 stress cycles per minute. Experimental studies show that variation of the number of cycles between 500 and 10 000 does not have any appreciable effect on endurance strength. Therefore, while designing parts subjected to variable loading the special dynamic stress coefficient KD should be used only when the cycle frequency is less than 500 or greater than 10 000 and also when the variable load is simultaneously an impact load.
§ 188. Practical Examples of Failure Under Variable Loading. 

Causes of Emergence and Development of Fatigue Cracks
Having established all aspects of failure under variable loading, let us study a few practical cases of such failures.Figures 446 and 447 show the broken axle of a wagon (bending accompanied by torsion), in which failure occurred due to sham change

Fig. 446 l-'ig. 447

from a thick portion to a thin portion: instead of a smooth fillet the transition was sharp, with rough notches on the surface left by the cutting tool. The fatigue crack appeared at the outer surface and developed along a ring shaped path. The material of the axle was satisfactory; this is borne out by the extremely small area of momentary rupture.Figure 448 shows the fracture of a non-rotating axle which bends in the vertical plane. The material is shaft steel with an approximate
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ultimate strength of 50kgf/mma. The crack appeared and developed due to sharp transition (at right angles) from a square shape to a circular shape.
Figure 449 shows the longitudinal section of the other end of the same shaft, which has yet not ruptured; fatigue cracks developing

Fig. 448 Fig. 449

from the outer fibres towards the interior are clearly visible in the region of sharp transition.
The zone of fatigue cracks and the zone of ultimate failure are both clearly visible in Fig. 448. Pay attention to the series of curved strips and lines on the surface of the fatigue cracks. These are the

Fig. 450 Fig. 451

traces of gradual development cf the cracks; the failure occurs approximately along the normal to these lines. Hence, by studying these lines, we can always point out the origin of the crack; as a rule, this is the point where the source of stress concentration is most effective,
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resulting in the fatigue crack. The development of the crack can be explained by the fact that high local stresses appear at its base, thus helping the crack propagate towards the interior of the material.

Fig. 4.53

It is interesting to note that fatigue cracks did not appear in the axles, the fracture of one of which is shown in Fig. 448, which were made from steel of lower strength (<ju«40 kgf mm-) although the same shape was retained. This can be explained by the fact that the r steels have different sensitivity to; local stresses. ,Figure 450 shows the fatigue! crack appearing in the oil hole of a crankshaft working under variable (in opposite directions) torsion. ,The cracks make an angle of 45° % with the shaft axis and are perpendicular to the principal stresses.Figure 451 shows the beginning of a fatigue crack on a car axle at the location of a very small (0.5-mm high) but very sharp recess. We find that the fatigue crack' starts developing simultaneously at a number of points, which may not necessarily be all in the same plane. Later all these cracks merge into a single crack.Figures 452 and 453 show two steam engine axles out of which the one with smooth transitions worked satisfactorily for 40 years, whereas the other with sharp change served only for one year. The material of the second axle was better than that of the first.Finally, Fig. 454 shows a fatigue crack which began due to internal sources of stress concentration. A bubble or a hollow inclusion in the rail head became the centre of local stresses. This resulted in gradual

Fig. 454
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development of the fatigue crack, weakening the section and leading 
to ultimate failure. In the section of failure the fracture looks like 
a silver spot.

The above examples are enough to show the salient features of 
fatigue failures.

Experience shows that the principal factor causing fatigue failure 
is not the poor quality of material (usually it was found to satisfy 
the required standard), but improper machining, which gives rise 
to considerable local stresses. Only rarely does it happen that poor 
quality of the material gives rise to a fatigue crack, which would 
not have occurred had the material been of standard quality. We can 
cite an example when failure occurred due to a point-size sharp mark 
on the axle’s surface.

Before concluding this section it is necessary to explain the phys
ical process by which the fatigue crack appears and develops.

Displacement of crystal grains, as in static tensile loading, begins 
under the action of high local stresses which are caused by one or the 
other source of stress concentration and are usually much greater than 
the yield stress. The only difference is that in tension the plastic de
formation and displacement of crystal grains are caused by the same 
stress. Therefore, they affect the whole volume of the specimen and 
develop in a particular direction; under variable loading these de
formations are concentrated in a small volume subjected to local 
stresses and reverse their direction at definite intervals. They, there
fore, do not have any appreciable effect on the strength of the spec
imen as a whole, but the small portion experiencing local stresses 
gradually passes through all stages of plastic deformation: which the 
material of a simple pensile lest specimen has to bear on the whole.

At each cyclic change of loading, the permanently deformed por
tion of material which falls in the zone of high local stresses gets dis
placed in one and then the reverse direction; each displacement occurs 
in a plane different from that of the preceding one, because these 
displacements are accompanied by cold hardening of the material. 
With the increase in cold hardening the rigidity of the permanently 
deformed portion lends to the rigidity of the surrounding elastic mate
rial, taking a greater fraction of the load upon itself. This leads to a 
growth or actual maximum stresses in the small volume under consid
eration although the mean stress (measured) in the remaining por
tion remains constant. This reduces the load on the elastic zone, 
resulting in less strain over the whole zone including the permanently 
deformed portion within the elastic zone.

Hence, under variable loading there is a gradual increase of actual 
maximum stresses in the overstressed portion and a corresponding 
gradual decrease in its deformation. A fatigue crack does not appear 
if the attenuation of deformation ceases before the factual stresses 
reach the breaking point; the element works under stresses less than
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the endurance limit. On the other hand, if the stresses reach the break
ing point, a crack appears. The process is repeated at the bottom of 
the crack and results in gradual development of the crack; the element 
works under stresses which exceed the endurance limit.

In general the physical process of failure under variable loading 
does not differ much from failure under simple tensile loading. This 
conclusion is supported by the latest experimental studies of failure 
in both cases with the help of X rays.*

§ 189. Selection of Permissible Stresses
With the help of diagrams shown in Figs. 436 and 439 we can de

termine the critical stress for any type of cycle. Let us now study the 
order in which the permissible stresses are established. For the sake 
of simplicity of analysis we shall 
consider AD (Fig. 436) the critical 
stress line for brittle materials and 
AH  (Fig. 439) for ductile mate
rials. In order to obtain the per
missible stress the abscissa and ordi
nate of every point on both lines 
will be reduced in accordance with 
the accepted values of the safety 
factors; the latter will have differ
ent values for the constant and 
variable components of the stress 
cycle.

Mean stress pm may be looked 
upon as a certain constant static 
stress. It is known that under sta
tic loading the critical stress for
brittle materials is the ultimate strength, whereas for ductile mate
rials it is the yield stress. Factors like the manufacturing process 
and operating conditions, dimensions of the part and its surface 
finish, etc., have much less an effect upon the ultimate strength and 
yield stress as compared to the endurance limit. The effect of these 
factors can be taken into account by slightly changing the main safe
ty factor, k0t which usually accounts for errors in determining the 
properties of material, magnitude and location of applied load, er
rors of design, and other factors. No special provision need be made 
for stress concentration in case of ductile materials that have a suf-

Fig. 455

* See, for example, I. A. Oding and V. S. Ivanova, Mechanism of Fatigue Fail
ure of Metals, Mashgiz, 1962 (in Russian); Q. V. Uzhik (Editor), Fatigue and En
durance of Metals, IL, 1963 (in Russian); S. V. Serensen (Editor), Problems of 
Mechanical Fatigue, Moshinostroenie. 1964 (In Russian); P. G. Forrest, Fatigueof 
Metals, Pergamon Press, Oxford, 1962.



598 Dynamic Action of Forces [Part IX

ficiently large yield zone. Hence, for ductile materials the permis
sible stress under static loading may be found as (Fig. 455)

[P+‘] =  S”  (31.15)

whereas for brittle materials (Fig. 455)

( 3 U 6 )

where ae a is the actual stress concentration coefficient, k0l is the 
main safety factor for yield stress, and is the main safety factor 
for ultimate strength.

Under a symmetrical cycle of loading the critical stress is the en
durance limit, which as a rule is less than the yield stress of material. 
For a symmetrical cycle the permissible stress 1 p . J  is found by 
dividing the endurance limit p_i by the strength coefficient, kn 
which besides the main safety factor k0  includes the coefficient of 
actual stress concentration a c-a, the scale coefficient a , and, if nec
essary, coefficients Kp and /(„ „ (coefficients of production process 
and operating conditions). If the variation of loads is not smooth 
but is accompanied by sharp impacts, then we must also use a dyna
mic coefficient Kd, which lies between one and two. Hence for brittle 
as well as ductile materials,

or

P̂- ^  = k ^ J sKpK0 .,Kd (3Ll8)

The stress diagram plotted in pa-pm coordinates (Fig. 455) shows 
the critical stress line AD (AH) and safe (permissible) line A\DX\ 
the last has been plotted for values Ip+il=ODt and Ip_iJ=Oi4j de
termined from formulas (31.15) and (31.17). For finding the permis
sible stress fprl for an arbitrary variable cycle having the coefficient 
of asymmetry equal to r, we must draw through the origin of coor
dinates 0  a straight line OM making an angle 0 [tan
with the abscissa until it intersects line AiDx(AxHt). The sum of the 
abscissa pm(M) and ordinate pa(M) of point M represents the per
missible stress lprl:

[Pr]=Pm»*(M)=pm(M )+pa(M) (31.19)
It follows from similar triangles OAtDx and NMDX that

O D t  O A tax t .
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or
[p+il fP -il 

lP + i| — p m ( M )  P * ( M )

wherefrom
Pa (M) [ p « l  +  Pm W  l> - i ]  =  IP +J  [p-i] (31.20)

Since
Pa (Af) =  —2~ Pniax (A f)585 2 f

and

it ensues from (31.20) that *

r_ t 2 [P+il fp - i l
IPrl O +  r J J p - i H - t l— r ) lp + l| (31.21)

The strength condition may be written as

Pmax ^  [P rl (31.22)

This general method of determining permissible stresses may be
elaborated as follows:

Given (a) type of deformation, (b) ratio of pma)l to pmU, (c) shape 
of the part; (d) mechanical properties of the material (cru). Find the 
permissible stress \p r\.

Solution:
(1) Calculate

Pmax-H Pmln * _  Pnm’-’Pmln
Pm'**-----2 -----  3  T

(2) Find
f —£aLn. 

Proax

(3) Determine the endurance limit under a symmetrical cycle for 
the given type of deformation:

P- 1 =  f

(4) From the curves in Figs. 443 and 444 determine aCtQ, depending 
upon the configuration of the part.

(5) Find q from the curve in Fig. 442.
(6) Calculate the actual coefficient of stress concentration
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The actual stress concentration coefficient may also be calculated 
from the following formulas (§ 186);

ac.a 1.2 +  0 .2 S c r !2 or a c.a 1.5+1.5 <ru—40
no*

if the technology of machining the part is known.
(7) Determine scale factor a 5 from the curve in Fig. 445, depending 

upon the size of the part.
(8) Determine permissible stress in a symmetrical cycle:

(9) Find the yield stress n„=prcru.
(10) Determine the permissible stress under static loading

(11) Determine the required permissible stress
r n  1  2  [ / ? . n . 1  ( P - i l

( i - r ) ^ + 1 ] + ( I  +  r ) | p - , ]

This method of determining permissible stresses is not very accu
rate on account of the modifications introduced in the diagrams and 
also due to an insufficiently accurate accounting, for the stress con
centration factors. If desired, more accurate breaking stress diagrams 
may be used in which the dotted lines shown in Figs. 436 and 439 
are not drawn. The accurate method of analysis may give much higher 
values of permissible stress for cycles having characteristics approxi
mately equal to zero if the endurance limit is close to the yield stress; 
in all other situations the results obtained from the approximate and 
accurate diagrams are not much different.

§ 190. Strength Check Under Variable Stresses 
and Compound Stressed State

The above methods for checking the strength of materials under 
variable stresses were discussed in connection with the simplest types 
of deformation: tension, compression, torsion and bending. The 
question that now arises is: How to apply these methods in case of 
compound stressed state?

From a practical point of view the most important situation is 
that of combined bending and torsion. As explained earlier in § 125, 
strength check has to be carried out for an element of the material in 
a bi-axial stressed state; four of its faces are acted upon by shearing
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stresses and two by normal stresses , where W = ^-  is
the section modulus of the round shaft.

For a strength check, under static loading we employed the following 
two conditions: condition (A) when- the theory of maximum shearing 
stresses was applied, and (B) when the theory of distortion energy 
was applied:

(A) V a* +  4t* <  [a] and (B) f o 1 +  3t* <  [o]

Both formulas may be written in a general form by dividing: them 
by lot:

<A) )// FF+^Zy<l and { B i y  i^ +7 s y <1

or in the general form

where It| « ^  when the theory of maximum shearing stresses is £
applied, and -c=-j~j= when the distortion energy theory is applied.

Thus, the strength check by both theories may be represented by a 
common equation

W + W < X (31-23)

Since the fatigue crack is caused by the same physical processes 
of deformation of the material which result in failure under static 
loading, equation (31.23) may also be employed for checking the 
strength of materials under variable loading. Stresses o and r  may 
be broken into the components <rm, crtt and r m, ra:

o = om-h<Ja, r — r^+ Ta,

Here (al and fxl represent the permissible stresses under bending 
and torsion, lo# and hjl, respectively, obtained from the simplified 
Ip J-lp J  diagram (Fig. 456) by taking into consideration the 
stress concentration coefficient of the particular type of deformation
and the cycle characteristic, ~2̂ L or 7 ^ .

Y 0'mffx ‘max
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§ 191. Practical Measures for Preventing 
Fatigue Failure

The results derived in the preceding sections enable us to find 
means, which ensure sufficient strength of machine parts and struc
tures under variable stresses.

These measures may be divided into two categories. On one hand, 
we must be able to manufacture elements of machines and structures 
from materials which have the greatest resistance to variable stresses. 
We have seen that in this respect the requirements of the material 
lead to the following two points: first, it is desirable to use a metal 
which has a high ultimate strength and sufficient ductility, because 
this is compatible with high endurance limit; second, the metal must 
be free of all internal factors of stress concentration (this requirement 
can be fulfilled by a material of uniform fine-grained structure with
out any residual stresses (e.g. after quenching) or disruption of uni
formity in the form of cracks, gas bubbles, non-metal!ic inclusions, 
etc.).

These requirements explain why important parts subjected to 
variable loading are so often manufactured from alloyed steels (chrome- 
nickel, chrome-vanadium) having high ultimate strength and 
fine-grained structure free of internal stresses, which is imparted by 
proper heat treatment (hardening with subsequent annealing).

However, such steels are sometimes found to have microscopic 
cracks (especially in chrome-nickel steels), which are known as flakes. 
These flakes, just like inclusions, may sharply reduce the endurance 
limit of steel in spite of its having high ultimate strength.

The second category of measures ensuring sufficient strength under 
variable loading consists in careful design of the outer profile and 
proper finishing of the external surface of the element. The chief 
aim of the designer and technologist should be to reduce as far as 
possible the coefficient of stress concentration caused by sharp chan
ges of the profile and defective machining. Reduction of local stresses 
can be achieved chiefly through smooth transitions of profiles, grooves, 
cuts and fillets. It is inadmissible to provide unsmoothed transitions, 
although the radius of the fillet curve may be very small. Whenever 
possible the radius should be large enough to affect noticeably the 
reduction in local stresses. The proper radii may be selected with 
the help of Figs. 443 and 444. It should be noted that sometimes just 
a small increase of the radius can rid the element from danger of fail
ure.

We know of the failure of a large number of crankshafts of aircraft 
engines in the Royal Air Force. These failures occurred at the fillet 
near the mounting seat of the propeller; the failures stopped when the 
fillet radius was increased by just 1/8 in-«3 mm.

This can be explained as follows. At stresses close to the endurance
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limit the curve depicting the relation between breaking stress and 
number of cycles Is almost horizontal (Fig. 434). Therefore, if the ac
tual stress even slightly exceeds the endurance limit, failure is ine
vitable, because a majority of the parts undergo cyclic changes which 
are large enough for the fatigue crack to appear.

TTTTF
w  (to

Fig. 456

On the other hand, the fatigue crack does not appear if we make 
the actual stress just a little less than the endurance limit by reducing 
the coefficient of stress concentration. The sharper the change of pro
file, the greater the difference between the rigidity of adjacent por
tions and the sharper the change of stress, tne greater is the coef
ficient of stress concentration. Therefore the local stresses can be 
reduced not only by making the transitions smoother, but also by 
decreasing the difference between the rigidities of adjacent portions 
of the element in the sections where stress concentration is unavoid
able. These considerations have recently led to the concept of crippl
ing cuts. For example, when a gear or pulley is mounted on a shaft 
with interference fit, considerable local stresses appear in the shaft 
material (Fig. 456(a)).

The coefficient of stress concentration for normal stresses under 
bending in a section perpendicular to the shaft axis varies between 
1.8 and 2. Figure 456(a) also shows the variation of normal stresses 
in the outer fibres of the shaft, on which the pulley is mounted with 
an interference fit. The stresses were determined by optical method.

It is evident from the diagram that there is a sharp local increase 
in stresses, especially in the compressed zone near the hub edge.

The local stresses decrease and become more uniformly distributed 
if a cut is made in the hub near the contacting surface to smooth 
down the sharp change in rigidity at the edge (Fig. 456(6)). The 
coefficient of stress concentration falls from 2 to 1.4; if, as shown in 
Fig. 457, the shaft diameter at the seat is increased in addition to
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the cut already made, the coefficient of stress concentration may be 
reduced to 1.0*1.05. The local stresses may similarly be reduced by 
bossing the thicker part near the section of sharp transition (at right 
angles) (Fig. 458(a) and (6)).

In all these examples the aim of changing the profile is to smooth 
the change of stress in the section of transition.

The resistance of materials to variable loading depends as much 
upon the surface finish as upon the smoothness of transitions in the .

profile. Any scratches or cuts left by the cutting tool can play an im
portant role in subsequent failure of the part. We know of the failure 
of a large number of pistons of steam engine cylinders, when tapered 
hubs were fitted on the worn tapered ends of the plungers to increase

their thickness. Before fitting the hub the worn out surface of the 
plunger was subjected to coarse turning without any subsequent 
finishing. The fatigue cracks appeared under the hub, beginning 
from the source of stress concentration in the form of a scratch left 
by the cutting tool. Therefore, fine finishing, nickel plating and 
varnishing, if the part works in a corroding medium, are not super*
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fluous luxuries but absolute necessities for safe functioning of a major
ity of parts subjected to variable loading.

It should be noted that the questions of proper selection of mate
rial and rules regarding proper design of parts cannot be studied in 
isolation from one another. The better the material, the higher is 
its ultimate strength and the higher the quality of machining which 
it requires. If we use a costly alloyed steel and do not pay sufficient 
attention to the reduction of focal stresses, we run the risk of bringing 
to nought the advantages that accrue from the use of high quality 
steel. The sensitivity factor of such a steel is much higher than that 
of mild steel. This was explained in § 186.

Figures 459 and 460 show the p»-pm diagrams for mild and high 
grade alloyed steels. On these diagrams lines AMB correspond to 
failure due to development of a fatigue crack, and lines GN represent 
failure due to plastic deformation when the stresses exceed the yield 
stress.

Lines AMN, which are shaded on the diagrams, represent the curves 
of breaking stresses (in the wider sense of the word). It is obvious 
that the chances of failure due to development of fatigue crack are 
far greater in case of alloyed steel than in mild steel. The chances 
of reduction of local stresses due to plastic deformation are consider
ably less in the first case as compared to the second. This to a large 
extent explains the higher sensitivity of alloyed steels to stress con
centration.

Summing up, we may conclude that the higher the grade of steel 
the higher is the quality of finishing which it requires so that all its 
properties may be fully exploited.

CHAPTER 32

Fundamentals of Creep Analysts
§ 192. Effect of High Temperatures on Mechanical 

Properties of Metals
On account of the fast development of machine building, increas

ingly vital Importance is being attached to strength analysis of ma
chine parts working for long periods at high temperatures. Such 
parts include discs and blades of steam and gas turbines, pipes and 
other elements of steam generators, various parts of internal combus
tion engines, jet engines, chemical plants, etc.

The behaviour of the materials of such parts is affected by the 
absolute temperature as well as the duration for which the parts 
work at the high temperatures.

The properties of metals change considerably at high temperatures; 
therefore the known properties of strength and ductility at normal



(room) temperature cannot serve for the analysis of elements of the 
same metals working at high temperatures.

As the temperature increases, there is at first a gradual reduction 
of the modulus of elasticity and the limit of proportionality; beyond 
a particular temperature (for carbon steels after 300-350°C, for alloyed 
steels from 350-400*0, for nonferrous metals from 50-150°C) this 
reduction goes on getting steeper. Thus, for example, the modulus 
of elasticity of a commonly used steel is approximately 25-30% less 
at 600°C and 50% less at 800°C as compared to its value at room tem
perature. The reduction of the modulus of elasticity and limit of
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proportionality is even more pronounced in case of nonferrous metals. 
The yield stress, a*, and ultimate strength, au, of carbon steels in
crease at first with the increase in temperature and become maximum 
at a temperature of about 200-250°C, the maximum value is 10-20% 
greater than cru and ov at room temperature. If the temperature is 
further increased, the yield stress falls sharply: at 600°C the yield 
stress of steel is only 40% of its value at room temperature. In case 
of nonferrous metals and their alloys the increase of temperature 
is accompanied by a continuous decrease of yield stress. With increase 
in temperature the endurance limit varies in a manner which is more 
or less similar to the variation of ultimate strength.
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The plastic properties (total relative elongation and reduction of 
cross-sectional area at the moment of failure) suffer a slight setback 
as the temperature is increased from 20 to 200-250°C; with a further 
increase in temperature the plastic properties, as a rule, again begin 
to improve. However, the plastic properties of austenitic chrome- 
nickel steels, bronze, brass and nickel are adversely affected by high 
temperatures. On the other hand, the plastic properties of aluminium 
and magnesium improve.

The curves in Fig. 461 show the variation of strength and plastic 
properties of mild steel (0.15% C) as the temperature is raised to 
800°C.

§ 193. Creep and After-effect
The variation of strength and plastic properties with the increase 

in temperature is of vital importance in the design of elements of 
machines and structures. However, the most important factor affecting 
the behaviour of metals at high temperatures is creep.

Creep signifies a continuously (may be very slow) increasing de
formation under constant forces (or stresses) and high temperature. 
In a number of metals (lead, brass, bronze, aluminium and a few 
other nonferrous metals and alloys) creep may occur even at room 
temperature.

The higher the temperature, the faster is the growth of deformation 
due to creep. Sometimes a gradual, continuously increasing defor
mation over a sufficiently long period of time at high temperatures 
may load to failure of an element, even though the stresses induced 
in it are less than not only the ultimate strength but also the propor
tionality limit at room temperature.

For example, the diameter of a steam pipe working at high temper
ature and pressure increases continuously; finally ii may Tail due to 
rupture of its walls (this sometimes actually happens). The creep 
of discs and blades of steam turbines may result in overlapping of 
the gap between the blades and the turbine housing, leading to break
age of the blades.

Creep of metals is an irreversible (permanent) deformation, which 
may be studied as slow yielding. In a number of cases (especially 
in a compound stressed stale) plastic deformation due to creep re
sults not only in a change in stress but also their redistribution over 
the volume of the element. The change in stress is prominent 
when there is a restraint to total deformation of the body due to 
certain specific features of its working. In such cases, the elastic 
deformation experienced by the body during loading decreases with 
passage of time; this results in the beginning of plastic deformation, 
which subsequently continues to grow. It is accompanied by a reduc
tion of stresses in the element. Such a reduction of stresses due to
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gradual increase of plastic deformation at the cost of elastic is known 
as after-effect.

Due to* after-effect a mildi interference fit between two* parts may 
loosen so much as to- impede the normal functioning of the structure. 
For example, the loosening of the flange bolts of a  gas pipe or the high 
pressure cylinder of a> steam turbine may ultimately lead to leakage 
of gas or steam if the bolts are not tightened periodically; the loosening 
of fit between the turbine disc and the shaft may lead to clearance 
between the two resulting ini the coming off of the disc.

As already stated, creep may occur in some nonferrous metals and 
their alloys even at room temperature. However, in steel, iron and 
a number of nonferrous metals and their alloys creep begins only 
when they are heated above a certain, unique for each metal, temper
ature (carbon steels and iron above 300-3506C, alloyed steels above 
35O-4O0°C, light alloys above 50-l50cC, etc.). Creep is not observed 
in these metals if they are heated below the specified temperatures. 
Besides, even at temperatures equal to or higher than the specified, 
creep does not begin as long as the stresses remain less than a partic
ular, specific for each metal, value. After-effect begins at approxi
mately the same values of temperature and stress as creep.

Creep is especially prominent in.* metals. However, it occurs in a 
number of olheF materials also. For example, at room temperature 
creep can be observed in various plastics (celluloid, bakelite, poly- 
vinil chloride plastic, etc.), concrete and cement mortar. In reinforced 
concrete structures, creep, with the passage oF time, leads to redis
tribution of stresses between concrete and reinforcement; the latter 
gets slightly overloaded whereas the stresses in concrete decrease. 
However, the creep of concrete and the ensuing redistribution of 
stresses have almost no effect on the load carrying capacity of the 
reinforced concrete structure. Creep at roam temperature also, occurs 
in timber under compression, and especially under bending.

Experimental study of the phenomenon of creep began* quite re
cently (in 1910). These studies aroused widespread interest in the 
early twenties, when the first important results were published.

Creep testing presents a number of difficulties even in simple ten
sion. These tests can be conducted only on a special apparatus ca
pable of mainlaining a constant load and temperature and measuring 
the specimen’s deformation. The creep tests must be conducted with 
a high degree of. accuracy if reliable results are desired, the duration 
of the tests should not differ much from the service life of the element, 
and this involves testing over tens of thousands of hours. All these 
factors make creep testing a complicated, time-consuming and costly 
affair. On account of all these difficulties the phenomenon of creep 
has until now not been studied experimentally sufficiently well even 
for simple tensile loading.

Testing for creep is still more complicated and cumbersome in com-
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pound stressed state. The majority df these tests were ‘conducted on 
thin-walled pipes subjected to a combination .of internal pressure, 
torsion and tension. However, the number of such tests conducted
until now is very small. , . . .

Scientists have not been successful in working out short tests on 
creep. The reason is that the stipulated duration of testing is a nec
essary and important condition for obtaining reliable results which 
may be used for creep analysis and design. The results of Ihe accel
erated tests can, as yet, serve only -for an approximate qualitative 
estimate of the effect of high temperatures on the behaviour of metals.

§ 194. Creep and After-effect Curves
A. It was mentioned above that experimental study of creep, which 
forms the basis of design of elements of machines and structures 
working at high temperatures, is generally carried out on specimens 
subjected to simple tension. In creep testing ithe temperature and 
tensile -force acting on the specimen must remain constant over the
duration of the test. . . .  ,

The elongation of the specimen is measured at -regular intervals 
of time; from the readings we plot a curve 'in the coordinate system 
relative elongation e versus time i , -and the curve is known as the 
creep curve of Hie material. The Shape of the .curve depends upon the 
material, stress and 'temperature at -which the test is conducted. 
A typical creep curve for metals is shown in'Fig. 462 (curve OASCD),

m e n  the specimen heated to a particular temperature T is loaded, 
its deformation increases fast In the beginning (depending upon the 
speed of loading) from zero to a certain value OAj (it is assumed that 
loading of the specimen is stopped at a stage which corresponds to 
point A on the creep curve).



610 Dynamic Action of Forces [Part IX

This is followed by gradual increase in deformation of the loaded 
specimen, and the material begins to creep. The growth of creep de
formation is depicted by curve ABCD; the ordinates of points on this 
curve (for example, the ordinate of point K) represent the sum of elas
tic strain e<?=0i41 and creep strain ec= A tKi:

e =  e, +  ec
The rate of creep deformation at any point of the curve is determined 
by the slope which the tangent to the curve at the point makes with 
the abscissa, i.e.

de .

The whole process of creep may be divided into three successive 
stages. In the first stage, represented by segment AB on the creep 
curve, the deformation takes place with a non-uniform, continuously 
decreasing speed; this is the zone of non-uniform, or unstable, creep. 
Depending upon the material, stress and temperature, the duration 
of the first stage varies from a few hours to a few hundred and even 
(in exceptional cases) a few thousand hours.

The nature of creep in the first and second stages is affected mostly 
by the following two factors: (1) increase of strength of the material 
due to strain hardening, which occurs as a consequence of increase 
in residual (permanent) deformation, and (2) removal of strain hard
ening or decrease of strength due to high temperature. Creep can be 
studied as an interaction of these two lactors, which are chiefly re
sponsible in causing “pure” creep. This picture of creep may be com
plicated, especially during the subsequent stages, by various internal 
(for example, microstructure change and phase changes of the metal) 
and external (for example, corrosion) factors.

When the strengthening effect of strain hardening is balanced by 
the weakening effect of long exposure to high temperatures, the de
crease of creep rate ceases and the second stage (segment BC) begins, 
this is the stage of uniform, or stable, creep, in which creep occurs 
with a minimum uniform velocity.

This velocity remains constant until a neck begins to form on the 
specimen (point C on the creep curve). If the load on the specimen 
remains constant, then the local reduction of the cross-sectional 
area of the specimen in the third stage (segment CD on the creep 
curve) is accompanied by an increase of stresses, which in their turn 
result in a higher creep rate. This leads to ultimate failure of the 
specimen (point D on the creep curve).

The shape of the creep curve may change considerably if the tem
perature or stress is changed. Figure 463 shows creep curves at con
stant temperature, T, but different fixed values of stresses o( (ci<o2<  
< o a<<T4< o s). The creep curves at fixed stress or but different fixed
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values of temperature T{ ( r ,< T i< r a< r 4< r s) are identical to the 
above curves.

At low values of stress (05=0 ,) creep may be completely absent, 
i.e. for the loaded specimen the e-/ diagram may be represented by a 
straight line passing through point Ai and parallel to the abscissa. 
At a somewhat higher value of stress (0 = 02) there will be a short

period of unstable creep, which will stop when the rate of creep be
comes zero. At a still higher value of stress (cr=a3) the velocity of 
creep will not be zero but will be so small that failure due to creep 
will occur after a very long period, which far exceeds the service 
life of the element.

At stress a = a 4 we get the creep curve shown in Fig. 462. If the 
stress or temperature is further increased, the creep curves also un
dergoes a further change: creep progresses at a faster rate, and the 
straight line portion of the curve—the zone of stable creep—goes 
on getting shorter till it reduces to a point {curve 5 in Fig. 463), i.e. 
the zone of unstable creep directly changes into the zone of failure. 
In this case the zone of stable creep is represented by an inflection 
point on curve ABCD, point B&, which coincides with point C8.

The nature of failure due to creep depends mainly upon the proper
ties of the material at the given temperature. Carbon steels at temper
atures less than 550°C, copper, lead and some other light alloys 
generally fail after large plastic deformation and neck formation. 
Special heat resistant steels having good creep strength fail after 
comparatively small deformation, the failure is brittle in nature 
and usually begins at the location of stress concentration.
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B. As already stated, after-effect is the gradual reduction of stresses 
in a loaded element whose total deformation is constant and equal 
to the elastic deformation in the loaded state. The reduction of stresses 
takes place due to gradual decrease of elastic deformation and an 
equivalent increase in plastic deformation according to the following 
formula:

e = e 4!-f-ec :=e2=const (32.1)

The after-effect curve is shown in Fig. 464. The process of after
effect may be divided into two stages: in the first stage (segment AB 
on the after-effect curve) the stresses decrease very fast, and this is 
accompanied by a sharply decreasing after-effect rate; in the second 
stage (segment BCon the curve) the reduction of stresses is consid
erably slower and is accompanied by slowly decreasing after-effect 
rate.

Depending upon the material, initial stress and temperature, the 
duration of the first stage varies from several tens of hours to a few

hundred hours. The physical process 
accompanying after-effect in the first 
and second stages has not yet been 
studied in sufficient details. There 
are still very few good experimental 
set-ups for studying after-effect, and 
this makes it difficult to compare 
the results of experiments on after
effect with those on creep. In majo
rity of the machines which have 
been used until now for investigat
ing after-effect it has been impossi
ble to achieve pure after-effect.

It is generally assumed that 
growth of plastic deformation in 
after-effect is similar to its growth in 
creep and therefore the rate of after

effect may be calculated from the creep velocity. If this assumption 
were true, there would be no need for studying after-effect separately. 
However, there is another view which holds that creep rate cannot 
be taken as the rate of after-effect, because these processes are basi
cally different, the mechanism of origin and growth of plastic defor
mation in after-effect is somewhat different from that in creep.

In after-effect the reduction of stresses in the element is caused by 
the growth of plastic deformation at the cost of elastic deformation, 
and the length of the element remains constant. In creep the growth 
of plastic deformation is exclusively due to elongation of the element. 
The total deformation in creep is considerably greater than in after
effect; this is an important difference, because the magnitude of
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deformation at higher temperatures may considerably affect creep, 
giving rise to after-effect, diffusion and other processes which can 
strongly influence the resistance of a material to plastic deformation.
C. In studying creep a very important requirement is to establish a 
functional dependence between the main quantities which define 
the creep curve (stress (<j), temperature (7), and time (/)) and creep
deformation (e or ec) or creep velocity =

Various investigators proposed a number of formulas correlating 
the above quantities. The majority of these formulas were obtained 
empirically, and only a few of them additionally took into account 
the physical nature of the process of creep. Therefore, none of these

formulas is able to justify the experimental results oyer a wide range 
of stress, temperature and time variation. Jn a majority of the cases, 
analysis based on these formulas concurs well with the experimental 
data only over isolated portions of the creep curve, mainly in the 
zone of stable creep.

Since experimental study of unstable creep is much more difficult 
than that of stable creep, the zone of unstable creep on the creep curve 
has not been investigated sufficiently. Therefore, in actual creep 
analysis, the zone of unstable creep is often neglected by extending 
line BC (Fig. 466) till it intersects the vertical axis at point Bj, and 
the total deformation due to creep (for example, tK) is calculated by 
the following approximate formula:

^■ =eo +  e^ ei +  8c =  e/ +  ^ tana
=  -f- tpVc (32.2)

Stable creep has been experimentally studied to a much greater 
extent. From among the various relations for creep rate, proposed 
by different research workers, the following have been found to give
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the best results compatible with experimental data:
(1) vc = ko» ')
(2) t/c =  asinh £  j  <32-3)

In these formulae k, n, a, and b are certain constants which depend 
upon the properties of the material and the testing temperature. The 
second relation is more compatible with experimental results than 
the first, but it considerably complicates computations. Besides, the 
data available on k and n of the first relation is much more than the 
data available on coefficients a and b of the second relation. There
fore, the first relation is more commonly used in creep analysis.

Coefficients in Formula (32.3)

N o. Type of steel
Chemical composition in %

C Mn Si Mo Cr N l W N b’

1 Carbon steel 0.15 o.so 0.23

2 Carbon steel 0.43 0.68 0.20

3 Molybdenum steel 0.13 0.49 0.25 0.52

4 Chrome-molybdenum
steel

o.u 0.45 0.42 0.50 2.08

5 Ch r ome-mol ybden um 
steel

0.48 0.49 0.62 0-52 1.20

6 Chrome-nickel steel 0.06 0.50 0.61 17.75 9.25
(18-8)

7 Steel-09 0.52 0.82 0.57 13.51 15.2 2.01

a Steel Nb 0.19 0.72 0.69 1.71 0,87 0.77
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Table 23 contains data on the values of coefficients k and n for some 
steels, tested for creep at various temperatures and stresses.

§ 193. Fundamentals of Creep Design
A. It is obvious that at high temperatures the most suitable operating 
conditions for a part are those which correspond to the first or second 
creep curve of Fig. 463 when creep deformation does not appear at 
all or disappears soon after the part is loaded. However, the corre
sponding stresses<Xi equal to the creep limit and stresses as are usually 
so small in magnitude that if they were to be accepted as the upper 
stress limit, this would lead to an unjustified increase in the dimen-

Table 23

Heat
treatment

Temperature Sires* range 
t°C) (kgf/cm1)

V alu es o! coefficients  
In form ula (3* 3)

Annealing 844°C 427 1410-2110 6.35 0.17x10" *®
538 280-560 3.05 0 . 12x 10- 1*
593 110-250 3.10 0.2GX10-1*
G49 30-90 2.85 0 .16x10"10

Annealing 844°C 427 1060-1690 6 . 0 0 .2x l 0- «
538 210-630 3.9 0.14X10“ 14
649 30-180 1.7 0 . 12x 10- “

Annealing 844°C 482 910-1410 5.40 1.2x l 0-*»
538 560-1060 4.00 0 .6X 10-1®
593 210-420 3.55 0.23X 10-M
649 GO-120 3.10 0 .2x l 0-»*

Annealing 844°C 482 970-1410 8.35 0.58x 10-30
538 460-840 4.95 0 .14X I0 -”
593 280-560 6.90 0 . 1 0 x 1 0 -* »
649 140-280 3.25 0.17x10-1®

Annealing 844°C 427 1410-2110 6.35 O.HSxlO - 46
538 320-1060 3.55 0.175x 10-1®
649 70-250 2.95 0.3G5X10-1*

Hardening 1093°C 538 880-1340 4.4 0.21X I0- !®
593 560-1060 4.3 0.17x10-1®
C49 350-840 6.1 0 .1 4 x 1 0 -10
8 1 6 110-280 4.7 0 .2 lX l0->«

Hardening I175°C 600 800-2200 3.15 0.65X10-M
650 400-1500 2.9 0 .2 9 x l0 - i‘

Normalization 850®C 500 1500-2500 4.3 0.41X10-3®
600 200-500 3.1 0.59X10-K
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sions of machine parts. Therefore, a small creep deformation is gen
erally permitted in machine parts (third curve in Fig. 463).. However, 
it is necessary that the total strain in the part equal to the sum 
of strain due to load, a,, and strain due to creep, ec, (Fig; 465) should 
not during the whole service life of the part, tv, exceed a given per
missible strain del which depends upon the function of the part, its 
operating conditions etc. For instance, the permissible strain fej 
for the (pipes-of steam superheaters is .0.02, for steam pipes it  tis Oj003, 
while for steam-iurbine cylinders its value is 0.00:1.

Hence, for uni-axial loading 4he design equation is:
(32.4)

It follows from Fig. 465 that

where
(32.5)

=  Ip tan a  =  ipvc =  f (32.6)
is the uniform (stable) creep strain during the service life tp of the 
part. Using formulas (32.5) and (32.6), equation (32.4) may be modi
fied as follows:

wherefrom
(32.7)

(32.8)

Stress H^r
is sometimes called the virtual creep limit for permissible total creep 
strain and is denoted by cce. Thus, the design equation for permis
sible creep strain may be written as

=  (32.9)

If the elastic and .unstable creep strains of the element are negli
gible as compared to the stable creep strain, then creep analysis 
may be based on the maximum permissible stable (minimum) creep 
rate. Obviously, the permissible creep rate should be determined 
from the condition that creep deformation increasing with this con
stant rate should not exceed, during the whole service life of the ele
ment, a certain permissible ^value of deformation which does not 
disrupt the normal functioning of the structure or machine. The 
corresponding maximum stress, which does not give rise to a creep 
rate greater than the permissible at the particular temperature, 
may be considered as the limiting stress. Often this stress is referred
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to as the creep limit of the material from consideration of the minimum 
permissible or uniform rate of deformation (<*«.)• Evidently csn  is a 
function of temperature and the minimum permissible creep rate.

Table 24

Creep Velocity

Part per hour

1 Turbine discs with tight fit
2 Bolts, flanges and cylinders of steam turbines
3 Steam pipes, welded joints of boiler pipes
4 Pipes of steam superheaters

10-*
10-a
Ift- 7

io - ° - io - s

As an example. Table 24 gives the approximate permissible values 
of the minimum relative creep rate, lucl, for a few parts of steam boilers 
and turbines.

In creep analysis based on minimum creep rate, the fundamental 
equation of uni-axial stressed state of the material may be written 
as follows:

vc =  kon <  [vc] « ( 3 2 . 1 0 )

since
* =  v et p

From equation (32.10) we get:

M  =  =  (32.11)

The strength condition in terms of stresses may be written as fol
lows:

=  (32.12)

B. It is implicit that in creep analysis from considerations of per
missible deformation and permissible creep rate it is not enough to 
ensure that the creep deformation does not exceed a permissible value 
at a particular temperature during the whole service life of the ele
ment. It is also essential to provide a certain safety factor against 
the occurrence of such a failure. Hence, points K\ and /C* (Fig. 466) 
on creep curves /, 2, and 3 corresponding to abscissas tpu and tp9f 
and ordinates lelx, (elj, and Ul9 must lie on the segments corresponding 
to the first and second stages of creep.

2t —asio
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This must always be checked analytically and therefore requires 
special investigation. As already explained, creep analysis from con* 
siderations of permissible deformation and permissible creep rate may 
be replaced by an analysis based on permissible stresses, the creep 
limits or ow. However, it is essential to check beforehand that 
of (OfB or o j  does not exceed a permissible value, which is a certain 
fraction of the ultimate strength at the given temperature.

0 ui,tytfon£

It is known that at high temperatures the ultimate strength of 
materials is greatly dependent upon the duration of testing; a compar
atively small increase in duration may cause considerable reduction 
in the ultimate strength. At a certain temperature (above 800°C for 
mild steels) the specimen may even fail under a load which induces 
stresses that are less than the limit of proportionality at room tem
perature, provided the specimen is subjected to this load for a suf
ficiently long time. Therefore, at present the strength of a material 
at high temperatures is characterized not by the ultimate strength, 
determined from short-term tests, but by the long-term strength (aar). 
The long-term strength at a particular temperature characterizes the 
stress which will cause failure only after a specified period. The curves 
in Fig. 467 show the variation of long-term strength of chrome-mo
lybdenum steel (0.1% C, 1.55% Si, 4.88% Cr, 0.51% Mo) as a func
tion of time at various temperatures.

A few scientists are of the opinion that the non-uniformity of stress 
distribution at the locations of stress concentration is smoothened 
during creep and therefore stress concentration need not be taken into 
account in creep design. It is relevant to point out that machine 
parts working at high temperatures are, as a rule, manufactured from
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special heat-resistant steels, which have poor tendency to creep; gener
ally such parts fail after undergoing small deformation and the fail
ure is brittle in nature. Consequently, in a majority of practical 
cases smoothening of the stresses does not occur and it is essential 
to account for stress concentration in creep design.

Therefore, while determining the long-term strength of heat resis
tant steels, the possibility of stress concentration should be taken 
into account, i.e. the experiments for determining o0t should be 
conducted on specimens of corresponding shape.

If the elements of machines are subjected to the simultaneous 
action of fatigue and creep, then the long-term strength should be 
determined from fatigue test at the appropriate temperature. Thus, 
the following important cases may 
be distinguished while calculating 
the strength of elements of ma
chines and structures working under 
high temperatures.

If the temperature is not high 
enough to cause creep (§ 193), the 
critical state is determined by the 
yield stress or ultimate strength 
of the material at the given temper
ature, obtained by the usual tests.
The strength condition is:

° < m = t  <32-13>

If creep is possible at the given F,g* 468
temperature (see § 193), then the
first thing to do is to establish which of the permissible stresses is 
maximum for the total service life tp of the element: the permissible 
stress from considerations of total creep deformation (tree) or minimum 
creep rate (om), or the permissible stress from considerations of
long-term strength [orai1 = ^ ,  where k t is the long-term safety

-  riv
factor, which may be considered approximately equal to the usual
safety factor k  (Fig. 468).

If [a)=ac (Ocs, o j c t a j ,  zone A in Fig. 468, the creep design 
should be carried out according to formulas (32.4), (32.9), (32.10) 
or (32.12). If, on the other hand, l<x]=ac>  [crotJ. zone B in Fig. 468, 
then creep design should be based on the formula

(32.14)

If the elements experience after-effect, then care should be taken 
that the interference fit between them does not loosen beyond a per-

21*
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missible limit: reduced stress <t, due to after-effect should not be less 
than a certain minimum value which ensures the required interference 
between the elements:

m in

From this condition we can specify periods after which the joints 
should be retightened to the required interference by special methods 
(for instance, by tightening the flange bolts of gas or steam pipes).

In conclusion it should be pointed out that this sect ion dealt main
ly with the methods of creep analysis in simple situations (uniaxial 
stressed state), which can be utilized for building up the analysis of 
more complex cases. The methods of creep analysis in compound 
stressed state are the subject of study in special monographs.*

§ 196. Examples on Creep Design
Example 1. Determine the frequency of tightening flange bolts 

of a steam pipe to prevent leakage of steam, if the initial pull of P=  
—300) kgf on each bolt cannot be reduced by more than 40%. The 
temperature at which the bolts work is T ~ 4259C. The cross-sectional 
area of each bolt is ^4=3 cm8; the bolts are made of mild steel having 
modulus of elasticity £ r=1.77x lO* kgbcm* (at 7,=425°C); the 
stable creep rate for the material may be determined from the formula 
v<-*hcr,f and at

r  =  425°C, fe =  2 .2 6 x !0 -« ]̂ l ? and ft =  6

Solve the problem on the assumption that the flanges of the steam 
pipe are absolutely incompressible; the zone of unstable creep may 
be neglected.

Solution. If the flanges oi the steam pipe are absolutely incompres
sible, then the total deformation of the bolt elongated during tight
ening by A/0 must remain constant. During creep the elastic defor
mation of the bolt A/e will gradually change inlo'plaslic deformation 
A Ip) this will lead to the reduction of stresses in the bolt. The following 
condition must be satisfied

M e +  A A/0 — const
or

' ..0

cr +  — £ r +  8/» — eo — £ t

where Oo is the initial tightening stress in the bolt, <i is the stress in 
the bolt at the instant of failure U and Er is the elasticity modulus

• See, for example, I. M. Kachanov. Theory of Creep, Fizmatgiz, 1960 (in Rus
sian); N- N. Malinin, Apnli-J Theory of Plasticity and Creep, Mashinostroenic, 1975 
(in Russian).
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of the material at the given temperature T .  Upon differentiating the 
above equation w.r.t. t, we obtain

1 da , d&p _  I d a ,  I da0 
"Erdt ' dt ~ E t H ^  c= sCT dt

Neglecting unstable creep and substituting kan for i/c, we get the follow
ing differential equation:

$ + £ rto”- 0

or

Upon integrating this equation we obtain

v ^ = h ^ = E ^ + c (a)

where C is the constant of integration. Since cr—<r» at f=0,

( n - I ) o T 1

Substituting this value of C in equation (a), we get the following 
formula correlating a and t:

1) ETkdi~lt\n~l
Substituting the numerical values given in this problem, we get

3000
“T "  _  iooo

r =  (i+2x io-an 1̂
Jl I {6-l)1 .77X l0«x2 .26x l0 -a6^ ~ 2 j 6_‘ / j C' ‘

™ / = t ( iooo- J £ ) .

The values of t corresponding to different values of or are given in 
Table 25, column A. If the stresses in the bolts are not to decrease 
by more than 40%, then the bolts must be tightened after every 5930 
hours or approximately after 8.5 months.

This solution of the after-effect in bolts is approximate. Due to 
pliability of the steam pipe flanges the stresses in bolts will reduce 
at a much faster rate. However, if the pliability of the flanges is taken 
into account, the solution becomes quite complicated. Without con
sidering this aspect in detail we give here the final results (see Table 25,
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column B) obtained for the case when the elastic deformation of the 
flanges is e#./=3xl0~,/>f, and their creep rate is i/e.,= 5 x  
(where P t kgf is the pull on each bolt at instant /)•

Values of t
Table 25

«F
(kg!/cm1)

t  (hours) a
(kgf/cm1)

l  (hours)
A B A B

1000 0 0 600 5900 5000
900 347 335 500 15500 11900
800 1026 960 400 48300 31700
700 2475 2230

Hence, if we follow the results of the more accurate solution, re- 
tightening should be carried out not at an interval of 5930 hours 
but at an interval of 5000 hours or about every 7 months. This period 
will be still less if we consider the zone of unstable creep during creep 
design.

Example 2. A round 24-mm diameter shaft working at r=540°C, 
is twisted by a constant torque Af(=20 kgf*m. The shaft is made of 
alloyed steel having shearing modulus <3=6x 10? kgf/cm* (at T — 
=540°C). The stable creep rate may be calculated from the formula 
vc~kxat at T=54CPC £=2.5X10“1|> cm4fl/(kgf',*hr) and n= 5.

Find the shearing stress distribution in the shaft’s cross section 
and also its angle of twist after 1000 hours of working under load.

Solution. Let us assume that the hypothesis of plane sections under 
torsion remains in force during creep too (this hypothesis agrees 
sufficiently well with experimental data). Then two cross sections 
at a distance dx will remain planes and only turn w.r.t. each other 
by an angle d<p. Since the radii of the sections do not warp, we may 
use the usual (§ 47) formula for determining relative shear at a dis
tance from the shaft centre:

After loading the shearing strain begins to increase on account
of creep of the shaft’s material, the relative angle of twist ^  also
increases accordingly. The total shearing strain may be expressed 
as the sum of elastic strain ye and creep strain y« Y—Yo+Yc- 
The rate of growth of the total shearing strain may be written as 
fol lows:

v ~ d i - - d r + s r - v* + v‘ - P d n t
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For simplification, the relatively small rate of growth of the elastic 
deformation may be neglected in comparison with the large rate of 
growth of creep deformation. The exact solution, with vr̂ =0, is much 
more difficult. Besides, neglecting the zone of unstable creep and 
assuming that vc—kxn, we get

wherefrom

where

® - ( t = & )*  <b>
The condition representing the equality of the moments of external 
(torque) and internal forces about the shaft axis may be written as 
follows:

r r i
M  =  M t —  ^  Tp d A  — C 2 npxp  d p  =  2o<D ^  p 2+ * dp  

a o o
where r is the shaft radius. By introducing the notation

we may write
<D =  i k

J  p C
(c)

and taking into account expression (a)

X - ^C
We see that the distribution of shearing stresses of creep over the 
cross section of the shaft is not linear.

Substituting in the expression for J pe the values r= l.2cm  and n=5t 
we obtain:

.2^ r “ =  1.964x l.2 3-2 =3.52 cm32 

The shearing stresses at a distance p from the shaft are:
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Table 26
Values of x

p(mm) %
(kgf/cm*) (kgf/cm*)

0(mm) , J e(kgf/cm*) (kgf/cm*)

12 737 589 4 246 473
10 Gt 4 568 2 123 411
6 492 543 0 0 0
6 369 513

Table 26 contains values of t  corresponding to different values 
of p. The table also contains values of x from consideration of pure 
torsion of the shaft calculated by the formula

M t p _ 2 M tp 2 X 2000  
J p nr* ~~ 3 .1 4 X 1 .2* p =  614p

Creep helps in equalizing the stresses over the shaft’s cross section; 
the stresses at the surface register a small decrease, whereas the stresses 
near the axis increase considerably (Fig. 469).

Let us determine the angle of twist per unit length of the shaft. 
On the basis of (b) and (c) we may write

Integrating this expression w.r.t. t, we get:

p
dx

since at '=<>• we “ e that C = ^  and

Integrating and putting x = l cm, we obtain

Substituting the numerical values of this problem, we get
2 0 0 0 X 2

V* " e x  1 0 6 X 3 .1 4 X 1 .2*
=« 0.00102 -h 0.014 80

2.5x  I0“1# ( | ^ ) B 1000 
0.0158 rad/cm
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It can be easily seen that on account of creep the angle of twist In
creased almost 16-fold as compared to the angle of twist under pure 
torsion (first term of the above result). Hence, the decrease of maxi
mum shearing stress in the shaft does not mean that its working 
conditions improve due to creep.

Example 3. A 50-cm long simply supported beam 20 mm by 40 mm 
is acted upon at the middle of its span by a concentrated force

%lgf/wz
0 WO 1/90 BOO 800 ■ —■ ■ ■ ■ ■ ■ ■ ■

— ■//’•00m

—>1 b*20m  

Fig. 470

—400 kgf (Fig. 470) works at T=500°C. The beam is made of mild 
steel having modulus of elasticity £= 1 .6  X 10® kgf/crn* (at 7'=500°Q. 
The stable creep rate is v e= k a n, and at T =5(XrC

fe= 1 .5 x l0 -ls ( ~ ! ) " h r - ‘ and n = 3

Neglecting the zone of unstable creep, find the distribution of nor
mal stresses in the critical section and determine the maximum de
flection of the beam after 10 000 hours of loading.

Solution. While solving this problem we shall neglect the effect 
of shearing stresses and assume that the hypothesis of plane sections 
under bending remains valid in creep too (this assumption agrees 
quite well with the experimental results). Assuming that the defor
mation of the beam’s fibres follows the same law in the stretched and 
compressed zones, we may express the strain of a fibre at a distance y
by the relation (§ 63) e = ip  where p is the radius of curvature of the
neutral surface of the beam.

In the loaded state the deformation of the beam fibres increases 
gradually on account of creep of the beam’s material; the radius 
of curvature of the neutral surface also increases. The total relative 
deformation of an arbitrary fibre may be represented as the sum of 
elastic and creep strains, i.e. e= e<l+ e c. The rate of change of totat
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creep strain may be written as
„ de de, . de, , d /  I \
t, = 37 =  l f + - 3 f 57(7 )

For simplification we neglected, as in the preceding section, the rate 
of change of elastic strain. For an accurate solution of the problem 
(assuming v^O )  consult special monographs (see footnote on page 620).

Neglecting, in addition, unstable creep and assuming t/c=Aort, we 
obtain

" “ "c =  I  ( f )
wherefrom

where

® -[« (*)r <»>
The condition expressing the equality of moments of the external 

and internal forces about the neutral axis may be written as follows:

M ^ \a y d A  — 2 <D $ y l*~dA
A Al/ 2

Introducing the notation
r 1 +—2 J y + » d A  =  J.

Al/2
we get

II©

and, if we recall (a),

^  m ~r< *= j~ynJzc

It should be noted that in creep the distribution of normal stresses 
over the height of the section is not linear.

If the beam has a rectangular section,

Ai/i 0 2 n
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Substituting the numerical values of the problem in the expression 
for J tc, we get

3 4-1
2 3 (2x3+ 1)

2x4
2X3+ I 

3 = 3X2X43
_4_

7X2 3

10
8.64 cm 3

The maximum bending moment is:

M „ „ = ? = ^ = 5 0 0 0 k g f - c m

The normal stresses in the rectangular beam may be calculated 
from the formula

M - -  5000 4
a - 7 Z « " = m v 3

579t/3

The normal stresses computed from this formula for various values 
of y are given in Table 27. For comparison, the values of normal stres
ses under elastic deformation are given in the same table.

Table 27

y  (mm)

a  (kgl/cro1)

y (mm)

«r (kgf/cm 'J

Clast tc 
deform ation Creep

E la st ic
deform ation Creep

20 938 729 4 188 426
16 750 677 2 94 339
12 563 615 0 0 0
8 375 537

•

Due to creep the stresses over the beam’s cross section level out. 
The stresses decrease in the fibres farthest from the neutral layer, where
as the stresses near the neutral layer increase (Fig. 471). The de
crease in maximum stress is more pronounced in the rectangular 
beam as compared to the I-beam, because the latter is comparatively 
thinner near the neutral layer.

Let us determine the beam’s deflection. Expressing the curvature
of the beam by the approximate relation » we may wri*e

i d ) - & ( § ) ■ Since Irom (b) 3011 (c)
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we have

d2 (dy\ b Mn
i A ‘“)°= kn

In the case of a simply supported beam (Fig. 472), M=(P/2)x and

- P x Fd**Ut ) (d)
where

R kP»

Integrating equation (d) w.r.t. x , we obtain
±(dy\__ R

\d t)  rt+jTx
or

3? “  («+ \){n+2)xn** +  Cx +  D 

where C and D are constants of integration. Since y = 0 for all values

Pi
Z

i 1

Fig. 472

r-X  -* -f

* - J

t  when *=0, and ^ = 0  when x = j  

<f ( ^ ) = s ( § ) 5=0 for XS=J -  Therefore
_ Dln + l
c — fT F Tjzm  an<> B - 0

of 

and |
* , obviously gf =  0 at x
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The maximum deflection occurs in the section where x= lf2; we get
/ d y \ _______/?/»•*a kP»if" ' 5
{dl /  m ax 2" + - {n +  2) "  (/j +  2) 2*‘" 4n

Integrating w.r.t. i, we obtain

Urn
kpnin+i

ax («+2>2*M1+,,y» 

integ

{/m ax =  (//m »x^ e

t + H

where H is the constant of integration. Since at /= 0
Pi*

48 C J g  

Pi*
we have

H =  ({/max̂ tf =  48 EJt

The maximum deflection due to creep may therefore be written as
p p  kPnin+%

{/m ax 48£/z ( r t f  2)2,<"+ '>./£
f Mt3 2X 4s 

~  12 ~  12 ■ =  10.67 cm4

and
I I 400X503 , 1.5Xlft-»X400»X60»+a tAf>nA
I {/in ax I =  48 X1.6 X 10° X10 67 8.641' (3-f-2jX22<a*•>

=  0.0611 -f 0.3634 =  0.425 cm

Under creep, the maximum load on the beam should be determined 
from consideration of permissible deformation. If, for instance, the 
maximum deflection of the rectangular beam should not exceed 1/600 
of its length (0.1 cm) after 10 000 hours of operation, then the maxi
mum permissible load may be calculated from the condition

PP , kPnln+z 
4&n~t 'T'(n+2)22i»+l)J%! L/J

Substituting the numerical values, we get
5(P P  , 1 5 x  10- wXf»0», A nnn D, ^  n  i

4*X10.67X1.6xT6*‘+  5X8.643X2* 10000P ^ 0 l

or
P -f0.2326P»x 10-5 <  40.96

wherefrom
/>^40.8  kgf«  40 kgf



Appendix
Rolled Steel Profiles 

(COST 8239-72, 8240-72, 8509-72)

I-sectlon

ft b s t
P rofile

No.
(mm)

Area o f M ass o f 
section  I m
(cin*) (kg)

10 100 55 4.5 7.2 12.0 9.46
12 120 64 4.8 7.3 14.7 11.50
14 140 73 4.9 7.5 17.4 13.70
16 160 81 5.0 7.8 20.2 15.90
18 180 90 5.1 8.1 23.4 18.40
18a 180 100 5.1 8.3 25.4 19.90
20 200 100 5.2 8.4 26.8 21.00
20a 200 110 5.2 8 .6 28.9 22.70
22 220 110 5.4 8.7 30.6 24.00
22a 220 120 5.4 8.9 32.8 25.80
24 240 115 5.6 9.5 34.8 27.30
24a 240 125 5.6 9.8 37.5 29.40
27 270 125 6 .0 9.8 40.2 31.50
27a 270 135 6 .0 10.2 43.2 33.90
30 300 135 6.5 10.2 46.5 36.50
30a 300 145 6.5 10.7 49.9 39.20
33 330 140 7.0 11.2 53.8 42.20
36 360 145 7.5 12.3 61.9 48.6040 400 155 8.3 13.0 72.6 57.00
46 450 ICO 9.0 14.2 84.7 66.50
SO 500 170 10.0 15.2 100.0 78.50
SS 550 180 11.0 16.5 118.0 92.60
60 600 190 12.0 17.8 138.0 108.00



(cm 4)

198
350
572
873

1290
1430
1840
2030
2550
2790
3460
3800
5010
5500
7080
7780
9840

13380
19062
27696
39727
55962
76806

Appendix

Tabulated v a lu es about, axes

x-x u-y

wx J y WU
(CIU*) icui) (cm') (era4) (cm 1)

39.7 
58.4
81.7

109.0
143.0
159.0
184.0
203.0
232.0
254.0
289.0
317.0
371.0
407.0
472.0
518.0
597.0
743.0
953.0

1231.0
1589.0
2035.0
2560.0

4.06
4.88
5.73
6.57
7.42
7.51
8.28
8.37
9.13
9.22
9.97

10.10
11.20
11.30
12.30
12.50
13.50 
14.70 
16.20 
18.10
19.90 
21.80
23.60

23.0
33.7
46.8
62.3
81.4
89.8

104.0
114.0
131.0
143.0
163.0
178.0
210.0
229.0
268.0
292.0
339.0
423.0
545.0 
708-0
919.0

1181.0
1491.0

17.9
27.9
41.9
58.6
82.6

114.0
115.0
155.0
157.0
206.0
198.0
260.0
260.0
337.0
337.0
436.0
419.0
516.0
667.0
808.0

1043.0
1356.0
1725.0

6.49
8.72

11.50
14.50 
18.40 
22.80
23.10 
28.20
28.60
34.30
34.50
41.60
41.50
50.00
49.90
60.10
59.90
71.10
86.10

101.00
123.00
151.00
182.00
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Channel Section with Sloping Flanges

ft b s 1
Area <•! Mass of 1 a  

(kg)No.
(mm)

(cm*)

5 50 32 4.4 7.0 6.16 4.84
6.5 65 36 4.4 7.2 7.51 5.90
8 80 40 4.5 7.4 8.98 7.05

10 100 46 4.5 7.6 10.90 8.59
12 120 52 4.8 7.8 13.30 10.40
14 (40 58 4.9 8.1 15.60 12.30
14a 140 62 4.9 8.7 17.00 13.30
16 100 64 5.0 8.4 18.10 14.20
16a 160 68 5.0 9.0 19.50 15.30
18 180 70 5.1 8.7 20.70 16.30
18a 180 74 5.1 9.3 22.20 17.40
20 200 76 5.2 9.0 23.40 18.40
20a 200 80 5.2 9.7 25.20 19.80
22 220 82 5.4 9.5 26.70 21.00
22a 220 87 5.4 10.2 28.80 22.60
24 240 90 5.6 10.0 30.60 24.00
24a 240 95 5.6 10.7 32.90 25.80
27 270 95 6.0 10.5 35.20 27.70
30 300 100 6.5 11.0 40.50 31.80
33 330 105 7.0 11.7 46.50 36.50
36 360 110 7.5 12.6 53.40 41.90
40 400 115 8.0 13.5 61.50 48.30



Appendix 633

Table 15

T abulated  va lu es about axes

x-x

J w lx S *
(cm*) (cm*) (cm) (cm*)

22.8 9.1 1.92 5.59
48.6 15.0 2.54 9.00
89.4 22.4 3.16 13.30

174.0 34.8 3.99 20.40
304.0 50.0 4.78 29.60
491.0 70.2 5.60 40.80
545.0 77.8 5.66 45.10
747.0 93.4 6.42 54.10
823.0 103.0 6.49 59.40

1090.0 121.0 7.24 69.80
1190.0 132.0 7.32 76.10
1520.0 152.0 8.07 87.80
1670.0 167.0 8.15 95.90
2110.0 192.0 8.89 110.00
2330.0 212.0 8.99 121.00
2900.0 242.0 9.73 139.00
3180.0 265.0 9.84 151.00
4IU0.0 308.0 10.90 178.00
5810.0 387.0 12.00 224.00
7980.0 484.0 13.10 281-00

10820.0 601.6 14.20 350.00
15220.0 761.0 15.70 444.00

V I/ *■>
(cm)

(cm*)
w y

(cm*)
lv

(cm)

6.61 2.75 0.954 1.16
8.70 3.68 1.080 1.24

12.80 4.75 1.190 1.31
20.40 6.46 1.370 1.44
31.20 8.52 1.530 1.54
45.40 11.00 1.700 1.67
57.50 13.30 1.840 1.87
63.30 13.80 1.870 1.80
78.80 16.40 2.010 2.00
86.00 17.00 2.040 1.94

105.00 20.00 2.180 2.13
113.00 20.50 2.200 2.07
139.00 24.20 2.350 2.28
151.00 25.10 2.370 2.21
187.00 30.00 2.550 2.46
208.00 31.60 2.600 2.42
254.00 37.20 2.780 2.67
262.00 37.30 2.730 2.47
327.00 43.60 2.840 2.52
410.00 51.80 2.970 2.59
513.00 61.70 3.100 2.68
642.00 73.40 3.230 2.75
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Name Index

Belelyubskii, N. A. 283 
Beltrami, F 145
Belyaev, N. M. 5, 6, 7, 8, 26, 106, 148, 

188, 207. 290, 479, 499, 520, 
562. 565, 576

Benardos, N. N. 158 
Bolotin, V. V. 520 
Bubnov, I. G. 353

Castigliano. A. 340 
Clapcyron, B. P. E. 335 
Clebscb, R. F. A, 304 
Coulomb, Ch. A. 140

Davidenkov, N. N. 148 
Druzhinln, S. I. 144

Kachanov, L. M. 136, 620 
Kachurin. V. K. 7 
Karman, Th. 490 
Kipnis, Ya. I. 8, ICO 
Krylov, A. N. 305 
Kurkin, S. A. 163 
Kushelev, N. Yu. 8

Lam6, G. 138, 446 
Loitsyanskii, L. G. 536 
Lurye, A. I. 536

Malinin, N. N. 620 
Mariotte, Ed. 138 
Maxwell, J . C. 349 
Mises, R. 145 
Molir, O. 349
MQIler<Breslau, H. F. B. 349

Engesser, F. 490 
Euler, L. 480

Pridman, Ya. B. 148 
Forrest, P. G. 597

Gadoiin, A. V. 440, 446 
Galileo Galilei 18 
Goldenblat, I. 1. 520 
Golovin, Kh. S. 440 
Guest, J .  J . 140

Navier, C. M. L. 138 
Navrotskii, D. I. 160 
Nikolaev, G. A. 163

Oding, I. A. 597 
Ovechkin, G. 163

Pavlov, A. P. 163 
Pirlet, 349 
Poncelet, J .  V. 138 
Prigorovskii, N, I. 588 
Puzyrevskii, N. P. 305

Hencky, H. 145 
Huber, F. 145

Rankine, W. J . M. 138

Ivanova, V. S. 597
Saint-Venant, B. 139, 189 
Serensen, $. V. 588, 597
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Shtaerman, I. Ya. 96 
Sinitskii, A. K 8 
Slavyanov, N.G. 158 
Smirnov-Alyacv, G. A. 584

Telelbaum, I. M. 588 
Timoslienko, S. P. 5, 188, 508 
Tresca, H. 140

Uzhik, G. V. 597

Name Index

Vereshchagin, A. N. 349 
Vinokurov, V. A. 163 
Vlasov, V. Z. 188 
Vol’mir, A. S. 520

Yagn, Yu. 1. 144
Yasinskii, F. 490

Zhuravskii, D. I. 270



Subject Index

absolute displacement 129
absolute elongation 33
active force 312
alter-effect 608
alternating cycle 573
amorphous material 21
amplification factor of vibrations 539
amplitude of vibrations 535
angle, twisting 169
angle of shear 129
anisotropic material 37, 56
axes of inertia, principal 251
axial compression 27
axial force 29
axial moment of inertia 233
axial tension 27
axis, neutral 227

barfs), compressibility of 559 
curved 423
with large curvature 439 
prismatic 27 
rigidity of 34 
with small curvature 439 

beam, cantilever 213 
continuous 366 
critical section of 200 
deflection of 292
equation of deflected axis of 293 
fictitious 314 
riveted 289 
simply supported 207 
statically determinate 199 
statically indeterminate 199, 356 
of uniform rigidity 329 
of uniform strength 324, 558 
welded 290 

beam section, angle of rotation of 293 
beam supports, reaction of 197

bending, pure 225 
uni-platiar 256 
unsymmetric 379 

bending moment 203, 348 
diagram of 204 

biaxial stress 102 
breaking away, failure by 101 
breaking load 457 
brittle failure, theory of 138
brittle material 41, 52 
bulk modulus 123 
butt joint 159

cable, flexible 92 
cantilever beam 213 
capacity, lifting 471 
Castlgliano’s theorem 340 
centre, flexural 387 
characteristic cycle 574 
circle, Mohr’s 110

moment of inertia of 240 
Ciapcyron's theorem 335 
coefficient, damping 539 

dynamic 524 
of dynamic response 60 
of length 485
of operating conditions 475 
of overloading 476 
for production process 593 
of reliability 475 
of stress concentration 576 

comparison of displacements 361 
complementary shearing stresses 109 
complex figure, moment of inertia of 

245
component constant of cycle 574 
component variable of cycle 574 
composite stressed state 101 
compound loading 378



642 Subject Index

compressibility of bars 559 
compression, axial 27 

eccentric 392 
compressive stress 101 
concentrated force 19 
condition, of joint deformation 67, 80, 

360
of strength 30 

conditional stress 41 
conical spring 186 
connecting rod 525 
conservation of energy 331 
constancy of volume 50 
constant sign cycle 573 
constant stress cycle 573 
constraint, redundant 357 
contact stress 105 
continuous beam 366 
continuous load, intensity of 206 
core of section 396 
crack, fatigue 572 
creep 607

stable 610 
unstable 610

creep curve 609 
creep limit 617 
critical force 478 
critical section 86 
critical stale, of material 63 
critical stress 479 
crushing of rivets 154 
crystalline lattice 21 
crystalline material 21 
curved bar 423 
cycle, alternating 573

characteristic 574 
component constant of 574 
constant sign 573 
constant stress 573 
fluctuating 573 
mean stress of 574 
of stress variation 573 
zero base 573

cyclic stress 573

damage susceptibility curve 593 
damping coefficient 539 
dead weight 86 
deflection of beam 292 
deformation 21 

elastic. 21. 37 
lateral 36 
local 488 
plastic 21, 47 
total energy of 126 

design load 476 
design moment 406 
diagram, of bending moment 204 

of reduced moment 472 
of shearing forces 204 
stress-strain 47

differentiation, successive 313 
displacement, absolute 129 

generalized 333 
distortion, potential energy of, theory 

146
distributed force 19
distribution, uniform 29
doublC'Shear rivet 153
ductile failure, theory of 140
ductile hinge 466
ductile material 41
dynamic coefficient 524
dynamic load 20
dynamic loading 521
dynamic response, coefficient of 60
dynamic stress 555

eccentric compression 392 
eccentricity 392 
eccentric tension 392 
elastic deformation 21, 37 

specific, work of 46 
elasticity, limit of 23, 43 

modulus of 34 
elementary force 23 
elongation, absolute 33 

relative 33 
relative residual 44 

endurance limit 61, 62, 575 
energy of deformation, total 126



Subject Index 643

energy theory of strength 145 
envelope 142
equal moments, method of 471 
equation, of deflected axis 293

of method of initial parameters 305 
of three moments 372 

equatorial moment 233 
Euler’s formula 482 
externa) force 19 

method of 344

factor of safety 24, 30 
main 63, 64 

factor of stress concentration 583 
failure, by breaking away 101 

due to shearing 101, 133 
through rupture 132 

fatigue 60, 572 
fatigue crack 672, 594 
fatigue limit 61 
fictitious beam 314 
fillet weld, joint with 162 
fixed hinged support 197 
fixed support 198 

rigidly 198 
flexibility 483 
flexible cable 92 
flexural centre 387 
fluctuating cycle 573 
force(s), active 312 

axial 29 
concentrated 19 
critical 478
cumulative action of 335 
distributed 19 
external 19 

method of 344 
generalized 333 
of interaction 19 
normal 29 
passive 312 
of reaction 20 
shearing 203 
superposition of 83 
volume 19

forced vibrations 535 
formula, Saint-Venant’s 407 
frame 351 
free torsion 187

generalized displacement 333 
generalized force 333 
generalized Hooke’s law 335 
graph-analytic method 313

helical spring 181 
hinge, ductile 466 
hinged support, fixed 197 

movable 197 
Hooke's law 33 

generalized 335 
hydrostatic load 455

impact load 20 
impact test 565
initial parameters, method of 305 
integration, successive 312 
intensity of continuous load 206 
interaction, force of 19 
I-section 285 
isotropic material 37

joint, butt 159 
lapped 151 
riveted 159 
welded 159
with side fillet weld 162 

joint deformation, condition of 67, 80, 
360

lapped joint 151 
lateral deformation 36 
lattice, crystalline 21 
law, Hooke’s 33

generalized 335 
of complementary shearing stres
ses 109
conservation of energy 331 
constancy of volume 50 
of cumulative action of forces 335



644 Subject Index

lifting capacity 471 
limit, of elasticity 23, 43 

endurance 61, 62, 575 
of proportionality 41, 47 

limiting states, first group 474 
second group 474 

limiting stress circle 139 
load, breaking 457

continuous, intensity of 206
design 476
dynamic 20
hydrostatic 4%
impact 20
permanent 19
repeated variable 20
static 20
suddenly applied 20 
temporary 19 
ultimate 457 

load area 214 
load curve 214 
local deformation 488 
local stress 58, 61, 157, 576, 582, 583 
long-term strength 618 
less of stability 483

material, amorphous 21 
anisotropic 35. 56 
brittle 41, 52 
critical state of 63 
crystalline 21 
ductile 41 
isotropic 37
sensitivity factor of 585 
strength of 18 

maximum rigidity, plane of 386 
maximum shearing stresses, theory of 

140
maximum tensile stresses, theory of 

138
Maxwell and Molir theorem 347 
mean stress of cycle 574 
method, of comparison of displacements 

361
of equal moments 471

of external force 344 
graph-analytic 313 
of initial parameters 305 
of superposition of forces 223 
Vereshchagin's 349 

modulus, bulk 123 
of elasticity 34 

reduced 490 
tangential 490 

section 236 
Mohr’s circle 110 
Mohr’s strength theory 141 
moment, bending 203 

design 406 
equatorial 233 
of section, static 232 
static, about neutral axis 267 

moment of ineria, axial 233 
of circle 240 
of complex figure 245 
of parallelogram 240 
polar 173, 250 
principal 256 

multiple-shear rivet 154

natural vibrations 535 
net area 31 
neutral axis 227 
neutral layer 227

radius of curvature of 231 
of trapezoid 435 

normal force 29 
normal stress 100

octahedral plane 120 
octahedral shearing stress 121 
operating conditions, coefficient of 

476
overloading, coefficient of 47$

parallelogram, moment of inertia of 
240

passive force 312 
permanent load 19



Subject Index 645

permissible stress 24 
planc(s), of maximum rigidity 386 

octahedral 120 
principal 102 

plane of inertia, principal 255 
plastic deformation 21, 47 
pliability 555

of structure, total 564 
Poisson’s ratio 37 
polar moment of inertia 173, 250 
potential energy of distortion, theory of 

146
principal axes of inertia 251 
principal moment of inertia 256 
principal plane 102 
principal plane of inertia 255 
principal radius of inertia 256 
principal strcss(es) 102 

trajectory of 282 
shearing 120 

principle of superposition of forces 83 
prismatic bar 27
production process, coefficient for 593 
product of inertia, of section 232, 247 
proportionality,-limit of 41, 47 
pure holding 225 
pure shear 127 
pure torsion 187

radius of curvature of neutral layer 231 
radius of inertia 256 

principal 256 
reaction, of beam supports 197 

force of 20 
redundant 357 

reciprocity of displacements, theorem of 
347

reciprocity of works, theorem of 347 
reduced mass 544 
reduced modulus of elasticity 490 
reduced moment, diagram of 472 
reduced stress 147
reduction of area, permanent relative 45 
redundant constraint 359 
redundant reaction 359

redundant unknown 359 
relative elongation 33 
relative reduction of area, permanent 

45
relative residual elongation 44 
relative rigidity 36 
relative shear 129 
reliability, coefficient of 475 
repeated variable load 20 
reservoir, thin-walled 103 
residual elongation, relative 44 
resistance, to rupture 134 

to shear 134 
resonance 535 
rigidity, of bar 34

maximum, plane of 386 
relative 36 
of system 550 
torsional 177 

rigidly fixed support 198 
rivel(s), crushing of 154 

double-shear 153 
multiple-shear 154 

riveted beam 289 
riveted joint 159 
rod, connecting 525 

thin-walled 194 
rupture, failure through 132 

resistance to 134 
theory of 138 

rupture strain, total true 51

safety, factor of 24, 30 
main factor of 63, 64 

Saint-Venant’s formula 407 
scale factor 590 
section, of beam 

critical 200 
core of 396 
critical 86
product of inertia of 232, 247 
static moment of 232 

section modulus 174 , 236 
sensitivity factor of material 585 
shear, angle of 129



646 Subject Index

pure 127 
relative 129 
resistance to 134 
theory of 140 

shear centre 387 
shear centre line 387 
shearing, failure due to 101

modulus of elasticity for 131 
shearing force{s) 204 

diagram of 204 
shearing stress(es) 100 

complementary 109 
maximum, theory of 140 
octahedral 12! 
principal 120 

simply supported beam 207 
span 92
specific work, of elastic deformation 

46 
total 46 

spherical tensor 117 
spring, conical 186 

helical I8t 
stability check 477 
stable creep 610 
state(s), composite stressed 101 

limiting 474 
statically determinate beam 199 
statically indeterminate beam 199, 356 
statically indeterminate problem 66 
statically indeterminate system 66 
static toad 20 
static loading 60, 521 
static moment, about neutral axis 267 

of section 232 
straight-line form, loss of stability of 483 
strength, condition of 30 

energy theory of 145 
long-term 618 
of materials 18 
tensile, ultimate 30 
theory of 136 
true ultimate 51 
ultimate 23, 43 

strength endurance 575
in unsymmetrlc cycle 579

strength theory, first 138 
fourth 146 
of Mohr 141 
second 139 
third 140 

stress, biaxial 102 
compressive 101 
conditional 41 
contact 105 
critical 479 
of cycle, mean 574 

cyclic 573 
dynamic 555
local 58, 61, 157, 576, 582. 583
maximum shearing 140
maximum tensile 138
normal 100
permissible 24
principal 102
reduced 147
rupture, true 51
shearing 100

octahedral 121 
principal 120 

tensile 100 
triaxial 103 
uniaxial 102 
variable 575 

stress circle 111 
limiiing 139 

stress concentration, coefficient of 576 
factor of 583 

stress deviator 124 
stress intensity 121 
stressed state, composite 101 
stress-strain diagram 47 
stress tensor 117 
stress variation, cycle of 573 
structure, total pliability of 564 
successive differentiation 313 
successive integration 312 
suddenly applied load 20 
superposition of forces, method of 223 

principle of 83 
support, fixed 198 

hinged, fixed 197



Subject Index 647

movable 197 
rigidly fixed 198 

system, rigidity of 550
statically indeterminate 66

tangential modulus of elasticity 490 
temporary load 19 
tensile strength, ultimate 30 
tensile stresses 100

maximum, theory of 138 
tension, axial 27 

eccentric 392 
lest, impact 565 
theorem, Castigllano's 340 

Clapeyron’s 335 
of Maxwell and Mohr 347 
of reciprocity of displacements 347 
of reciprocity of works 347 

theory', of brittle failure 138 
of ductile failure 140 
of maximum tensile stresses 138 
of maximum shearing stresses 140 
of potential energy of distortion 146 
of rupture 138 
of shear 140 
of strength 136 

thin-walled reservoir 103 
thin-walled rod 194 
thin-walled vessel 454 
three moments, equation of 372 
torque 165 
torsion, free 187 

pure 187 
torsional rigidity 177 
total pliability of structure 564 
total specific work 46 
trajectory of principal stresses 282 
trapezoid, neutral layer of 435 
trlaxlai stress 103 
true rupture strain, total 51

t r u e  ru p tu re  s tre s s  51 
tru e  u l t im a te  s tre n g th  51 
T -scc tion  243 
tw is tin g  a n g le  169

u lt im a te  load  457 
u l t im a te  s tre n g th  23 , 43  

tru e  51
u lt im a te  te n s ile  s tre n g th  3 0  
u n ia x ia l  s tre ss  102 
u n ifo rm  d is tr ib u tio n  29 
u n i-p la n a r  b en d in g  256 
u n i t  force, b e n d in g  m o m en t du e  to  348 
u n s ta b le  c reep  610 
im sy m m etric  b e n d in g  379 
u n sy m m e tric  c y c le , s tre n g th  e n d u ra n c e  

In 579

v a r ia b le  lo ad , re p e a te d  20  
v a r ia b le  s tre ss  675 
V eresh ch ag in ’s  m e th o d  349 
vesse l, th in -w a lle d  454 
v ib ra tio n s , a m p lif ic a tio n  fac to r of 539 

a m p litu d e  of 535 
forced 535  
n a tu ra l  535 

v o lu m e  force 19

w a rp in g  488 
w e ig h t, d ead  86 
w elded  beam  290 
w elded  jo in t  159 
w o rk , of e la s tic  d e fo rm a tio n  4 6  

specific  46 
w'ork h a rd e n in g  590

zero  base  cy c le  573 
Z h u ra v s k ii 's  fo rm u la  284
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