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PROCEDURE FOR SOLUTION OF PROBLEMS OF STATICS 

  
1. Choose the body whose equilibrium should be examined. For the problem to 

lend itself to solution, the given and required forces, or their equivalents, should 

all be applied to the body whose equilibrium is being examined (for instance, if 

the problem is to determine a load acting on a support, we can examine the 

equilibrium of the body experiencing the reaction of the support, which is equal 

in magnitude to the required load). 

If the given forces act on one body and the required on another, it may be 

necessary to examine the equilibrium of each body separately, or even of some 

intermediary bodies as well. 

2. Isolate the body from its constraints and draw the given forces and the 

reactions of the removed constraints. Such a drawing is called a free-body 

diagram (FBD) and is drawn separately.  

3. State the conditions of equi1ibrium. The statement of these conditions 

depends on the force system acting on the free body and the method of 

solution (graphical or analytical).  

4. Determine the unknown quantities, verify the answer and analyze the 

results. In solving a problem, it is important to have a carefully drawn 

diagram, which helps to choose the correct method of solution and prevents 

errors in stating the conditions of equilibrium.  



P r o b l e m. A crane held in position by a journal bearing A and a thrust 

bearing B carries a load P. Neglecting the weight of the structure determine 

the reactions RA and RB  of the constraint if the jib is of length L and AB = h.  

S o l u t i o n. To solve the problem by the 

graphical method draw a close triangle abc with 

forces P, RA, RB  as its sides starting with the 

given force P. From the similarity of triangles 

abc and ABE we obtain:  

 𝑅𝐴 =
1

ℎ
𝑃, 𝑅𝐵 = 1 +

𝑙2

ℎ2
𝑃. 

𝑅𝐴
𝑃
=
1

ℎ
  ,
𝑅𝐵
𝑃
=
ℎ2 + 𝑙2

ℎ
, whence  

The loads acting on the journal bearing A and the thrust bearing B are 

respectively equal in magnitude to RA and RB but opposite in sense. The 

greater the ratio l:h the greater the load acting on the constraints. 



P r o b l e m. A horizontal force P is applied to hinge A of the toggle-press. 

Neglecting the weight of the rods and piston, determine the force exerted by 

the piston on body M when the given angles are 𝛼 and 𝛽. 

S o l u t i o n. First consider the equilibrium 

of the hinge A to which the given force P is 

applied. Regarding the hinge as a free body, 

we find that also acting on it are the 

reactions R1 and R2 of the rods directed 

along them. Construct a force triangle 

(Fig.b). Its angles are φ=90˚-α, ψ=90˚-β, 

γ= 𝛼 + 𝛽. By the law of sines we have: 
𝑅1
sin𝜑
=
𝑃

sin 𝛾
, 𝑅1 =

𝑃 cos𝛼

sin(𝛼 + 𝛽)
, 

Now consider the equilibrium of the piston, regarding it as a free body. 

Acting on it are three forces: R'1 = -R1 exerted by rod AB, the reaction N of 

the wall, and the reaction Q of the pressed body. The three forces are in 

equilibrium, consequently they are concurrent. Constructing a triangle with 

the forces as its sides, (Fig.c), we find: 𝑄 = 𝑅′1 cos𝛽 . 



P r o b l e m. The bracket ABCD is in equilibrium under the action of two 

parallel forces P and P' making a couple. Determine the load on the supports 

if AB = a = 15 cm, BC = b = 30 cm, CD = c = 20 cm, and P =P' = 300 N. 

S o l u t i o n. Replace couple (P,P') 

with an equivalent couple (Q,Q') whose 

two forces are directed along the reactions 

of the constraints. The moments of the two 

couples are equal, i.e., P(c-a)=Qb, 

consequently the loads on the constraints 

are: 
𝑄 = 𝑄′ =

𝑐 − 𝑎

𝑏
𝑃 = 5 0𝑁 

and are directed as shown in the diagram. 



P r o b l e m. A couple of moment m1 acts on gear 1 of radius r1 in Fig.a. 

Determine the moment m2 of the couple which should be applied to gear 2 of 

radius r2 in order to keep the system in equilibrium. 

S o l u t i o n. Consider first the 

conditions for the equilibrium of 

gear 1. Acting on it is the couple 

of moment m1 which can be 

balanced only by the action of 

another couple, in this case the 

couple (Q1, R1) created by the 

force Q1 exerted on the tooth of 

gear 1 by gear 2, and the reaction 

R1 of the axle A.  So we have m1+(-Q1r1)=0, or Q1=m1/r1 . 

Consider now the condition for the equilibrium of gear 2. We know that gear 1 

acts on gear 2 with a force Q2= -Q1 (Fig.b), which together with the reaction of 

axle B makes a couple (Q2,R2) of moment –Q2r2. This couple must be balanced 

by a couple of moment m2 acting on gear 2; from equation of equilibrium we 

have: m2+(-Q2r2)=0. Hence, as Q2=Q1, or  𝑚2 =
𝑟2

𝑟1
𝑚1. 



P r o b l e m. The travelling crane weighs P = 4t, its center of gravity 

lies on DE, it lifts a load of weight Q = 1t, the length of the jib (the distance 

of the load from DE) is b = 3.5 m, and the distance between the wheels is AB 

= 2a = 2.5 m. Determine the force with which the wheels A and B act on the 

rails. 

S o l u t i o n. Consider the equilibrium of the 

crane-and-load system taken as a free body: the 

active forces are P and Q, the unknown forces are 

the reactions NA and NB of the removed 

constraints.  
Taking A as the center of the moments of all 

the forces and projecting the parallel forces on a 

vertical axis, we obtain 
−𝑃𝑎 + 𝑁𝐵 ∙ 2𝑎 − 𝑄 𝑎 + 𝑏 0, 𝑁𝐴+𝑁𝐵 − 𝑃 − 𝑄 = 0, 

𝑁𝐴 =
𝑃

2
−
𝑄

2

𝑏

𝑎
− 1 − 1.1 𝑡;   𝑁𝐵=

𝑃

2
+
𝑄

2

𝑏

𝑎
+ 1 = 3.9 𝑡. whence 

From the solution we see that at 𝑄 =
𝑎

𝑏−𝑎
𝑃 = 2.22 𝑡 the reaction NA is 

zero and the left wheel no longer pressed on the rail. If the load Q is further 

increased the crane will topple over.  
 



P r o b l e m. One end of a uniform beam AB weighing P N rests at A against a 

corner formed by a smooth horizontal surface and block D, and at B on a 

smooth plane inclined 𝛼 degree to the horizontal. The beam’s inclination to 

the horizontal is equal to 𝛽. Determine the pressure of the beam on its three 

constraints. 

S o l u t i o n. Consider the equilibrium 

of the beam as a free body. Acting on it 

are the given force P and the reactions 

R, N1, and N2 of the constraints directed 

normal to the respective surfaces. Draw 

the coordinate axes and write the 

equilibrium equations, taking the 

moments about A.  

The equilibrium equations: 𝑁2 − 𝑅 sin𝛼 = 0, 𝑁1 − 𝑃 + 𝑅 cos𝛼 = 0, 

−𝑃𝑎 cos 𝛽 + 2𝑅𝑎 cos 𝛾 = 0, (𝛾 = 𝛼 − 𝛽). Whence 

 

𝑅 =
𝑃 cos𝛽

2 cos 𝛾
=
𝑃 cos 𝛽

2 cos(𝛼 − 𝛽)
, 𝑁1 = 𝑃 1 −

cos𝛼 cos 𝛽

2 cos(𝛼 − 𝛽)
, 𝑁2 = 𝑃

sin 𝛼 cos 𝛽

2 cos(𝛼 − 𝛽)
. 



P r o b l e m. Acting on a symmetrical arch of weight P = 8 T is a set of 

forces reduced to a force Q = 4 T applied at D and a couple of moment MD = 

12 T-m. The dimensions of the arch are a = 10 m, b = 2 m, h = 3 m, and 

𝛼 = 60°. Determine the reactions of the pin B and the roller A. 

S o l u t i o n. In this problem it is more 

convenient to use eqs., taking the 

moments about A and B and the force 

projections on axis Ax, and each equation 

will contain one unknown force.  

Writing the equilibrium equations and 

taking into account that 𝑄𝑥 = 𝑄 cos 𝛼, 

and 𝑄𝑦 = 𝑄 sin 𝛼, we obtain: 

𝑋𝐵 + 𝑄 cos 𝛼 = 0, 𝑌𝐵𝑎 − 𝑃
𝑎

2
− ℎ𝑄 cos 𝛼 − 𝑏𝑄 sin 𝛼 + 𝑀𝐷 = 0, 

−𝑁𝐴𝑎 + 𝑃
𝑎

2
− ℎ𝑄 cos 𝛼 + 𝑎 − 𝑏 𝑄 sin 𝛼 +𝑀𝐷 = 0. Whence we find 

𝑋𝐵 = −𝑄 cos𝛼 = −2 𝑇, 𝑌𝐵 =
𝑃

2
+ 𝑄
𝑏 sin 𝛼 + ℎ cos𝛼

𝑎
−
𝑀𝐷
𝑎
≈ 4.09 𝑇, 

𝑁𝐴 =
𝑃

2
+ 𝑄
𝑎 − 𝑏 sin 𝛼 − ℎ cos 𝛼

𝑎
+
𝑀𝐷
𝑎
≈ 7.37 𝑇. 



P r o b l e m. The beam in Fig. is embedded in a wall at an angle 𝛼 = 60° to 

it. The length of the portion  AB is b = 0.8 m and its weight is P = 1000 N. 

The beam supports a cylinder of weight Q = 1800 N. The distance AE along 

the beam from the wall to the point of contact with the cylinder is a = 0.3 m. 

Determine the  reactions of the embedding. 

S o l u t i o n. Consider the equilibrium 

of the beam as a free body. Acting on it are 

force P applied halfway between A and B, 

force F applied perpendicular to the beam at 

E (but not force Q, which is applied to the 

cylinder, no to the beam!), and the reactions 

of the embedding, indicated by the 

rectangular components XA and YA and a 

couple of moment MA.  

Writing the eqs. of equilibrium and substituting the value of F, we have: 

𝑋𝐴 + 𝑄 cot 𝛼 = 0,  𝑌𝐴 − 𝑄 − 𝑃 = 0,  𝑀𝐴 − 𝑄
𝑎

sin 𝛼
− 𝑃
𝑏

𝑎
sin 𝛼 = 0. 

𝑋𝐴 = −𝑄 cot 𝛼 = −1038 𝑁, 𝑌𝐴 = 𝑃 + 𝑄 = 2800 𝑁, 

𝑀𝐴 = 𝑄
𝑎

sin 𝛼
+ 𝑃
𝑏

2
sin 𝛼 = 969 𝑁 −𝑚. 

 From the Fig. b we obtain: 𝐹 =
𝑄

sin 𝛼
.  

Whence 



P r o b l e m. A string supporting a weight Q = 2400 N passes over two 

pulleys C and D as shown in Fig. The other end of the string is secured at B, 

and the frame is kept in equilibrium by a guy wire EE1. Neglecting the weight 

of the frame and friction in the pulleys, determine the tension in the guy wire 

and the reactions at A, if the constraint at A is a smooth pivot allowing the 

frame to turn about its axis. The dimensions are as shown in the diagram. 

S o l u t i o n. Consider the whole system of the 

frame and the portion KDCM of the string as a 

single free rigid body. Acting on it are: the weight 

Q, the tension F in section DB of the string, the 

reactions T, XA, and YA of the constraints. The 

internal forces cancel each other. As the friction 

of the pulleys is neglected F = Q. 
From  the triangles AEE1 and ADB we get: EE1 

= 2.0 m, DB = 1.5 m, whence sin 𝛼 = sin 𝛽 =

0.8, cos 𝛼 = cos 𝛽 = 0.6, and 𝛼 = 𝛽.  

0.6𝑄 − 0.6𝑇 + 𝑋𝐴 = 0, −𝑄 − 0.8𝑄 − 0.8𝑇 + 𝑌𝐴 = 0,−1.0𝑄 − 0.72𝑄 + 0.96𝑇 = 0, 

whence 𝑇 =
43

24
𝑄 = 4300 𝑁,  𝑋𝐴 =

19

40
𝑄 = 1140 𝑁,  𝑌𝐴 =

97

30
𝑄 = 7760 𝑁. 

Equations of equilibrium: 



P r o b l e m. The horizontal member AD of the bracket weighs P1 = 150 N, 

and the inclined member CB weights P2 = 120 N. Suspended from the 

horizontal member at D is a load of weight Q = 300 N. Both members are 

attached to the wall and to each other by smooth pins (the dimensions are 

shown in the diagram). Determine the reactions at A and C. 

S o l u t i o n. Considering the bracket as a 

whole as a free body, we find the acting on it are 

the given forces P1, P2, Q and the reactions of the 

supports XA,YA, XC, YC. But with its constraints 

removed the bracket is no longer rigid body, 

because the members can turn about pin B. On the 

other hand, by the principle of solidification, if it is 

in equilibrium the forces acting on it must satisfy 

the conditions of static equilibrium.  

 𝐹𝑘𝑥 = 𝑋𝐴 + 𝑋𝐶 = 0,  𝐹𝑘𝑦 = 𝑌𝐴 + 𝑌𝐶 − 𝑃1 − 𝑃2 − 𝑄 = 0, 

 𝑚𝐴 𝐹𝑘 = 𝑋𝐶4𝑎 − 𝑌𝐶𝑎 − 𝑃2𝑎 − 𝑃12𝑎 − 𝑄4𝑎 = 0 . 

We may therefore write the corresponding equations: 



We find that the three equations contain four 

unknown quantities XA,YA, XC, YC. Let us therefore 

investigate additionally the equilibrium conditions 

of member AD (Fig.b). Acting on it are forces P1 

and Q and the reactions XA, YA, XB, and YB. If we 

write the required fourth equation for the moments 

of these forces about B we shall avoid two more 

unknown quantities, XB and YB. We have 

 𝑚𝐵 𝐹𝑘 = −𝑌𝐴3𝑎 + 𝑃1𝑎 − 𝑄𝑎 = 0 . 

Solving the system of four equations (starting with the last one) we find: 

𝑌𝐴 =
1

3
𝑃1 − 𝑄 = −50 𝑁,  𝑌𝐶 =

2

3
𝑃1 + 𝑃2 +

4

3
𝑄 = 620 𝑁, 

𝑋𝐶 =
2

3
𝑃1 +

1

2
𝑃2 +

4

3
𝑄 = 560 𝑁, 𝑋𝐴 = −𝑋𝐶 = −560 𝑁. 

  



P r o b l e m. An evenly distributed force of intensity q0 N/m acts on a 

cantilever beam whose dimensions are shown in Fig. Neglecting the weight 

of beam and assuming the forces acting on the embedded portion to be 

distributed according to a linear law, determine the magnitude of the 

maximum intensities qm and 𝑞′𝑚 of the given forces if b=2a. 

S o l u t i o n. Replace the distributed 

forces by their resultants Q, R, and 𝑅′. 

 𝑄 = 𝑞0𝑏 , 𝑅 =
1

2
𝑞𝑚𝑎 , 𝑅

′ =
1

2
𝑞′𝑚𝑎. 

Now we can write the equilibrium 

conditions for the parallel forces acting 

on the beam: 

 𝐹𝑘𝑦 = 𝑄 + 𝑅 − 𝑅
′ = 0,    𝑚𝐶 𝐹𝑘 = 𝑅

𝑎

3
− 𝑄( 
𝑏

2
+
𝑎

3
 ) = 0. 

Substituting the values of Q, R, and 𝑅′ and solving the equations, we 

obtain:                   𝑞𝑚=  3
𝑏2

𝑎2
+ 2
𝑏

𝑎
 𝑞0;      𝑞

′
𝑚 =  3

𝑏2

𝑎2
+ 4
𝑏

𝑎
 𝑞0. 

  



P r o b l e m. A dam of rectangular cross section of height h and width a rests on 

a horizontal foundation AB (Fig.). The weight of a unit volume of the impounded 

water is 𝛾, and the weight of a unit volume of the dam filling is 𝛾1. Assuming the 

forces acting on the foundation to be linearly distributed (according to a 

trapezoidal law), determine the minimum and maximum intensities (q1 and q2) of 

the forces. S o l u t i o n. Consider a section of the dam 

of unit length perpendicular to the plane of the 

diagram. Consider further the forces acting on the 

section as if they were applied at the median cross 

section shown in Fig. These forces are: the 

pressure of the water P, the weight of the dam Q, 

the vertical reaction of the foundation, which we 

shall denote by two forces R and 𝑹′, and the 

horizontal reaction F. 

The component R of the reaction  is R=q1a. Component 𝑹′ is the resultant of 

linearly distributed forces with intensity varying from zero to (q2-q1); hence 

𝑅′ = 𝑞2 − 𝑞1
𝑎

2
. The weight of a unit length of the dam is Q= 𝛾1𝑎ℎ, whence 

The maximum intensity of the water loading is 

qm= 𝛾ℎ, and P=1/2qm h=1/2 𝛾ℎ2.  



𝑃 =
1

2
𝛾ℎ2,   𝑄 = 𝛾1𝑎ℎ,   𝑅 = 𝑞1𝑎,

  𝑅′ = 𝑞2 − 𝑞1
𝑎

2
. 

Writing now the equilibrium equations and 

taking the moments about the point of 

application of force R, we obtain: 

 𝐹𝑘𝑥 = 𝑃 − 𝐹 = 0,  𝐹𝑘𝑦 = 𝑅 + 𝑅
′ − 𝑄 = 0, 

 𝑚𝑂 𝑭𝒌 = −𝑃
ℎ

3
+ 𝑅′
𝑎

6
= 0. 

The first equation gives the horizontal reaction F. From the second and 

third equations we find: 
𝑅′ = 2𝑃

ℎ

𝑎
;      𝑅 + 𝑅′ = 𝑄. 

Substituting the values of the forces in the equations we obtain a 

simultaneous system of two equations: 

𝑞2 − 𝑞1 = 2𝛾
ℎ3

𝑎2
,   𝑞2 + 𝑞1 = 2𝛾1ℎ, 

𝑞1 = 𝛾1 −
ℎ2

𝑎2
𝛾 ℎ,   𝑞2 = 𝛾1 +

ℎ2

𝑎2
𝛾 ℎ. whence 



P r o b l e m. A load of weight P = 100 N rests on a horizontal surface. 

Determine, the force Q that should be applied at an angle 𝛼 = 30° to the 

horizontal to move the load from its place, if the coefficient of static friction for 

the surfaces of contact is 𝑓0 = 0.6. 
 S o l u t i o n. According to the conditions of the 

problem we have to consider the position of impending 

motion of the load. In this position acting on it are 

forces P, Q, N and Fl . Writing the equilibrium 

equations in terms of the projections on the coordinate 

axes, we obtain: 
𝑄 cos𝛼 − 𝐹𝑙 = 0;      𝑁 + 𝑄 sin 𝛼 − 𝑃 = 0. 

 
From the second equation 𝑁 = 𝑃 − 𝑄 sin 𝛼, whence: 

𝐹𝑙 = 𝑓0𝑁 = 𝑓0 𝑃 − 𝑄 sin 𝛼 . 

Substituting this value of  Fl  in the first equation, we obtain finally: 

𝑄 =
𝑓0𝑃

cos 𝛼 + sin 𝛼
≈ 52 𝑁. 

 

 



P r o b l e m. Determine the angle 𝛼 to the horizontal at which the load 

on the inclined plane remains in equilibrium if the coefficient of friction is f0 . 

S o l u t i o n. The problem requires that 

all possible positions for the equilibrium 

of the load be determined. For this, let us 

first establish the position of impending 

motion at which 𝛼 = 𝛼𝑙. In that position 

acting on the load are its weight P, the 

normal reaction N and the limiting 

friction Fl.  

Constructing a closed triangle with these forces, we find that 𝐹𝑙 = 𝑁 tan𝛼𝑙 . 
But, on the other hand, 𝐹𝑙 = 𝑓0𝑁.  Consequently, tan𝛼𝑙 = 𝑓0.  

In this equation 𝛼𝑙 decreases as 𝑓0 decreases. We conclude, therefore, 

that equilibrium is also possible at 𝛼 < 𝛼𝑙. Finally, all the values of 𝛼 at 

which the load remains in equilibrium are determined by the inequality 

tan 𝛼 ≤ 𝑓0.  

If there is no friction (𝑓0 = 0), equilibrium is possible only at 𝛼 = 0.  



Problem. A bent bar whose members are at right angles is constrained at A and 

B as shown in Fig. The vertical distance between A and B is h. Neglecting the 

weight of the bar, determine the thickness d at which the bar with a load lying 

on its horizontal member will remain in equilibrium regardless of the location of 

the load. The coefficient of static friction of the bar on the constraints is 𝑓0. 

S o l u t i o n. Let us denote the weight of the load by P 

and its distance from the vertical member of the bar by 

l. Now consider the position of impending slip of the 

bar, when 𝑑 = 𝑑𝑙 . In this position acting on it are force 

P, N, F, 𝑵′, and 𝑭′, where F and 𝑭′ are the forces of 

limiting friction. 

Writing the equilibrium equations, taking the moments 

about A, we obtain: 

𝑁 − 𝑁′ = 0,    𝐹 + 𝐹′ − 𝑃 = 0,    𝑁ℎ − 𝐹𝑑𝑙 − 𝑃𝑙 = 0, 

where 𝐹 = 𝑓0𝑁 and 𝐹′ = 𝑓0𝑁′. From the first two equations we find: 

𝑁 = 𝑁′,    𝑃 = 2𝑓0𝑁. 

Substituting these values in the third equation and eliminating N, we have: 
 



ℎ − 𝑓0𝑑𝑙 − 2𝑓0𝑙 = 0,  whence  𝑑𝑙 =
ℎ

𝑓0
− 2𝑙. 

If in this equation we reduce 𝑓0 the right-hand side 

will tend to infinity. Hence, equilibrium is possible 

at any value of 𝑑 > 𝑑𝑙. The maximum value of 𝑑𝑙 is 

at l = 0.  

Thus, the bar will remain in equilibrium wherever the load is placed (at l>0) 

if the inequality 𝑑 ≥
ℎ

𝑓0
  is satisfied.  

The less the friction the grater must d be, If there is no friction (f0=0) 

equilibrium is obviously impossible, as 𝑑 = ∞. 

Let us analyze this result. 



P r o b l e m. Neglecting the weight of the ladder AB in Fig., determine the 

values of angle 𝛼 at which a man can climb to the top of the ladder at B if the 

angle of friction for the contacts at the floor and the wall is 𝜑0. 

S o l u t i o n. Let us examine the position of 

impending slip of the ladder by graphical method. 

For impending motion the forces acting on the 

ladder are the reactions of the floor and wall RA and 

RB which are inclined at the angle of friction 𝜑0 to 

the normals of the surfaces. The action lines of the 

reaction intersect at K.  

Thus, for the system to be in equilibrium the third 

force P acting on the ladder must also pass through K.  

Hence, in the position shown the man cannot climb higher than D. For him to 

reach B the action lines of RA and RB must intersect somewhere along BO, 

which is possible only if force RA is directed along AB, i.e., when 𝛼 ≤ 𝜑0. 

Thus a man can climb to the top of a ladder only if its angle with the wall 

does not exceed the angle of friction with the floor. The friction on the wall is 

irrelevant, i.e., the wall may be smooth. 



P r o b l e m. A force F is applied to the lever DE of the band-brake. 

Determine the frictional torque MT exerted on the drum of radius R, if CD = 

2CE and the coefficient of friction of the band on the drum is 𝑓0 = 0.5. 

S o l u t i o n. Acting on the drum and 

band AB wrapped around it is a force P 

(evidently P=2F) applied at A and a force 

Q applied at B.  

We also have 𝑓0 = 0.5 and 𝛼 =
5

4
𝜋 =

3.93 radians.  

Hence,    𝑄 = 2𝐹𝑒−
5

8
𝜋 ≈ 0.28 𝐹. 

The required torque is 𝑀𝑇 = 𝑃 − 𝑄 𝑅 = 1.72𝐹𝑅 . 

The less the value of Q, i.e. the grater the coefficient of friction 𝑓0 and the 

angle 𝛼, the greater the torque. 



Problem. Determine the values of angle 𝛼 at which a cylinder of radius 

R will remain at rest on an inclined plane if the coefficient of rolling friction 

is k. 

S o l u t i o n. Consider the position of impending 

motion, when 𝛼 = 𝛼𝑙.  

Resolving force P into rectangular components P1 

and P2, we find that the moving force 𝑄𝑙 = 𝑃1 =
𝑃 sin 𝛼𝑙 , and the normal reaction 𝑁 = 𝑃2 =
𝑃 cos 𝛼𝑙.  

We have: 𝑃 sin 𝛼𝑙 =
𝑘

𝑅
𝑃 cos𝛼𝑙 , or tan𝛼𝑙 =

𝑘

𝑅
. 

If k tend to zero the value of 𝛼𝑙 also tends to zero. We conclude from 

this that equilibrium is maintained at any angle 𝛼 < 𝛼𝑙.  



P r o b l e m. Acting on a rigid body are two couples in mutually 

perpendicular planes. The moment of each is 30 N-m. Determine the resultant 

couple. 
S o l u t i o n. Denote the moments of the 

two couples by vectors m1 and m2 applied 

at an arbitrary point A; the moment of the 

resultant couples is denoted by vector m.  

The resultant couple is located in plane 

ABCD normal to m and the magnitude of 

the resultant moment is 30 2 N-m. 

If the sense of rotation of one of given couples is reversed, the resultant couple 

will occupy a plane normal to ABCD. 



P r o b l e m. The cube hangs from two vertical rods AA1 and BB1 so that its 

diagonal AB is horizontal. Applied to the cube are couples (P, 𝑷′) and (Q,𝑸′). 
Neglecting the weight of the cube, determine the relation between forces P 

and Q at which it will be in equilibrium and the reactions of the rods. 
S o l u t i o n. The system of couples (P, 𝑷′) and 

(Q, 𝑸′) is equivalent to a couple and can be 

balanced only by a couple. Hence, the required 

reactions N and 𝑵′ must form a couple. 
Let us denote its moment m normal to diagonal 

AB as shown in the diagram. In scalar 

magnitude 𝑚 = 𝑁𝑎 2, where a is the length of 

the edge of the cube.  
Denote the moments of the given couples by 

the symbols m1 and m2: their scalar magnitudes 

are m1=Pa and m2=Qa. 
Write the equilibrium equations: 

 𝑚𝑘𝑥 = 𝑚2 −𝑚cos45° = 0,     𝑚𝑘𝑦 = 𝑚1 −𝑚cos 45° = 0. Whence: 

 m1= m2, i.e., Q=P.  𝑚 =
𝑚1
cos 45°

= 𝑚1 2 = 𝑃𝑎 2. But 𝑚 = 𝑁𝑎 2, hence N=P. 

Thus, equilibrium is possible when Q=P. The reactions of the rods are equal to 

P in magnitude and are directed as shown. 



P r o b l e m. Determine the stresses in section AA1 of a beam. Force Q 

goes through the centre of the right-hand portion of the beam; force F lies 

in the plane Oxz; force P is parallel to the y axis. 
S o l u t i o n. For this reduce all the 

forces to the centre O of the 

section, and place the origin of the 

coordinate system there.  
To determine the principal vector 

and principal moment of the system, 

we have: 

𝑅𝑥 = 𝐹 sin 𝛼 − 𝑄,    𝑅𝑦 = −𝑃,    𝑅𝑧 = 𝐹 cos𝛼; 

𝑀𝑥 = 𝑏𝑃,    𝑀𝑦 = 𝑏𝐹 sin 𝛼 −
𝑏

2
𝑄,    𝑀𝑧 =

ℎ

2
𝑃. 

Thus, acting on the section AA1 are two lateral forces Rx and Ry, an 

axial tension Rz, and three couples of moments Mx, My, and Mz (Fig. b): the 

first two tend to bend the beam about axes Ox and Oy and the last tends to 

twist it about axis Oz. 



P r o b l e m. Three workers lift an homogeneous rectangular plate whose 

dimensions are a by b . If one worker is at A, determine the points B and D 

where the other workers should stand so that they would all exert the same 

force. 

S o l u t i o n. The plate is a free body 

acted upon by four parallel forces Q1, Q2, 

Q3 and P, where P is the weight of the 

plate.  

Assuming that the plate is horizontal, we 

obtain from the equilibrium conditions: 

𝑄1𝑏 − 𝑄2𝑦 − 𝑃
𝑏

2
= 0, −𝑄2𝑎 − 𝑄3𝑥 + 𝑃

𝑎

2
= 0,  𝑄1 + 𝑄2 + 𝑄3 = 𝑃.  

According to the conditions of the problem, 𝑄1 =𝑄2=𝑄3 = 𝑄, hence, from 

the last equation,  P = 3Q. 

Substituting this expression in the first two equations and eliminating Q, 

we have: 

𝑏 + 𝑦 =
3

2
𝑏,        𝑎 + 𝑥 =

3

2
𝑎, 𝑥 =

𝑎

2
,    𝑦 =

𝑏

2
. 



P r o b l e m. A horizontal shaft supported in bearings A and B as shown 

has attached at right angles to it a pulley of radius r1 = 20 cm and a drum of 

radius r2=15 cm. The  shaft is driven by a belt passing over the pulley; 

attached to a cable wound on the drum is a load of weight P = 1800 N which 

is lifted with uniform motion when the shaft turns. Neglecting the weight of 

the construction, determine the reactions of the bearings and the tension T1 

in the driving portion of the belt, if it is known that, it is double the tension 

T2 in the driven portion and if a=40 cm, b=60 cm, and 𝛼 = 30°. 

S o l u t i o n. As the shaft rotates 

uniformly, the forces acting on it are 

in equilibrium and the equations of 

equilibrium can be applied.  

From the equilibrium equations, and 

noting that F = P, we obtain: 

𝑃 cos𝛼 + 𝑇1 + 𝑇2 + 𝑌𝐴 + 𝑌𝐵 = 0, 

−𝑃 sin 𝛼 + 𝑍𝐴 + 𝑍𝐵 = 0, −𝑟2𝑃 + 𝑟1𝑇1 − 𝑟1𝑇2 = 0, 𝑏𝑃 sin 𝛼 − 𝑎 + 𝑏 𝑍𝐵 = 0, 

𝑏𝑃 cos 𝛼 − 𝑎𝑇1 − 𝑎𝑇2 + 𝑎 + 𝑏 𝑌𝐵 = 0. 

Remembering that 𝑇1 = 2𝑇2, we find immediately from the third and 

fourth equations that 𝑇2 =
𝑟2𝑃

𝑟1
= 1350 𝑁, 𝑍𝐵 =

𝑏𝑃

𝑎 + 𝑏
sin 𝛼 = 540 𝑁. 



From the fifth equation we obtain  𝑌𝐵 =
3𝑎𝑇2−𝑏𝑃 cos 𝛼

𝑎+𝑏
≈ 690 𝑁. 

Substituting these values in other equations we find: 

𝑌𝐴 = −𝑃 cos 𝛼 − 3𝑇2 − 𝑌𝐵 ≈ −6300 𝑁, 𝑍𝐴 = 𝑃 sin𝛼 − 𝑍𝐵 = 360 𝑁, 

and finally, 

𝑇1 = 2700 𝑁, 𝑌𝐴 ≈ −6300 𝑁, 𝑍𝐴 = 360 𝑁, 𝑌𝐵 ≈ 690 𝑁, 𝑍𝐵 = 540 𝑁. 



Problem. An equilateral triangular plate with sides of length a is 

supported in a horizontal plane by six bars as shown in fig. Each inclined 

bar makes an angle of 𝛼 = 30° with the horizontal. Acting on the plate is a 

couple of moment M. Neglecting the weight of the plate, determine the 

stresses produced in the bars. 
S o l u t i o n. Regarding the plate as a free 

body, draw, as shown in the figure, the vector 

of moment M of the couple and the reactions of 

the bars S1, S2, …, S6.  

Writing the equations of the moment with 

respect to that x-axis, we obtain, as Mz=M, 
𝑆6 cos 𝛼 ℎ + 𝑀 = 0, 

where ℎ =
𝑎 3

2
 is the altitude of the triangle.  

From this we find: 𝑆6 = −
2 3

3

𝑀

𝑎 cos 𝛼
. 

Writing the equations of the moments with respect to the axes along bars 2 

and 3, we obtain similar results for forces S4 and S5. 

Now write the equations of the moments about axis x, which is directed 

along side BA of the triangle. Taking into account that Mx=0, we obtain  
𝑆3ℎ + 𝑆4 sin 𝛼 ℎ = 0, whence, as S4=S6, we find 



𝑆3 = −𝑆4 sin 𝛼 =
2 3

3

𝑀

𝑎
tan𝛼 . 

Writing the moment equations with respect to axes AC and CB, we obtain 

similar results for S1 and S2. 

Finally, for 𝛼 = 30°, we have: 

𝑆1 = 𝑆2 = 𝑆3 =
2

3

𝑀

𝑎
;   𝑆4 = 𝑆5 = 𝑆6 = −

4

3

𝑀

𝑎
. 

The answer shows that the given couple creates tensions in the vertical 

bars and compressions in the inclined ones. 


