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Problem. Atrain travelling at a velocity vy = 54 km/h stops in ¢; =2
min after braking starts. Assuming the motion of the train during braking to

be uniformly retarded, determine the distance covered during the braking
time.

S olution. The problem states that the motion is uniformly retarded:
$2

PR

where x 1s measured from the place where braking began (therefore x, = 0).
The velocity 1s

X =gt a

v = v, + at.

As the train stops at ¢ = ¢;, its velocity at that instant 1s v; = 0. Substituting
these values in second equation, we obtain 0 = v, + at;, whence we find the
acceleration:

Substituting the value of a into first equation and assuming ¢ = ¢, , we obtain
the required distance:

Vol
x1=%=900m.



Problem. Aman of height 2 walks away from a lamp hanging at a
height H with a velocity u. Determine the velocity of the tip of the man’s

shadow. . ] _ .
S olutio n. First let us establish the law of motion

of the tip of the shadow.
Depicting the man at an arbitrary distance x;

from O, we find that the tip of his shadow 1is at x,.
By virtue of the similarity of triangle OAM and

DAB, we have: x, = %xl.

This is the equation of motion for the tip of the
shadow M, provided the equation of motion for the
man, 1.e., x; = f(t) , is known.

Differentiating both parts of the equation with respect to time and noting

dx dx
that d_t1 = 1 and —=

317 1% where v is the required velocity, we obtain:

H
“H-h"
[f the man moves with uniform velocity (u = const), the velocity of the

v

shadow v is also uniform, but it is AT times faster than that of the man.



Problem. Blocks 4 and B of the mechanism are connected by a rod 4B of
length / = 30 cm and move in mutually perpendicular directions when the crank

rotates. The crank OD of length % is hinged to the middle of the rod AB to D.

Develop the equations of motion for the sliding blocks 4 and B if angle ¢
increases 1n proportion to time (such rotation is called uniform) and the speed of
rotation of the crank 1s 2 rpm. Determine the velocity and acceleration of the

blocks at the instant When angle ¢ = 30°,
Solution. According to the conditions of

the problem, ¢ = kt, where k is a constant factor.
We also know that, at # = 60 sec, angle ¢ = 4 (two
revolutions). Hence, 47 = 60k, and k = m/15.

As OD = 4D, £0AB = ¢. Hence, x, = Lcos @, and
yp = lsing,or x4, =lcoskt; yp = lsinkt.

2

N
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ot Differentiating x, and y with respect to time, we
y /‘,,"‘fﬁé —r—— obtain the velocity and acceleration of the blocks:
|7 vy = —klsinkt, a, =—k*lcoskt; wvp=klcoskt,
ap = —k?lsinkt.
When angle ¢ = 30°, kt==. °F
2
At that instant v, = —% = —3.14cm/sec, a; = — = ;ﬁ = —1.14 cm/sec?,
kI3 cm k2l
vg =——=544—, az= —— = —0.66 cm/sec?.
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Problem. The motion of a particle is described by the equations
x = 8t — 4t?, y = 6t — 3t2,
where x and y are in meters and ¢ is in seconds. Determine the path,
velocity and acceleration of the particle.

S olution. To determine the path, we first eliminate time ¢ from the
equations of motion. Multiplying both parts of the first equation by 3 and
both parts of the second by 4, and subtracting the second from the first, we

obtain3x —4y =0,0ry = %x.
Let us determine the velocity of the particle:

vx=i—f=8(1—t), vy=i—3t’=6(1—t);v= /v£+vy = 10(1 —¢).

Determine the acceleration of the particle,

d?x d?y :

.ax=W=—8, ay=W=—6, a =10 m/sec”.
7 . Vectors v and a are evidently directed along
- iy | the path, i.e., along 4B. As a = const.,
2F ] ! | | !

1 the motion is uniformly variable.
Iy . £ !
0 & 3 4 *



Problem. The motion of a particle 1s described by the equations:
x = lsinwt, y = lcoswt, zZ = ut,
where [, w and u are constants. Determine the path, velocity and acceleration of
the particle.

S o lution. Squaring the first two equations and adding them, we obtain
(since sin? wt+ cos? wt = 1): x% + y? =12,
Hence, the path lies on a circular cylinder of radius [, the axis of which is

coincident with the z axis.
Determining ¢ from the third equation and substituting

its value into first, we find: x = [sin (g z) ]

- Thus, the path of the particle is the line of intersection of a
sinusoidal surface, whose generators are parallel to the y
axis, with the cylindrical surface of radius /. This curve is
T called a screw.

|| # It can be seen from the equations of motion that the
\LIL particle makes one turn along the screw line in time ¢;,
7 determined by the equation wt; = 2.

This displacement of the particle parallel to the z axis in that time i1s h = ut; =
2%“ and 1s called the pitch of the screw.



Differentiating the equations of motion with respect to time, we obtain:
v, = lw coswt, vy = —lw sin wt, 1 =

whence v = \/I2w?(cos2wt + sinZwt) + u? = V2w + u?.

Calculate the projections of the acceleration:

a, = —lw? sin wt, a, = —lw? cos wt, al =14,

whence = /a,% + a3 = lw?.

Thus, the motion has an acceleration of constant magnitude. To determine the

direction of acceleration, we have the equations:
. a
cosa; = (;—x = —sin wt = —E, cosfB{ = ?y= —coswt = —%, cCoSy; = % =10}
: x
Eevidently 7= cosa, %= cosf3, where @ and 8 are the angles made by the

radius /, drawn from the axis of the cylinder to the moving particle, with the x
and y axes.
As the cosines of angles a; and f; differ from the cosines of the angles a and

f only in sign, we conclude that the acceleration of the particles is
continuously directed along the radius of the cylinder towards its axis.



Pr o b le m. Determine the path, velocity and acceleration of point M in the
middle of the connecting rod of the crank, 1f O4 = AB = 2r and angle ¢ increases
in proportion with time: ¢ = wt.
Solution. Letus develop the equations of
motion of point M:
X=2rcos@ +rcose,y=rsing.
= Substituting the expression for ¢, we obtain the

equations of motion of point M:
x = 3r cos wt, y =rsinwt.

To determine the path of M we write the equations of motion in the form:

X y .
§=Coswt, ;=Slna)t. 1 !
Squaring these equations and adding them, we obtain: 9% = 1’—2 1l

Thus, the path described by point M is an ellipse with semiaxes equal 3@ and a.

Determine the velocity of point M:

V., = —3rw sin wt, V, =rwcoswt; V= rw\/9sin2wt + cos?wt.
Now determine the acceleration of point M: a, = —3r cos wt = —w*x,
a, = —rw? sin wt = —w?y, whence a = \/w‘*(xz 2= 5 &

where 7 is the radius vector from the origin to point M.



Problem Small oscillations of the pendulum are represented by the
equation of motion s = [sinkt (the origin 1s at O, / and k are constants).
Determine the velocity, tangential and normal accelerations of the bob and the

positions at which they become zero if the bob describes a circular arc of radius
.

S olution From the respective

equations we find:

d d !
v=""=lkcoskt; a, == =—lk*sinkt,

The equation of motion is that of simple harmonic motion, the amplitude
of swing being /. In the extreme positions 4 and B, sinkt = +1, and
consequently, sin kt = 0 while cos kt = 1. In this position, a, = 0 and v and
a,, have their maximum values:

€k

vmax ¥ lk’ an o l



Problem. A train starts moving from rest with uniform acceleration
along a curve of radius R = 800 m and reaches a velocity v; = 36 km/h after
travelling a distance s; = 600 m. Determine the velocity and acceleration of
the train at the middle of this distance.

Solution. As the train moves with uniform acceleration and vy = 0, its
equation of motion (assumings, = 0)is s = %artz,and velocity is v = a,t.
Eliminating time ¢ from these equations, we obtain v = 2a,s.
According to the conditions of the problem, at s =s,, v=v;, whence we find:
vi
ar = 2—31 .
At the middle of the path, where s, = 52—1, the velocity v, 1s

Vq
Uy = /2Q.:Sy =+[G;51 = —2

2 %
The normal acceleration at this point of the path is a,, = - = —*

13174

Z
. v 1 1
Knowing a, and a,,, we find: a, = [a? + a%z — ?1 ,Q n =4

Substituting the numerical values, we obtain:

v, ~ 7.1m/sec, ay = 75 0.1 m/sec?.



P r o bl e m The equations of motion for a particle thrown with a horizontal
velocity are x = vgt, y = % gt?, where v, and g are constants.

Determine the path, velocity and acceleration of the particle, its tangential and
normal accelerations and the radius of curvature of its path at any point,
expressing them in terms of the velocity of the particle at given point.

0 z S olution. Determining ¢ from the first equation

and substituting its expression into the second, we

a | obtain: y = -L;x2,
; 2vy
T parabola.

So the path of the particle 1s a

Differentiating the equation of motion, we find:

\ % T dx d [
Uy = =Vg; Vy= Sq2 gt,whence v = |v§ + g?t2.
¢ dt dt

i ] (g % d?y
From the respective equations we have:a, = AT 0, a,= Tz=9 a=g.

In the present case the particle has an acceleration of constant magnitude

and direction, parallel to y axis. Note that, although a = const., the motion of
the particle is not uniformly variable, since the condition for uniformly variable
motion 1s not a = const., but a; = const. In this case, we shall find, a; 1s not
constant.



Knowing the dependence of v on ¢, we can find a;:

dv g2t gt
a, = = = .

dt
i 4= g

1
But we have v% = v§ + g*t?, and consequently, t = p v2 — vg.
L1/ : : %3
Substituting this expression of 7, we have: a, = g |1 — v—g

It follows that at the initial moment, when v = v, a, = 0, then
increasing together with v and, at v - 00,a; — g. Thus, in the limit the
tangential acceleration approaches the total acceleration g.

AR A

To determine a,,, we refer to the equation a®> = a2 + a2, whence

2 2
2f Ll e 72L])2 2 o) — 2% _ Yog
ar,=a-—a;r=9g-—g (1——2)—9 i540hd 2% 5 sl
v v v
Thus, at the initial moment (v = v,), a,, = g, decreasing as v increases
and in the limit approaching zero.

. . . 2
To determine the radius of curvature of the path, we use the equation a,, = %,

p2 2
Whencep = a_ = a
n 0



Problem. Ashaft rotation with a speed of n = 90 rpm decelerates
uniformly when the motor is switched off and stops 1n ¢, = 40 sec. Determine
the number of revolutions made by the shaft in this time.

S olution. As the rotation is uniformly retarded,
2

(p=w0t+8%,w=w0+st.

The 1nitial angular velocity of the uniformly retarded rotation is that
which the shaft had before the motor was switched off. Hence, wg = %.
At the instant ¢ = ¢,, when the shaft stopped, its angular velocity was

w1 = 0. Substituting these values into equation, we obtain:

0=““tet; and &=—o—
=3g Tt and &= 300,

If we denote as N the number of revolutions of the shaft in time #; (not be
confused with n, which is the angular velocity!), the angle of rotation in that

time will be ¢, = 2N. Substituting the values of € and ¢, we obtain

=30 "0 " g0

nt ]
whence N = ES = 30 revolutions.




Proble m. A flywheel of radius R = 1.2 m rotates uniformly, making n
= 90 rpm. Determine the linear velocity and acceleration of a point on the rim
of the flywheel.

S olution The linear velocity of such a point is v = Rw, where the
angular velocityw must be expressed in radians per second. In our case

A ; i}
W= o5 =3msec.
Hence,
= RnR 11.3 iy
VT30 Y e
As w = const., € = 0, and consequently
T4n?

a=a, =Rw*= ohh R =~ 106.6 m/sec?.

The acceleration is directed towards the axis of rotation.



Problem. The equation of the motion of an accelerated flywheel 1s
9
QY = itg'
Determine the linear velocity and acceleration of a point lying at a distance /& =
0.8 m from the axis of rotation at the instant when its tangential and normal
accelerations are equal.
S ol ution. We determine the angular velocity and angular acceleration

of the flywheel:

_dqa_27t2 _da)_27t
AN
The formulas for the tangential and normal acceleration of the point are
a, = he, and a,, = hw?.

Denote the instant when a, = a,, by the symbol ¢,. Obviously, at that

. 27 27 64 4
instant&; = wf, or —t; = (3%, whence t} =— and ¢; = sec.

Substituting this value of ¢; in the expressions for w and &, we find that at

time ¢,

3 -1 2 -2
W, = =sec ", g = — sec” <.

Z 4
The required values are thus

vy = hw, =12m/sec; a, =h ’{:‘12 i on 1.8V2 ~ 2.54 m/sec?.



Problem. The weight B rotates a shaft of radius r with gear / and radius r,
mounted on it. The weight starts moving from rest with a constant acceleration
a. Develop the equation of rotation of the gear 2 of radius r, which is meshed
with gear /.

Solution As the initial velocity of the
weight 1s zero, its velocity at any instant 1s
vg = at. All the points on the surface of the
shaft have the same velocity. At the same time,
their velocity 1s w47, where w; is the angular
velocity of both the shaft and gear /.

at
Consequently, w7 = at, wq = —

As at point C, where the gears mesh, the linear velocity of both gears must be
the same, we have v, = wr; = w,1,, whence w, = %wl = %t.
2 2

dt
Integrating both sides and assume angle ¢, = 0 at time ¢ = 0, we obtain the

3 d s
Since w, = —2, we have dg, = # t dt.
2

equation of uniformly accelerated rotation of gear 2 in the form:

ra

= —t°,
P2 VARD)



P r o ble m. Determine the relation between the velocities of points 4 and B

of the ellipsograph rule if angle ¢ is given.

g _ S oluti1on. The directions of velocities of
% %]F point 4 and B are known. Hence, projecting
4l / vectors v, and vg on AB and applying the
! theorem of projections of two points, we obtain:
/ ' ( v, oS @ = vp cos(90° — @),
1,/ /\9 ¢ J | r whence
z E@_‘;—P‘iﬁ*;i " vy = vptang.




Pr o b 1le m. Determine the velocity of point M on the rim of the
rolling wheel by introducing the instantaneous center of zero velocity.

S olution The point of contact P of the
wheel 1s the instantaneous center of zero
velocity, as vp = 0. Consequently, vy L PM. As
the right angle PMD rests on the diameter, the
velocity vector vy, of any point of the rim
passes through point D.

Writing the proportion ;—;"; = ;—‘é and noting that

PC=Rand PM = 2R cos a, we find
Vy = 2VcCOS .

The further point M is from P, the grater its velocity. The upper end D of

the vertical diameter has the maximum velocity vp = 2v.. The angular
velocity of the wheel 1s w = ;—‘é = %.

The velocities are similarly distributed for all cases of a wheel or gear
rolling along a cylindrical surface.



Pr o ble m. Determine the velocity of the centre C of the pulley of radius r
and its angular velocity if load A 1s moving up with a velocity v, and load B
1s moving down with a velocity v,. The thread does not slip and all its
sections are vertical. Solution. As the thread does not slip on the
' ‘ pulley, the velocities of points a and b of the
pulley are equal in magnitude to the velocities
of the loads, 1.e.,v, = v, and v, = vy,

Knowing the velocities of points a and b and
assuming for convenience that vy > v,, we can
determine the position of the instantaneous
centre of zero velocity P of the pulley. The
velocity of the centre of pulley C is denoted by
the vector v.

. lvp+(—vy)| lvp—v,|
We develop the equations: w = [yt (va)l w0
ab bC
. Vpt+v Vp—1
whence, as ab = 2r and bC = r. we obtain w = BZ?‘ A 32 41

At vz > v, the centre moves up; if vy < v, it moves down; at vz = v, v = 0.
The values of w and v for the case of both loads lowering can be found by

substituting—v, for v, in the equations.



Problem Link OA rotates about axis O with an angular velocityw ;
with it moves gear / which rolls around the fixed gear 2. The radii of the two
gears are both equal to . Hinged to gear / is a connecting rod BD of length /,
attached to which is a rockshaft DC. Determine the angular velocity wgp of
the connecting rod for the instant when it is perpendicular to link OA, if at

that instant angle BDC = 45°.

Solution. Letus determine the velocity of
point B from the fact that it also belongs to gear
[, for which the velocity 1s known to be
Va4 = Wgall, (vq L OA) and  the

instantaneous center of zero velocity is at P;.
Consequently, vg L PB, and from the theorem

of the projections of velocities vp cos45° =
v, whence vy = v,V2 = 2rwo V2.
Now we know the velocity vz of a point of the

connecting rod and the direction of velocity
Up, (UD il DC)

Erecting perpendiculars to vz and v, we obtain the instantaneous centre Py,

of the connecting rod: BPgp

Up
BPpp

i
= 4?(1)014.

— Y2 on i
= ?,W €ncec Wpp =



Problem. Agear / and crank OA are mounted independently of each
other on an axle O. The crank rotates with an angular velocity wg4. Fixed to
the connecting rod AB with its center at 4 1s gear 2. The crank OA carries axis
A of the gear 2, the connecting rod passes through the rocker slide C. The
radii of gears / and 2 are both equal to . Determine the angular velocity w4
of gear / at the instant when OA L OC, if ZACO = 30°.

Solution. For gear 2 we know the direction
and magnitude of the velocity of point A4:
Vy 1 OA, Vy = (l)OAZT.

Besides, we know the direction of velocity vy

Gear 2 and the connecting rod are actually one
body for which we know the direction of the
velocity of point C: vector v is directed along
CA, as at point C the rod can only slide in the
rocker. By erecting the perpendiculars to v, and

ve, We obtain the instantaneous center of zero
velocity P of the body BAE.

ig.
From the statement of the problem £ACO = 30°, hence 2CPA = 30°.
Therefore AC =240 = 4r, PA = 2AC = 8r, PE = Tr, and from the proportion

Bed 8 VA 7 7 -4 A %
—= = —=£ we find that vy = - v, = -rwp4, Whence wqy = — = - Wy 4.
PE ~ PA FFErs Vil T LSRR A a4




Problem. The center O of a wheel of radius R = 0.2 m rolling along a
straight rail has at a given instant a velocity v, = 1 m/sec and an acceleration
ap = 2 m/sec’. Determine the acceleration of the point B lying at the end of

diameter 4B perpendicular to OP and the acceleration of the point P
coincident with the instantaneous center of zero velocity.

S ol ution The point of contact P is the
instantaneous center of zero velocity; hence the angular

velocity of the wheel is
Vo Vo

OJZEZF.

As the quantity PO = R is constant for any position of the wheel, by

differentiating the equation with respect to time we obtain
dw 1 dvo ag
—=—— 0r &£=—.
dt R dt R
The signs of € and w are the same, therefore the rotation of the wheel is
accelerated.



It should not be assumed that v, is constant only because the given value
of v, = 1 m/sec. This value is for the given instant, and it changes with time,

J : dv L ) ! A
since ag # 0. In this case d—t" = a,, as the motion of point O is rectilinear. In

dv
the general case — = ay,.
/ 911/ . N
As point O 1s our pole, we have ag = ag + agg + apgp.

In our case BO=R,and ay, = BO - ¢ = a, = 2m/sec?, apy = B0 -w* =

172 )
EO = 5m/sec”.

Drawing axes Bx and By, we
find that

3 3m

Apx = dpp — Qg =sec72
111111 2m
dpy = Qo —3862

Whence ag = \[f‘%x +ag, = V13 = 3.6 m/sec?.
Similarly we can easily find that the acceleration of point P is
ap = ag,= 5m/sec? and is directed along PO. Thus, the acceleration of

point P, whose velocity at the given instant is zero, is not zero.



Problem. Gear / of radius »; = 0.3 m 1s fixed; rolling around it is gear 2
of radius 7, = 0.2 m mounted on link OA. The link turns about axis O and has at
the given instant an angular velocity w = 1 sec™! and an angular acceleration
&€ = —4 sec™?. Determine the acceleration of point the D on the rim of the
moving gear at the given instant (radius AD 1s perpendicular to the link).

Solution From the statement of the
problem it 1s easy to determine the velocity v,
and acceleration ay of the point 4 of the gear,

LA 72 . which we take as the pole.
% Knowing w and € of the link, we obtain

v, = 0A w = 0.5m/sec?,

au; = 0A- & = =2 m/sec?,
- ayy, = OA- w? = 0.5 m/sec?.
The point of contact P is the instantaneous center of gear 2, consequently, the
angular velocity of gear 2 is w, = Z—‘; = Z—A; w, = 2.5 sec™1.
The acceleration of point D is @p = @up + Agp + a5y + aB .

L B

a."\_l i

In our case DA =r,,a},= DA e, = =2 m/sec?, a}, = DA - w5 = 1.25 m/sec?.

Drawing axes Dx and Dy, we find that ap, = |as.| + ap, = 3.25 m/sec?, apy, =

|abal = @ = 1.5 m/sec?, whence ap = /af)x +aj, = 3.58 m/sec?.



Proble m. A wheel rolls along a straight rail so that the velocity v, of its
center C is constant. Determine the acceleration of a point M on the rim of the
wheel.

Solution. As v, = const., then point C is the
instantaneous center of zero acceleration. The

instantaneous center of zero velocity is at P.
Ve | L VE

Consequently, w = be = g — const.,
¢ 0 t i 0 0
EE=E 54 = , an = 1= Ui =
dt L= #

Thus, the acceleration of any point M on the rim (including P) is equal to
v2 /R and is directed towards the center of the wheel, since angle y = 0.



Problem. Attached to a crank OA rotating uniformly about axis O

with an angular velocity wps = 4sec™! is a connecting rod 4B hinged to a
rockshaft BC. The given dimensions are: O4 = r = 0.5 m, AB = 2r, BC =

/2. In the position shown in the diagram, ZOAB = 90° and ZABC = 45°.
Determine for this position the acceleration of point B of the connecting rod
and the angular velocity and angular acceleration of the rockshaft BC.

Solution. Considering
the motion of the connecting
rod AB, we take point 4 as the
pole. As wpy = const., we
obtain: Uy =TWpoy =
2m/sec, Ay = Aup =

rws, = 3m/sec?.

We know the path of point B of the connecting rod (a circle of radius
BC). Hence, knowing the direction of vg (vg L B(C), we can locate the
instantaneous center of zero velocity P of the rod. It is evident that AP = AB

v w L 8
= 2r. Therefore, wyp = 55 0T wyp = —% = 2 sec .



Knowing w5, we have ah, = AB - w4z = 4 m/sec?.

Knowing the path of point B, we can determine its normal acceleration
ag,. For this, applying the theorem of projections (or the instantaneous center
of zero velocity P), we first determine the velocity vz. We have vp cos 45° =

2 2

v,, whence vy = v,4V2. Therefore, ag,, = % = %‘% = 8v2 m/sec?.

Then ay + agy + apy = ag, + ap;. Now draw coordinate axis O;x
perpendicular to the unknown
vector ap, and project on it both
sides of vector equation (e). We
obtain ap, = apn COS45° —
|ag,| cos45°, whence

lapz| = apn — agA\/E 3

N A
*y

Bk o — -

= 8v2 — 4V2 = 4V/2.
m
And finally ag = \/aér + a3, =| 4\/|10 =12.65_-.
Then @ed 5 %, |€BC| = C;BC:E L
Solving them, we obtain: wge = 4 sec™ !, epc = —8 sec™ (the minus

shows that ag, is directed opposite to vz ).



Problem. Determine the velocities of point B and C of the bevel wheel if
the velocity v4 of the wheel center 4 along its path 1s known. The wheel runs
without slipping on the fixed conic surface K.

A
= S olution. The wheel rotates about a
Rf fixed point O. As it runs without slipping,
Ol oll=——= Jh  the points of the wheel on line OB must
N have the same velocity as the points of
K % surface K, 1.e., zero, and OB 1is the
instantaneous axis of rotation of the wheel.

N

Therefore v, = v4/h,, where w is the angular velocity of the wheel in its
motion about axis OB, and h; is the distance of 4 from that axis.

Hence, w = v, /h;.

The velocity v, of point C 1s wh, where 4, is the distance of C from
OB. As in this case h, = 2h;, v = 2v4. From the point B, which 1s on the
instantaneous axis of rotation, vy = 0.



Proble m Point M moves in a straight line along OA4 with a velocity u, while
OA 1itself turns in the plane Ox;y; round O with an angular velocity w. Find the
velocity of point M relative to the axes Ox;y;,expressed as a function of the

distance OM =r. S olution. Consider the motion of point M as a
U, resultant motion consisting of its relative motion

along OA and its motion together with OA.
The velocity u along OA is the relative velocity of

the point.

The rotational motion of OA4 about O is, for the
point M, the motion of transport, and the velocity
7, of the point of OA with which M coincides at the
given instant is the transport velocity vg..

5,' i

As this point of 04 moves along a circle of radius OM = r, v = rw and is
perpendicular to OM.

Constructing a parallelogram with vectors u and v, as its sides, we
obtain the absolute velocity v, of M relative to the axes Ox;y;. As u and v

are mutually perpendicular, in magnitude v, = Vu? + w?2r2.



Proble m. The current of a river of width 4 has a constant velocity v.
A man can row a boat in motionless water with a velocity u. Determine the
direction he should take in order to cross the river in the least possible time
and the point where he will reach the opposite bank.

9 S olut1on. Assume that the boat has started

. from point O. Assume further that the rower
steers his boat at a constant angle a to axis Oy;.
Then the absolute velocity v4 of the boat 1s
compounded of the relative velocity v,
imparted to it by the rower (v,.; = u) and the
transport velocity v;,., which 1s the velocity of
the stream(v, = V):V,; = Vyppy + Vg = U + .
The projections of the absolute velocity on the coordinate axes are

Vgx, = USINA +V; Vg =UCOSA.
As both projections are constant, the displacements of the boat along
the coordinate axes are x; = (usina + v)t; y; = (ucosa)t.

When the boat reaches the opposite bank, y; = h, whence the duration

of the crossing is t; = gxgl



Obviously #; will have the least value when cosa = 1, 1.e., when a = 0.

Consequently, in order to cross the river in the shortest time, the rower
should steer his boat perpendicular to the bank. This time is:

h

bnin = 1k

Assuming @ = 0 and t = t,,;,, 1n the expression for x;, we have
~h
i 1=
in?
Thus, the boat will reach the other bank at a point B at a distance x;

downstream from Oy; directly proportional to v and 4 and inversely
proportional to .



Problem. Ata given instant, the arm OM of a recording mechanism makes
an angle a with the horizontal and the pencil A has a velocity v directed
perpendicular to OM. The drum with the paper rotates about a vertical axis
with an angular velocity w. Determine the velocity u of the pencil on the paper
if the radius of the drum 1s a.

S ol ution The absolute velocity of the
pencil is v, = v. Velocity v can be regarded as the
geometrical sum of the velocity of the pencil relative
to the paper (i.e., the required velocity u) and the
transport velocity vg,., which 1s equal to the velocity
of the point of the paper with which the pencil
coincides at the given moment; its magnitude is
Ve = WA

From the theorem of the composition of velocities we have v = u + vy,
whence u = v + (—vy,.).

Constructing a parallelogram with vectors v and (—vy,.) as its sides, we
obtain the required velocity u. As the angle between v and (—v,.) 1s 90° — a,

in magnitude u = Vv? + w2a? + 2vwasina.




Problem. End B of a horizontal rod AB is hinged to a block sliding
along the slots of a rocker OC and turns the latter round axis O. The distance
from O to AB is h. Find the dependence of the angular velocity of the rocker
on the velocity v of the rod and angle ¢.

S ol u tion. The absolute velocity of the slide
block equals the velocity v of the rod. It can be
regarded as compounded of the relative velocity
V,.¢; of the block in its motion in the slots of the
rocker and the transport velocity vg,., which 1s the
velocity of the point of the rocker with which the
block coincides at the given time.

The direction of these velocities are along OB and perpendicular to OB,

respectively.
We obtain v,,; and v by resolving velocity v along them. From the

parallelogram we find that in magnitude v, = vcos .

: h .
But, on other hand, the transport velocity v4 = w - OB = w 234 where w 1s

the angular velocity of the rocker.

Equating expressions of v, we obtain the angular velocity: w = Ecoszq).



Problem. Awedge moving horizontally with an acceleration a4 pushes up a
rod moving in vertical slides. Determine the acceleration of the rod if the angle
of the wedge is a.

S olution. The absolute acceleration ay
of point A4 is directed vertically up. It can be
regarded as consisting of a relative
acceleration a,..; directed along the side of
the wedge and a transport acceleration ag,.,
which i1s equal to the acceleration of the
wedge a;.

As the motion of transport of the wedge 1s translation, by drawing a
parallelogram and taking into account that a; = a4, we obtain ay =
w1 tana.

Which i1s the acceleration of the rod.



Problem. The rocker OA turns with a constant angular velocity w about axis
O. A block B slides along the slots with a constant relative velocity u. Determine
the dependence of the absolute acceleration of the block on its distance x from O.

S olution. Stopping the rocker, we
find that the relative motion of the block
along it 1s uniform and rectilinear;
consequently a,.; = 0.

For the block, the motion of the rocker is that
of transport.

Consequently, the transport acceleration a;,. of the block is equal to the
acceleration of the point of the rocker, with which the block coincides.
Since that point of the rocker is moving in a circle of radius OB = x and

w = const., vector a; = ay,. and is directed along BO. In magnitude
2

A = AL = W X.

The Coriolis acceleration a., = 2wu. By turning the vector of the relative
velocity u about point B through a right angle in the direction of the rotation of
transport (clockwise), we obtain the direction of @, ;-

From Coriolis theorem, @; = Qe + Qg + Aor-
In the present case @,..; = 0 and @, 1s perpendicular to a;,..

Consequently, a, = /a2, + a2, = oVw*x? + 4u?.




Pr o bl e m. The eccentric is a circular disc of radius R rotating with a
uniform angular velocity w about axis O through the rim of the disc. Sliding
from point 4 along the disc with a constant relative velocity u 1s a pin M.
Determine the absolute acceleration of the pin at any time ¢.
Solution. Attime ¢ the pin is at a distance
der ¢ = AM = ut from 4. Consequently, at the instant
i angle AOM = a will be

: S u
— = —t,
2R 2R
as a 1s equal to halfthe central angle ACM.
Stopping the motion of the disc at time #, we find
that the relative motion of the pin is along a circle

a =

of radius R.
du u?
= . Ul s —= n gL
AS Vypop = U = cOnst., Ay = 1 0; aye = =1

The vector a,o; = a,,; is directed along the radius MC.

For the pin the motion of the disc is that of transport. Hence, the
transport acceleration a;,- of the pin 1s equal to the acceleration of the point
of the disc with which it coincides at the given time. This point moves in a

circle of radius OM = 2Rcos «. For the disc, w = const., hence € = 0,
andal, =0M-£=0; al =0M: w*=2Rw*cosa.



Vector a;,- = ag. is directed along MO.

As the motion is in one plane, a.,, = 20U

The direction of a,,, is found by turning vector v,..; = u round point M

through 90° in the direction of the motion of transport (counter-clockwise).
The absolute acceleration of the pin is

Qg = Qpgp + Qg + Aoy

In this case vectors a,.; and a,,- are collinear
and can be replaced by a collinear vector a; of
magnitude @y = Qe — Agpy-

Adding vectors ay and a;- according to the

parallelogram law, we obtain finally

Aq = \/a?r + (Are; — Acor)? + 204 (Ao — Agor) COS .



Problem Abodyin the Northern Hemisphere is translated from North to
South along a meridian with a velocity v,,; = um/sec. Determine the
magnitude and direction of the Coriolis acceleration of the body at latitude A.

S ol ution. Neglecting the dimensions of the
body, we treat it as a particle. The relative velocity of
the body # makes an angle a with the earth’s axis.

Consequently, a.,, = 2wusinA, where w 1is the
angular velocity of the earth’s rotation.

e e i B

(8 +
s drae

T —

Thus, the Coriolis acceleration is greatest at the
Pole, where A = 90°.

As the body approaches the equator, the value of a.,,» decreases, till it

reaches zero at the equator, where the vector v,¢; = u is parallel to the axis of
rotation of the earth.

The direction of a.,,- 1s found by the rule of a vector product.
As .o = 2(w X u) we find that vector a.,, is perpendicular to the plane
through vectors u# and w, 1.e., perpendicular to the meridian plane, and 1s

directed eastwards, from where the shortest turn from vector w to vector u 1S
seen anticlockwise.



The question of how the Coriolis acceleration affects the motion of
bodies at the earth’s surface i1s studied in the course of dynamics. However,
from the formula obtained i1t can be seen that the value of a,,, 1s usually
small, as the angular velocity of rotation of the earth is small:

200

14 2]
24131600 1

C

w

It is apparent, therefore, that for motions with small velocities the
Coriolis acceleration can, for all practical purposes, be neglected.



Proble m. The hypothenuse of the right-angled triangle ABC 1s AB =
2a = 20 cm, and £ZCBA = a = 60°. The triangle rotates about axis (Cz;
according to the law ¢ = 10t — 2t2. Particle M oscillates along AB about its

middle O, its equation of motion being ¢ = acos(g t) (axis O¢ 1s directed

along OA). Determine the absolute acceleration of the particle M at time ¢; = 2

SEC.

Solution. 1) Determine the position of M on
its relative path AB at time ¢;. From the equation
of the motion we have

| 21 1T
¢, = acos 3 )= "3

¥ T g le., at time #; the particle M is at the middle of
N
= & segment OB.
f ' | g | dé T 1\ E
As the relative motion is rectilinear, v,.,; = =34 Sll’l(g t).

Attimet; = 1 sec, Vo= —ga\/g; |17re11| = gn\@ cm/sec.

dw 2

. ] . d 4 1
Differentiating, we obtain w = d—f =10 —4t,w; = 2sec 1, e = — = —4 sec

dt



: iy A dv T T
As the relative motion is rectilinear a,.,; = d;el = —-acos (5 t) :

2
. T 5
Attime t; =2 5€C, Argy = -0 = anz cm/sec?

For the particle M the motion of the triangle is that of transport, and the
transport acceleration of M 1s equal to the acceleration of the point of the
triangle with which M coincides at the given time. This point of the triangle

\/_

moves 1n a circle of radius MD =/, and at time ¢; = 2 sec, hy Ssina = 5% om.
Thus, af, = eh = —10vV3 cm/sec?; al = w?h = 103 cm/sec?.
Vector aj,. is normal to plane ABC in the direction opposite to that of the

rotation of the triangle. Vector af. is directed along MD towards the axis of

rotation Cz;. At time 1; = 2 seC, Ggor = 2|wVpg | sina =

10m—.
sec
MD. Turning that projection through a right
angle in the direction of the rotation of
transport, i.e., counterclockwise, we obtain the

direction of a,,,; (wWhich in the present case
coincides with the direction of ag,.).

m

The projection of v,.,; lies along




The absolute acceleration of the particle M is
Aq = Qpep + Qg + A4+ Agor

In order to determine the value of a,, draw a set of axes Oxyz and
calculate the projections of all the vectors on them. We obtain

Aax = Acor + |are| = 10 + 10v3
~ 48.7 cm/sec?,

Sm?
Agy = Qe SINA — Qg = K\E — 1043

cm
= —12.6—2.
sec
cm
NE i | i i 2
.. = =0, hCOSA =TIt 1=V s
11 1% 18 sec?’

And finally a, = \/aéx +ag, +az, = 50.4 cm/sec?.

Vector a, can be constructed according to its rectangular components
along the coordinate axes Oxyz.



