
 
Fig. 2.2. Steam engine mechanism 

 
Fig. 2.3. I.C. engine mechanism 

 
Fig.2.1. Reciprocating steam engine 

2. STRUCTURAL ANALYSE AND SYNTHESIS OF MECHANISMS 

 

2.1 Link 

 

To a beginner, for short, the term machine may be defined as a device which 

receives energy in some available form and uses it to do certain particular kind of 

work. Mechanism may be defined as a contrivance which transforms motion from 

one form to another. 

A machine consists of a number of parts or bodies. In this chapter, we shall 

study the mechanisms of the various parts or bodies from which the machine is 

assembled. This is done by making one of the parts as fixed, and the relative motion 

of other parts is determined with respect to the fixed part.  

Each part of a machine, which moves relative to some other part, is known as a 

kinematic link (or simply link). A link may consist of several parts, which are rigidly 

fastened together, so that they do not move relative to one another. Even if two or 

more connected parts are manufactured separately, they cannot be treated as different 

links unless there is a relative motion between them. For example, in a reciprocating 

steam engine, as shown in Fig. 2.1, piston, piston rod and crosshead constitute one 

link; connecting rod with big and small end bearings constitute a second link; crank, 

crank shaft and flywheel third link and the cylinder, engine frame and main bearings 

fourth link. Therefore, slider-crank mechanisms of a steam engine (Fig. 2.2) and I.C. 

engine (2.3) are just the same. So, a link may be defined as a single part (or an 

assembly of rigidly connected parts) of a machine, which is a resistant body having a 

motion relative to other parts of the machine (mechanism). 



 
Fig. 2.4. Four bar automobile-hood 

mechanism 

 
Fig. 2.5. Mechanism with belt-pulley 

combination 

combination 

A link needs not to be rigid body, but it must be a resistant body. A body is 

said to be a resistant one if it is capable of 

transmitting the required forces with negligible 

deformation. Based on above considerations a 

spring which has no effect on the kinematics of 

a device and has significant deformation in the 

direction of applied force is not treated as a 

link but only as a device to apply force 

(Fig.2.4).They are usually ignored during 

kinematic analysis, and their “force-effects” are 

introduced during dynamic analysis.  

There are machine members which 

possess one-way rigidity. For instance, because 

of their resistance to deformation under tensile load, belts (Fig. 2.5), ropes and chains 

are treated as links only when they are in 

tension. Similarly, liquids on account of their 

incompressibility can be treated as links only 

when transmitting compressive force. 

Thus a link should have the following 

two characteristics: 

1. It should have relative motion, and 

2. It must be a resistant body. 

Structure is an assemblage of a number 

of resistant bodies (known as members) 

having no relative motion between them and 

meant for carrying loads having straining action. A railway bridge, a roof truss, 

machine frames etc., are the examples of a structure. The following differences 

between a machine (mechanism) and a structure are important from the subject point 

of view: 1. The parts of a machine move relative to one another, whereas the 

members of a structure do not move relative to one another. 2. A machine transforms 

the available energy into some useful work, whereas in a structure no energy is 

transformed into useful work. 3. The links of a machine may transmit both power and 

motion, while the members of a structure transmit forces only. 

The kind of relative motion between links of a mechanism is controlled by the 

form of the contacting surfaces of the adjacent (connected) links. These contacting 

surfaces may be thought of as ‘working surfaces’ of the connection between adjacent 

links. For instance, the connection between a lathe carriage and its bed is through 

working surfaces (ways) which are so shaped that only motion of translation is 

possible. Similarly, the working surface of I.C. engine piston and connecting rod at 

piston pin are so shaped that relative motion of rotation alone is possible. Each of 

these working surfaces is called an element. 

An element may therefore be defined as a geometrical form provided on a link 

so as to ensure a working surface that permits desired relative motion between 

connected links. 

 



 
Fig. 2.6. Conventional representation of different types of links 

 

2.2 Classification of Links 

 

A link can be called singular (unitary), binary, ternary, quaternary (etc.) link 

depending on the 

number of 

elements it has for 

pairing with other 

links. Thus a link 

carrying a single 

element is called 

a singular 

(unitary) link and 

a link with two 

elements is called 

a binary link. 

Similarly, a link 

having three 

elements is called 

a ternary link 

while a link 

having four 

elements is called 

a quaternary link. 

These links, along 

with their convention representation, are shown in Fig. 2.6. 

 

 2.3 Kinematic Pair  

 

The two contacting elements of a connection constitute a kinematic pair. A pair 

may also be defined as a connection between two adjacent links that permits a 

definite relative motion between them. It may be noted that the above statement is 

generally true. In the case of multiple joint, however, more than two links can be 

connected at a kinematic pair (also known as joint). Cylindrical contacting surfaces 

between I.C. engine cylinder and piston constitute a pair. Similarly, cylindrical 

contacting surfaces of a rotating shaft and a journal bearing also constitute a pair. 

When all the points in different links in a mechanism move in planes which are 

mutually parallel the mechanism is said to have a planar motion. A motion other than 

planar motion is spatial motion.     

When the links are assumed to be rigid in kinematics, there can be no change in 

relative positions of any two arbitrarily chosen points on the same link. In particular, 

relative position(s) of pairing elements on the same link does not change. As a 

consequence of assumption of rigidity, many of the intricate details, shape and size of 

the actual part (link) become unimportant in kinematic analysis. For this reason it is 

customary to draw highly simplified schematic diagrams which contain only the 



 
Fig. 2.7. Turning (revolute) 

pair R, F=1 

important features in respect of the shape of each link (e.g., relative locations of 

pairing elements). This necessarily requires to completely suppressing the 

information about real geometry of manufactured parts. Schematic diagrams of 

various links, showing relative location of pairing elements, are shown in Fig. 2.2.-

2.5. Conventions followed in drawing kinematic diagram are also shown there. 

In drawing a kinematic diagram, it is customary to draw the parts (links) in the 

most simplified form so that only those dimensions are considered which affect the 

relative motion. One such simplified kinematic diagram of slider-crank mechanism of 

an I.C. engine is shown in Fig. 2.3 in which connecting rod 3 and crank 2 are 

represented by lines joining their respective pairing elements. The piston has been 

represented by the slider 4 while cylinder (being a stationary member) has been 

represented by frame link 1. 

It may be noted, however, that these schematics, have a limitation in that they 

have little resemblance to the physical hardware. And, one should remember that 

kinematic diagrams are particularly useful in kinematic analysis and synthesis but 

they have very little significance in designing the machine components of such a 

mechanism. 

 

2.4 Classification of Pairs 

 

 2.4.1 Classification of Pairs Based on Type of Relative Motion 

 

The relative motion of a point on one element relative to the other on mating 

element can be that of turning, sliding, screw (helical direction), planar, cylindrical or 

spherical. The controlling factor that determines the relative motions allowed by a 

given joint is the shapes of the mating surfaces or elements. Each type of joint has its 

own characteristic shapes for the elements, and each permits a particular type of 

motion, which is determined by the possible ways in which these elemental surfaces 

can move with respect to each other. The shapes of mating elemental surfaces restrict 

the totally arbitrary motion of two unconnected links to some prescribed type of 

relative motion. 

Turning Pair (Also called a hinge, a pin joint or 

a revolute pair). This is the most common type of 

kinematic pair and is designated by the letter R.  

A pin joint has cylindrical element surfaces and 

assuming that the links cannot slide axially, these 

surfaces permit relative motion of rotation only. A pin 

joint allows the two connected links to experience 

relative rotation about the pin centre. Thus, the pair 

permits only one degree of freedom. Thus, the pair at 

piston pin, the pair at crank pin and the pair formed by 

rotating crank-shaft in bearing are all example of 

turning pairs. 

Sliding or Prismatic Pair. This is also a 

common type of pair and is designated as P (Fig.2.8). 



 
Fig. 2.8. Prismatic or sliding pair P, F=1 

 
Fig. 2.9. Screw (helical) pair S, 

F=1 

 
Fig. 2.10. Cylindrical pair C, F=2 

 
Fig. 2.11. Globular or spherical pair 

G, F=3 

This type of pair permits relative motion of sliding only in one direction (along a line) 

and as such has only one degree of freedom. 

Pairs between piston and cylinder, cross-

head and guides, die-block and slot of slotted 

lever are all examples of sliding pairs.  

Screw Pair. This pair permits a 

relative motion between coincident points, 

on mating elements, along a helix curve. 

Both axial sliding and rotational motions are 

involved. 

But as the 

sliding and 

rotational 

motions are related through helix angle , the pair has 

only one degree of freedom Fig (2.9.). The pair is 

commonly designated by the letter S. Example of 

such pairs are to be found in translatory screws 

operating against rotating nuts to transmit large 

forces at comparatively low speed, e.g. in screw-

jacks, screw-presses, valves and pressing screw of 

rolling mills. Other examples are rotating lead screws 

operating in nuts to transmit motion accurately as in lathes, machine tools, measuring 

instruments, etc. 

Cylindrical Pair. A cylindrical pair permits a relative motion which is a 

combination of rotation   and translation s 

parallel to the axis of rotation between the 

contacting elements (2.10). The pair has thus two 

degrees of freedom and is designated by a letter 

C. A shaft free to rotate in bearing and also free 

to slide axially inside the bearing provides 

example of a cylindrical pair. 

Globular or Spherical Pair. Designated by 

the letter G, the pair permits relative motion such 

that coincident points on working surfaces of 

elements move along spherical surface. In other 

words, for a given position of spherical pair, the 

joint permits relative rotation about three 

mutually perpendicular axes. It has thus three 

degrees of freedom. A ball and socket joint (e.g., 

the shoulder joint at arm-pit of a human being) is 

the best example of spherical pair. 

Flat pair (Planar Pair). A flat or planar 



 
Fig. 2.12. Flat pair F, F=3 

Fig. 2.13. Different paths of point P 

(PC-cycloid, PD-involute) 

pair is seldom, if ever, found in mechanisms. The pair permits a planar relative 

motion between contacting elements. This 

relative motion can be described in terms of 

two translatory motions in x and y directions 

and a rotation about third direction z, x, y, z 

being mutually perpendicular directions. The 

pair is designated as F  and has three degrees 

of freedom.  

Rolling Pair. When surfaces of mating 

elements have a relative motion of rolling, the 

pair is called a rolling pair. Castor wheel of 

trolleys, ball and roller bearings, wheels of 

locomotive/wagon and rail are a few examples of this type. 

 

2.4.2 Classification of Pairs Based on Type of Contact 

 

This is the best known classification of kinematic pairs on the basis of nature of 

contact: 

Lower Pair. Kinematic pairs in which there is surfaces (area) contact between 

the contacting elements are called lower pairs. All revolute pairs, sliding pairs, screw 

pairs, globular pairs, cylindrical pairs and flat pairs fall in this category. 

Higher Pair. Kinematic pairs in which there is point or line contact between 

the contacting elements are called higher pairs. Meshing gear-teeth, cam follower 

pair, wheel rolling on a surface, ball and roller bearings and pawl and ratchet are a 

few examples of higher pairs. 

Since lower pairs involve surface contact rather than line or point contact, it 

follows that lower pairs can be more heavily loaded for the same unit pressure. They 

are considerably more wear-resistant. For this reason, development in kinematics has 

involved more and more number of lower pairs. As against this, use of higher pairs 

implies lesser friction. 

The real concept of lower pairs lies in the particular kind of relative motion 

permitted by the connected links. For instance, let us assume that two mating 

elements P  and Q  form kinematic pair. If the path traced by any point on the 

element P , relative to element Q , is identical to 

the path traced by a corresponding (coincident) 

point in the element Q  relative to element P , 

then the two elements P  and Q  are said to form 

a lower pair. Elements not satisfying the above 

condition obviously form the higher pairs  

Since a turning pair involves relative 

motion of rotation about pin-axis, coincident 

points on the two contacting elements will have 

circular areas of same radius as their path. 

Similarly elements of sliding pair will have 



straight lines as the path for coincident points. In the case of screw pair, the 

coincident points on mating elements will have relative motion along helices. As 

against this a point on periphery of a disk rolling along a straight line generates 

cycloidal path, but the coincident point on straight line generates involute path when 

the straight line rolls over the disk (Fig. 2.13). The two paths are thus different and 

the pair is a higher pair. As a direct sequel to the above consideration, unlike a lower 

pair, a higher pair cannot be inverted. That is, the two elements of the pair cannot be 

interchanged with each other without affecting the overall motion of the mechanism. 

Lower pairs are further subdivided into linear motion and surface motion pairs. 

The distinction between these two sub-categories is based on the number of degrees 

of freedom of the pair. Linear motion lower pairs are those having one degree of 

freedom, i.e. each point on one element of the pair can move only along a single line 

or curve relative to the other element. This category includes turning pairs, prismatic 

pairs and screw pairs. 

Surfaces-motion lower pairs have two or more degrees of freedom. This 

category includes cylindrical pair, spherical pair and the planar (flat) pair. 

 

2.4.3. Classification of Pairs Based on Degrees of Freedom 

 

A free body in space has six degrees of freedom (d.o.f.=F=6). In forming a 

kinematic pair, one or more degrees of freedom are lost. The remaining degrees of 

freedom of the pair can then be used to classify pairs. Thus, 

d.o.f. of a pair = 6 – ( Number of restrains). 

Tab 2.1. Classification of pairs 

No in 

Fig.2.6 

Geometrical 

shapes of  

elements in 

contact 

Number of Restraints on Total 

Number of 

Restraints 

Class of pair 

Translatory 

 

motion 

Rotary 

motion 

(a) 

(b) 

 

(c) 

(d) 

 

(e) 

 

(f) 

(g) 

 

(h) 

 

(i) 

 

(j) 

Sphere and plane 

Sphere inside a 

cylinder 

Cylinder on plane 

Sphere in 

spherical socket 

Sphere in slotted 

cylinder 

Prism on a plane 

Spherical ball in 

slotted socket 

Cylinder in 

cylindrical hollow 

Collared cylinder 

in hollow cylinder 

Prism in prismatic 

hollow 

1 

2 

 

1 

3 

 

2 

 

1 

3 

 

2 

 

3 

 

2 

0 

0 

 

1 
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2 

1 

 

2 

 

2 

 

3 

1 

2 

 

2 
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3 

 

3 

4 

 

4 
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5 
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II 
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III 

 

III 
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IV 
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Fig. 2.14. Classification of pairs based on degrees of freedom 

 

 

 
Fig. 2.15. Cam and roller-follower 

A kinematic pair can therefore be classified on the basis of number of restrains 

imposed on the relative motion of connected links. This is done in Tab. 2.1 for 

different forms of pairing element shown in Fig. 2.14. 

2.4.4. Classification of Pairs Based on Type of Closure 

 
Another important way of classifying pairs is 

to group them as closed or self closed kinematic 

pairs and open kinematic pairs. 

In closed pairs, one element completely 

surrounds the other so that it is held in place in all 

possible positions. Restraint is achieved only by 

the form of pair and, therefore, the pair is called 

closed or self-closed pair. Therefore, closed pairs 

are those pairs in which elements are held together 

mechanically. All the lower pairs and a few higher 



 
Fig. 2.16. Weighing scale 

pairs fall in the category of closed pairs 

As against this, open kinematic pairs maintain relative positions only when 

there is some external means to prevent separation of contacting elements. Open pairs 

are also sometimes called as unclosed pairs. A cam and roller-follower mechanism, 

held in contact due to spring and gravity force, is an example of this type (Fig. 2.15). 

 

 

2.5. Kinematic Chain.  

 

A kinematic chain can be defined as an assemblage of links which are inter-

connected through pairs, permitting relative motion between links. A chain is called a 

closed chain when links are so connected in sequence that first link is connected to 

the last, ensuring that all pairs are complete 

because of mated elements forming working 

surfaces at joints. As against this, when links 

are connected in sequence, with first link not 

connected to the last (leaving incomplete 

pairs), the chain is called an open chain. 

Examples of planar open loop chain are not 

many but they have many applications in the 

area of robotics and manipulators as space 

mechanisms. An example of a planar open-loop chain, which permits the use of a 

singular link (a link with only one element on it), is the common weighing scale 

shown in Fig. 2.16.   

 Various links are numbered in the figure. Links 3, 1 and 4 are singular links. 

 From the subject point of view, a mechanism may now be defined as a 

movable closed kinematic chain with one of its links fixed.  

 A mechanism with four links is known as simple mechanism, and the 

mechanism with more than four links is known as compound mechanism. Let’s repeat 

once again when a mechanism is required to transmit power or to do some particular 

type of work, it then becomes a machine. In such cases, the various links or elements 

have to be designed to withstand the forces (both static and kinetic) safely. A little 

consideration will show that a mechanism may be regarded as a machine in which 

each part is reduced to the simplest form to transmit the required motion. 

Sometimes one prefers to reserve the term linkage to describe mechanisms 

consisting of lower pairs only. But on a number of occasions this term has been used 

rather loosely synonymous to the term mechanism. 

 

2.6. Number of Degrees of Freedom of Mechanisms 

 
Constrained motion is defined as that motion in which all points move in 

predetermined paths, irrespective of the directions and magnitudes of the applied 

forces. Mechanisms may be categorized in number of ways to emphasize their 

similarities and differences. One such grouping can be to divide mechanisms into 

planar, spherical and spatial categories. As seen earlier, a planar mechanism is one in 



 
Fig. 2.17. Links in a plane motion 

 
Fig. 2.18. Four bar mechanism 

which all particles on any link of a mechanism describe plane curves in space and all 

these curves lie in parallel planes. 

In the design and analysis of a mechanism, one of the most important concerns 

is the number of degrees of freedom, also called mobility, of the mechanism. 
The number of independent input parameters which must be controlled 

independently so that a mechanism fulfills its useful engineering purpose is called its 

degree of freedom or mobility. Degree of freedom equal to 1 (d.o.f. = F=1) implies 

that when any point on the mechanism is moved in a prescribed way, all other points 

have uniquely determined (constrained) motions. When d.o.f. =2, it follows that two 

independent motions must be introduced at two different points in a mechanism, or 

two different forces or moments must be present as output resistances (as is the case 

in automotive differential  

It is possible to determine the number of degrees of freedom of a mechanism 

directly from the number of links and the number and types of pairs which it 

includes. In order to 

develop the 

relationship in 

general, consider two 

links AB  and CD  in a 

plane motion as 

shown in Fig. 2.17 (a) 

The link AB  with co-

ordinate system OXY  

is taken as the reference link (or fixed link). The position of point P  on the moving 

link CD  can be completely specified by the three variables, i.e. the co-ordinates of 

the point P  denoted by x and y and the inclination   of the link CD  with X -axis or 

link AB . In other words, we can say that each link of a planar mechanism has three 

degrees of freedom before it is connected to any other link. But when the link CD  is 

connected to the link AB  by a turning pair at A , as shown in Fig. 2.17 (b), the 

position of link CD  is now determined by a single variable θ and thus has one degree 

of freedom. 

From above, we see that when a link is connected to a fixed link by a turning 

pair (i.e. lower pair) two degrees of freedom are destroyed (removed). This may be 

clearly understood from Fig. 2.18, in which the resulting four bar mechanism has one 

degree of freedom (i.e. 1F  ). 

Based on above discussions, expression for degree of freedom of a planar 

kinematic chain, consisting of lower pairs (of d.o.f. =1) only, is given by- 



3 2F n l  , 

where n is a number of mobile links, l is a number of lower pairs. 

In case of a mechanism which is obtained from a chain by fixing one link, 

number of mobile links reduces to ( 1)n   and therefore, expression for degrees of 

freedom of a mechanism, consisting of lower pairs only, is given by- 

3( 1) 2F n l   .      (2.1) 

Equation (2.1) is known as Grubler’s equation, and is one of the most popular 

mobility equations. 

Therefore, Fig. 2.18 illustrates the process of losing degrees of freedom, each 

time a turning pair is introduced, i.e. adding constraints, between two unconnected 

links. 

Just as a lower pair (linear motion lower pair) cuts down 2 d.o.f., a higher pair 

cuts only 1 d.o.f. (this is because invariably rolling is associated with slipping, 

permitting 2 d.o.f.). Hence equation (2.1) can be further modified to include the effect 

of higher pairs also. Thus, for mechanism having lower and higher pairs  

3( 1) 2F n l h    ,     (2.2) 

where h is a number of higher pairs. 

Equation (2.2) is the modified Grubler’s equation. It is also as Kutzbach 

criterion for the mobility of a planar mechanism. It would be more appropriate to 

define, in equations (2.1) and (2.2), l to be the number of pairs of 1 d.o.f. and h to be 

number of pairs of 2 d.o.f. 

Spatial mechanisms do not incorporate any restriction on the relative motions 

of the particles. A spatial mechanism may have particles describing paths of double 

curvature. Grubler’s criterion was originally developed for planar mechanisms. If 

similar criterion is to be developed for spatial mechanisms, we must remember that 

an unconnected link has six in place of 3 degrees of freedom. As such, by fixing one 

link of a chain the total d.o.f. of ( 1)n   links separately will be 6( 1).n   Again a 

revolute and prismatic pair would provide 5 constrains (permitting 1 d.o.f), rolling 

pairs will provide 4 constraints, and so on. Hence, taking into account the tab 2.1, an 

expression for d.o.f. of a closed spatial mechanism can be written as: 

1 2 3 4 56( 1) 5 4 3 2F n l l l l l       ,   (2.3) 

where N =total number of links,  

1l   number of pairs (joints) providing 5 constraints, 

2l   number of pairs providing 4 constraints, 

3l   number of pairs providing 3 constraints, 

4l   number of pairs providing 2 constraints, and  

5l   number of pairs providing only one constraint. 

 

2.7. Application of Kutzbach Criterion to Plane Mechanisms 

 

We have discussed that Kutzbach criterion for determining the number of 

degrees of freedom (F) of a plane mechanism is 

3( 1) 2F n l h    . 



 
Fig.2.19. Plane mechanisms 

 The number of degrees of freedom for some simple mechanisms having no 

higher pair (i.e. 0h  ), as shown in Fig. 2.19, are determined as follows: 

Example 2.1. Find out degrees of freedom (F) of mechanisms shown in Fig. 

2.17. 

1. The mechanism, as shown in Fig. 2.19 (a), has three links and three lower 

pairs, i.e. 3l   and 3n  , 

      3 3 1 2 3 0F      . 

2. The mechanism, as shown in 2.19 (b), has four links and four pairs, i.e. 4l   

and 4n  , 

      3 4 1 2 4 1F      . 

3. The mechanism, as shown in Fig. 2.19 (c), has five links and five pairs, i.e. 

5l  , and 5n  , 

      3 5 1 2 5 2F      . 

4. The mechanism, as shown in Fig. 2.19 (d), has five links and six pairs 

(because there are two pairs at B  and D , and four equivalent pairs at A  and C ), i.e. 

5l  and 6n  , 

      3 5 1 2 6 0F      . 

5. The mechanism, as shown in Fig. 2.19 (e), has six links and eight pairs 

(because there are two pairs separately at , ,A B C  and D ), i.e. 6l   and 8n  , 

      3 6 1 2 8 1F       . 

Therefore, it may be noted that 

(a) When 0F  , then the mechanism forms a structure and no relative motion 

between the links is possible, as shown in Fig. 2.19 (a) and (d). 

(b) When 1F  , then the mechanism can be driven by a single input motion, as 

shown in Fig. 2.19 (b) 

(c) When 2F  , then two separate input motions are necessary for the mechanism, as 

shown in Fig. 2.19 (c). 

(d) When 1F    or less, then there are redundant constraints in the mechanism 

(chain) and it forms indeterminate structure, as shown in Fig. 2.19 (e). 

Let’s consider other examples. 

Example 2.2.  Find out degrees of freedom of mechanism shown in Figs. 

2.20(a),(b),(c),(d) and (e). 

Solution: (a) Here 9; 11n l  , 

     3(9 1) 2(11) 2F     . 



 
 

Fig. 2.20. Plane mechanisms 

 
Fig. 2.21. Plane mechanisms 

(b) Here 8n  , 9 2l   11 , 

     3(8 1) 2(11) 1F      . 

i.e. the mechanism at Fig. 2.20(b) is a statically indeterminate structure. 

(c) As in case (b), here too there are double joints as A and B. Hence 

10; 9 2(2) 13n l    , 

     3(10 1) 2(13) 1F     . 

(d) The mechanism at Fig. 2.20(d) has three ternary links (links 2,3 and 4) and 

5 binary links (links 1,5,6,7 and 8) and one slider. It has 9 simple turning pairs 

marked R , one sliding pair marked P  and one double joint at .J  Since the double 

joint J  joints 3 links, it may be taken equivalent to two simple turning pairs. Thus, 

9; 11n l  , 

     3(9 1) 2(11) 2F     . 

(e) The mechanism at Fig. 2.20(e) has a roller pin at E  and a spring at H . The 

spring is only a device to apply force, and is not a link. Thus there are 7 links 

numbered through 7, one sliding pair, one rolling (higher) pairs at E  besides 6 

turning pairs 

     7; 7n l   and 1h  , 

3(7 1) 2(7) (1)F     18 14 1 3    . 

Example 2.3. Find out degrees of freedom of the mechanism shown in Fig. 

2.21 (a), (b). 



 
Fig. 2.22. Automobile window guidance linkage 

Solution: ( ) 8; 9a n l  , 

     3(8 1) 2(9) 3F     . 

 (b) 9, 10n l  , 

     3(9 1) 2(10) 4F     . 

Example 2.4. Show that the automobile window glass guiding mechanism in 

Fig. 2.22 has a single degree of 

freedom 

Solution: As numbered, there 

are total 7 links. There are seven 

revolute pairs between link pairs 

(1,2), (2,3), (3,4), (3,7), (4,6), (4,1) 

and (1,5). Besides, there is one 

sliding pair between links 6 and 7 

and a geared pair between links 4 

and 5.  

Thus, 8l   and 1h  , 

 3(7 1) 2(8) 1F     =1. 

 

2.8. Grubler’s Criterion for Plane Mechanisms 

 

The Grubler’s criterion applies to mechanisms with only single degree of 

freedom pairs where the overall mobility of the mechanism is unity. Substituting in 

(2.2) 1F   and 0h  , we have 

 1 3 1 2n l    or 3 2 4 0n l   . 

This equation is known as the Grubler's criterion for plane mechanisms with 

constrained motion. A little consideration will show that a plane mechanism with a 

mobility of 1 and only low pairs (of one degree of freedom) cannot have odd number 

of links. The simplest possible mechanism of this type are a four bar mechanism and 

a slider-crank mechanism in which 4n   and 4l  . 

Consider some cases when Grubler’s equation gives incorrect results, 

particularly when 

(1) the mechanism has a lower pair which could replaced by a higher pair,  

without influencing output motion; 

(2) the mechanism has a kinematically redundant pair, and 

(3) there is a link with redundant degree of freedom.  

Inconsistency at (1) may be illustrated with the help of Figs. 2.23(a) and (b). 

Fig. 2.23(a) depicts a mechanism with three sliding pairs. According to Grubler’s 

theory, this combination of links has a degree of freedom of zero. But by inspection, 

it is clear that the links have a constrained motion, because as the 2 is pushed to the 

left, link 3 is lifted due to wedge action. But the sliding pair between; links 2 and 3 

can be replaced by a slip rolling pair (Fig. 2.23(b)), ensuring constrained motion. In 

the latter case, 3, 2n l   and 1h   which, according to Grubler’s equation, 

gives 1F  . 



 

 
Fig. 2.23(c) demonstrates inconsistency at (2). The cam follower mechanism 

has 4 links, 3 turning pairs and a rolling pair, giving d.o.f. as 2. However, a close 

scrutiny reveals that as a function generator, oscillatory motion of follower is a 

unique function of cam rotation, i.e. ( ).f   In other words, d.o.f. of the above 

mechanism is only 1. It may be noted, however, that the function of roller in this case 

is to minimize friction; it does not in any way influence the motion of follower. For 

instance, even if the turning pair between follower and roller is eliminated (rendering 

roller to be an integral part of follower), the motion of follower will not be affected. 

Thus the kinematic pair between links 2 and 3 is redundant. Therefore, with this pair 

eliminated, 3, 2n l   and 1,h   gives d.o.f. as one. 

If a link can be moved without producing any movement in the remaining links 

of mechanism, the link is said to have redundant degree of freedom. Link 3 in 

mechanism of Fig. 2.23 (d), for instance, can slide and rotate without causing any 

movement in links 2 and 4. Since the Grubler’s equation gives d.o.f. as 1, the loss due 

to redundant d.o.f. of link 3 implies effective d.o.f. as zero, and Fig. 2.23 (d) 

represents a locked system. However, if link 3 is bent, as shown in Fig. 2.23 (e), the 

link 3 ceases to have redundant d.o.f. and constrained motion results for the 

mechanism. Fig. 2.23 (f) shows a mechanism in which one of the two parallel links 

AB  and PQ  is redundant link, as none of them produces additional constraint. By 

removing any of the two links, motion remains the same. It is logical therefore to 

consider only one of the two links in calculating degrees of freedom. Another 

example where Grubler’s equation gives zero mobility is the mechanism shown in 

Fig. 2.23 (g), which has a constrained motion.  

 

 

 

 
Fig. 2.23. Inconsistencies of Grubler’s criterion 



 
(a)    (b) 

Fig 2.24. Rolling contact 

 
(a)     (b) 

Fig. 2.25 Roll-Slide contact 

 
  (a)                     (b) 

Fig. 2.26. Gear-tooth contact 

 2.9. Grubler’s Criterion Application for Mechanisms with Higher Pairs 

 

As against one degree freedom of relative motion permitted by turning and 

sliding pairs, higher pairs may permit a higher number of degrees of freedom. Each 

such higher pair is equivalent to as many lower pairs as the number of degrees of 

freedom of relative motion permitted by the given higher pair. This is elaborated for 

different types of higher pairs, as discussed below: 

(a) Rolling Contact without Sliding. This allows only one d.o.f. of relative 

motion as only relative motion of rotation 

exists.  A pare rolling type of joint can 

therefore be taken equivalent to lower pair 

with one d.o.f.(Fig. 2.24) The lower pair 

equivalent for instantaneous velocity is given 

by a simple hinge joint at the relative instant 

centre which is the point of contact between 

rolling links. Note that instantaneous velocity 

implies that in case a higher pair is replaced 

by a lower pair equivalent, the instantaneous 

relative velocity between the connecting links 

remains the same, but the relative acceleration 

may, in general, change. 

(b) Roll-Slide Contact. Due to sliding motion associated with rolling only 

one out of three planar motions is constrained 

Fig. 2.25 (a). Thus, lower pair equivalence for 

instantaneous velocity is given by a slider and 

pin joint combination between the connected 

links Fig. 2.25 (b). This implies degrees of 

freedom of relative motion. Such a joint is also 

taken care of, in Grubler’s equation, by making 

contribution to the term .h  

(c) Gear-Tooth Contact (Roll-Slide). 

Gear tooth contact is a roll-slide pair and 

therefore makes a contribution to the term h  in Grubler’s equation. Thus, on account 

of two turning pairs at gear centers together with a higher pair at contacting teeth 

(Fig. 2.26 (a)), 

3(3 1) 2(2) 1 1F      . 

Lower pair equivalent for 

instantaneous velocity of such a pair is a 

4-bar mechanism with fixed pivots at 

gear centers and moving pivots at the 

centers of curvature of contacting tooth 

profiles (Fig. 2.26 (b)). In case of 

involute teeth, these centers of curvature 

will coincide with points of tangency of 

common tangent drawn to base circles of 



 
(a)     (b) 

Fig. 2.27. Spring Connection 

 
(a)      (b) 

Fig. 2.28. Belt and pulley connection 

the two gears. Such a 4-bar mechanism retains that d.o.f. equal to 1. 

(d) A Spring Connection. Purpose of a spring is to exert force on the 

connected links, but it does not 

participate in relative motion between 

connected links actively. Since the 

spring permits elongation and 

contraction in length, a pair of binary 

links, with a turning pair connecting 

them, can be considered to constitute 

instantaneous velocity equivalent 

lower pair mechanism. A pair of 

binary links with a turning pair 

permits variation in distance between 

their other ends (unconnected), and allows same degree of freedom of relative motion 

between links connected by the spring (for 4, 3, 3n l F   ). It may be noted that in 

the presence of spring, ( 2, 0, 0)n h    the d.o.f. would be 3. 

(e) The Belt and Pulley or Chain and Sprockets Connection. When the belt 

or chain is maintained tight, it 

provides planar connections 

(Fig. 2.28 (a)). Instantaneous 

velocity, lower pair equivalent 

can be found in a ternary link 

with three pin joints (sliding is 

not allowed) as in (Fig. 2.28 

(b)). It can be verified that d.o.f. 

of equivalent six bar linkage is  

3(6 1) 2(7) 1F     . 

Example 2.5 Find out degrees of freedom of mechanisms shown in Fig. 2.29 

(a),(b) and (c). 

Solution: (a) In the case of undercarriage mechanism of aircraft in Fig.2.29 (a), 

we note that  

Total number of pairs of single 11F  . 

Higher pair of 2 d.o.f. (between wheel and runway) = 11. 

3(9 1) 2(11) 1(1) 1F      . 

(b) In the case of belt-pulley drive, assuming the belt to be tight, the four links 

are marked as 1, 2, 3 and 4. The two distinct lower (turning) pairs are pivots of pulley 

2 and 4. The points 1 2 3, ,P P P  and 4P  at which belt enters/leaves pulley, constitute 4 

higher pairs. Thus  

4; 2; 4n l h   . 

Therefore,    3(4 1) 2(2) 4 1F      . 

 



 
Fig. 2.29 (c). Mechanism with double pin joint 

 
 

(c) In the case of mechanism at Fig. 2.29 (c), there is a double joint between 

links 6, 7, and 10. Therefore, this joint is 

equivalent to two simple joints. Besides 

above, there are 13 turning pairs.  

Hence,   

 12; 13 2 15n l    . 

Therefore,    

 3(12 1) 2(15) 3F     . 

 

 

 

 2.10. Equivalent Mechanisms 

 

Equivalent linkages are commonly employed to duplicate instantaneously the 

position, velocity, and perhaps acceleration of a direct-contact (higher pair) 

mechanism by a mechanism with lower pairs (say, a four-bar mechanism). The 

dimensions of equivalent mechanisms are obviously different at various positions of 

given higher paired mechanism. This is evident because for every position of a higher 

paired mechanism, different equivalent linkages are expected. 

Much of the developments in kinematics in the subject of theory of machines 

are centered on four-bar mechanism. Some of the reasons are as under: 

(1) A four-bar mechanism is the simplest possible lower paired mechanism and is 

widely used. 

(2) Many mechanisms which do not have any resemblance with a four-bar 

mechanism have four bars for their basic skeletons, so a theory developed for 

the four-bar applies to them also. 

(3) Many mechanisms have equivalence in four-bar mechanism in respect of 

certain motion aspects. Thus, as far as these motions are concerned, four-bar 

theory is applicable.  

 
(a) Undercarriage mechanism of aircraft  (b) belt-pulley drive 

Fig. 2.29. Degree of freedom of mechanisms 



 
(a)          (b) 

Fig. 2.32. Spring to replace a pair of binary links and ternary pairs 

 
Fig. 2.31. Mechanisms having identical relative motions 

between links 2 and 4 

 

 
(a)                                    (b)          (c) 

Fig. 2.30. Equivalent mechanisms (kinematically identical mechanisms having the 4-bar basic 

skeleton) 

(4) Several complex mechanisms have four-bar loop as a basic element. Theory of 

four-bar mechanism is, therefore, useful in the design of these mechanisms. 

Point (2) above, is illustrated in Figs. 2.30 (a), (b) and (c). In Fig. 2.30 (b), the 

link 4 in Fig. 2.30 (a) replaced by a curved slot and slider, with slot radius equal to 

link length. In Fig. 2.30 (c) the link 3 is replaced by a slider, sliding in curved slotted 

link 4 ensuring relative motion of 

rotation of pinned and A relative 

to B. 

Point (3) is illustrated in 

Figs. 2.30 (a), (b) and (c). 

Mechanisms in which relative 

motion between driver and driven 

links 2 and 4 is identical are 

illustrated in Fig. 2. 31.  

In Fig. 2.31 (b) the centers 

of curvature of circular cam and 

roller constitute the end point of 

link AB; link 3 becomes roller and 

link 2 becomes circular cam. For d.o.f. 1 , however, the rolling pair in (b) should be 

without slip. 

 Extension and compression in a spring is comparable to variation in length 

between the turning 

pairs accomplished by 

a pair of binary links 

connected through 

another turning pair. 

For instance pair of 

binary links 4 and 5 of 

a Stephenson’s chain can be replaced by a spring to obtain an equivalent mechanism. 

This is shown in Figs. 2.32 (a) and (b). 

 When the belt or chain is maintained tight, a ternary link with three turning 

pairs is the instantaneous-velocity equivalent lower pair connection to the belt and 

pulley (sliding/slipping is disallowed). 



 

2.11. Inversion of Mechanism 

 

We have already discussed that when one of links is fixed in a kinematic chain, 

it is called a mechanism. So we can obtain as many mechanisms as the number of 

links in a kinematic chain by fixing, in turn, different links in a kinematic chain. This 

method of obtaining different mechanisms by fixing different links in a kinematic 

chain is known as inversion of the mechanism. It may be noted that the relative 

motions between the various links is not changed in any manner through the process 

of inversion, but their absolute motions (those measured with respect to the fixed 

link) may be changed drastically.  

The part of a mechanism which initially moves with respect to the frame or 

fixed link is called driver and that part of the mechanism to which motion is 

transmitted is called follower. Most of the mechanisms are reversible, so that same 

link can play the role of a driver and follower at different times. For example, in a 

reciprocating steam engine, the piston is the driver and flywheel is a follower while in 

a reciprocating air compressor, the flywheel is a driver. 

Important aspects of the concept of inversion can be summarized as under: 

1. The concept of inversion enables us to categorize a group of mechanisms 

arising out of inversions of a parent kinematic chain as a family of 

mechanisms. Members of this family have a common characteristic in respect 

of relative motion. 

2. In case of direct inversions, as relative velocity and relative acceleration 

between two links remain the same, it follows that complex problems of 

velocity/acceleration analysis may often be simplified, by considering a 

kinematically simpler direct inversion of the original mechanism.  

3. In many cases of inversions by changing proportions of lengths of links, 

desirable features of the inversion may be accentuated and many useful 

mechanisms may be developed. 

 

The most important kinematic chains are those which consist of four lower 

pairs each pair being a sliding or a turning pair. The following three types of 

kinematic chains with four lower pairs are important from the subject point of view: 

1. Four bar chain or quadric cyclic chain, 

2. Single slider crank chain, and 

3. Double slider crank chain. 

These kinematic chains are discussed, in detail, in the following articles. 

 

2.12. Four Bar Chain or Quadric Cycle Chain 

 

We have already discussed that the kinematic chain is a combination of four or 

more kinematic pairs, such that the relative motion between the links or elements is 

completely constrained. The simplest and the basic kinematic chain is a four bar 

chain or quadric cycle chain, as shown in Fig. 2.33. It consists of four links, each of 

them forms a turning pair at , ,A B C  and D . The four links may be of different 



 
Fig. 2.33. Four bar mechanism 

 
Fig. 2.34. Coupling rod of a locomotive 

lengths. According to Grashof’s law for a four bar mechanism, the sum of the 

shortest and longest link lengths should not be greater 

than the sum of the remaining two link lengths if there 

is to be continuous relative motion between the two 

links. Thus, if s and l be the lengths of shortest and 

longest links respectively and p  and q  be the 

remaining two link-lengths, then one of the links, in 

particular the shortest link, will rotate continuously 

relative to the other three links, if and only if 

s l p q   . 

If this inequality is not satisfied, the chain is called non-Grashof chain in which 

none of the links can have complete revolution relative to other links. It is important 

to note that the Grashof”s law does not specify the order in which the links are to be 

connected. Thus any of the links having length l , p and q can be the link opposite to 

the link of length s . A chain satisfying Grashof”s law generates three distinct 

inversions only. A non-Crashof chain, on the other hand, generates only one distinct 

inversion, namely the “Rocker-Rocker mechanism”.  

A very important consideration in designing a mechanism is to ensure that the 

input crank makes a complete revolution relative to the other links. The mechanism 

in which no link makes a complete revolution will not be useful. In a four bar chain, 

one of the links, in particular the shortest link, will make a complete revolution 

relative to the other three links, if it satisfies the Grashof ’s law. Such a link is known 

as crank or driver. In Fig. 2.33 AD  (link 4) is a crank. The link BC  (link 2) which 

makes a partial rotation or oscillates is known as lever or rocker or follower and the 

link CD  (link 3) which connects the crank and lever is called connecting rod or 

coupler. The fixed link AB  (link 1) is known as frame of the mechanism. When the 

crank (link 4) is the driver, the mechanism is transforming rotary motion into 

oscillating motion. 

Though there are many inversions of the four bar chain, yet the following are 

important from the subject point of view: 

1. Double crank mechanism 

(Coupling rod of a locomotive). The 

mechanism of a coupling rod of a 

locomotive (also known as double 

crank mechanism) which consists of 

four links is shown in Fig. 3.34.  

In this mechanism, the links AD  and 

BC  (having equal length) act as cranks 

and are connected to the respective 

wheels. The link CD  acts as a coupling 

rod and the link AB  is fixed in order to maintain a constant center to center distance 

between them. This mechanism is meant for transmitting rotary motion from one 

wheel to the other wheel. 



 
Fig. 2.35. Beam engine mechanism 

 
Fig. 2.36. Double rocker mechanism 

 
Fig. 2.37. Application of Grashow’s law 

2. Crank-rocker mechanism (Beam engine).A part of the mechanism of a beam 

engine (also known as cranks and lever 

mechanism), which consists of four links, is 

shown in Fig. 3.35. In this mechanism, when the 

crank rotates about the fixed centre O, the lever 

oscillates about a fixed centre C. The end D of 

the lever BCD is connected to a piston rod which 

reciprocates due to the rotation of the crank. In 

other words, 

the purpose 

of this 

mechanism is to convert rotary motion into 

reciprocating motion. 

3. Double rocker mechanism. When the 

link, opposite to the shortest link is fixed, a 

double rocker mechanism results. None of the 

two links (driver and driven) connected to the 

frame can have complete revolution but the 

coupler link can have full revolution (Fig. 2.36)).  

 Example 2.6. Figure 2.37 shows a planar mechanism with link-lengths given in 

some unit. If slider A  is the driver, will link CG  revolve or oscillate? Justify your 

answer.  

Solution: The loop formed by three links DE , EF  and FD  represents a 

structure. Thus the loop can be taken to represent a ternary link. 

In the 4-link loopCDEB , 

2s  ; 4l  ; and 7.p q  Thus the 4-link 

loop portion CDEB  satisfies Grashof”s 

criterion. And as the shortest link CD  is 

fixed, link CB  is capable of complete 

revolution. Also, 4-link loop GDFG  

satisfies Grashof’s criterion ( )l s p q    

and the shortest link CD  is fixed. Thus 

whether considered a part of 4-link loop 

CDFBor that of CDFG , link BCG  is 

capable of full revolution  

Example 2.7. In a 4-bar mechanism, the lengths of driver crank, coupler and 

follower link are 150 mm, 250 mm and 300 mm respectively. The fixed link-length is 

0L . Find the range of values for 0L , so as to make it a – 

(1) Crank-rocker mechanism, (2) Crank-crank mechanism. 

Solution:(1) For crank-rocker mechanism the conditions to be satisfied are:  

(a) Link adjacent to fixed link must be the smallest link and, (b) s l p q   . 

We have to consider both the possibilities, namely, when 0L  is the longest link 

and when 0L  is not the longest link.  



When 
0L  is the longest link, it follows from Grashof’s criterion, 

0 150 250 300L     or 400oL mm  

When 
0L is not the longest link, it follows from Grashof’s criterion,  

0300 150 250L   or 
0 200L   

Thus, for crank-rocker mechanism, range of values for 
0L  is  

0200 400L mm           

(2) For crank-crank mechanism, the conditions to be satisfied are  

(a) Shortest link must be the frame link and, (b) s l p q   . 

Thus,  
0 300 150 250L     

or 
0 100L mm  

 

2.13. Inversion of Single Slider Crank Chain 

 

A single slider crank chain is a modification of the basic four bar chain. It 

consists of one sliding pair and three turning pairs. It is, usually, found in 

reciprocating steam engine mechanism. This type of mechanism converts rotary 

motion into reciprocating motion and vice versa.  

We know that by fixing, in turn, different links in a kinematic chain, an 

inversion is obtained and we can obtain as many mechanisms as the links in a 

kinematic chain. It is thus obvious, that four inversions of a single slider crank chain 

are possible. These inversions are found in the following mechanisms. 

A slider crank chain is as shown in Fig. 2.38(a). 

First Inversion. It is obtained by fixing link 1 of the chain and the result is the 

crank-slider mechanism as shown in Fig. 2.38(b). This mechanism is very commonly 

used in I.C. engines, steam engines and reciprocating compressor mechanism. 

Second Inversion. It is obtained by fixing link 3, the connecting rod. The 

mechanism obtained by ‘verbatim inversion’, as shown in Fig. 2.39(a), has some 

practical difficulties. For instance, the oscillating cylinder will have to be slotted for 

clearing the pin through which slider is pivoted to frame. The problem may be 

resolved if one remembers that any suitable alteration in shapes of links ensuring 

same type of pairs between links 3 and 4 and also between links 1 and 4, is 

permissible. This gives an inversion at Fig. 2.39 (b). The resulting mechanism is 

oscillating cylinder engine mechanism. It is used in hoisting engine mechanism and 

also in toys. In hoisting purposes its chief advantage lies in its compactness of 

construction as it permits simple scheme of supplying steam to the cylinder. 

Second application of the above inversion lies in ‘Slotted Lever Quick Return 

Mechanism’, shown in Fig. 2.39 (c). The extreme position of lever 4 is decided by the 

tangents drawn from lever-pivot to the crank-circle on either side. Corresponding 

positions of crank 1 include angels and, which correspond to cutting stroke angle and 

return stroke angle. 

 



 
(a) Parent slider-crank chain  (b) First inversion: slider-crank mechanism 
 

Fig. 2.38. First inversion of a slider crank mechanism 

 
(a) Verbatim inversion  (b)Actual inversion   (c) Actual inversion  slotted lever 

   oscillating cylinder engine mechanism quick return mechanism 

 

Fig. 2.39. Second inversion of a slider crank mechanism 

 
 

Fig. 2.40. Third inversion of a slider crank mechanism 

Whitworth quick return mechanism 
 

Fig. 2.41. Rotary internal combustion engine 

Third Inversion. The third inversion is obtained by fixing crank 2. It is the  

slider-crank equivalent of Drag-

link mechanism and forms the 

basis of Whitworth Quick 

Return Mechanism. Basic 

inversion is given by portionOAS . To derive advantage however, the slotted link 1 is 

extended up to P and here it is connected to reciprocating tool-post through a 

connecting link PQ  and two turning pairs. The cutting stroke angle C  and return 

stroke angle R  are shown in Fig. 2.40. 

A yet another application of third inversion is in Rotary internal combustion 

engine or Gnome engine (Fig. 2.41).  



 
(a) Verbatim      (b) Modified version - hand 

      inversion                  pump mechanism 

Fig. 2.42. Forth inversion of a slider crank mechanism 

 
Fig. 2.43. Crank and slotted lever quick return motion  

mechanism 

Fourth Inversion. The fourth inversion is obtained by fixing slider, the link 4. 

Fixing of slider implies that the 

slider should be position-fixed 

and also fixed in respect of 

rotation. The verbatim inversion 

is shown in Fig. 2.42(a). This 

form has certain practical 

difficulties. As explained earlier, 

the cylinder will have to be 

slotted so as to clear piston pin 

of connecting rod as cylinder 

slides past piston. To overcome 

this difficulty, the shapes of 

piston and cylinder are 

exchanged as shown in Fig.2.42 

(b). This gives a hand pump mechanism. Lever 2 is extended. 

 

2.14. Applications of Single Slider Crank Chain Inversion 

 

Consider crank and slotted lever quick return motion mechanism in detail. This 

mechanism is mostly used in shaping machines, slotting machines and in rotary 

internal combustion engines. 

In this mechanism, the link AC  (i.e. link 3) forming the turning pair is fixed, 

as shown in Fig. 2.43. 

The link 3 corresponds 

to the connecting rod of 

a reciprocating steam 

engine. The driving 

crank CB  revolves with 

uniform angular speed 

about the fixed 

centerC . A sliding 

block attached to the 

crankpin at B  slides 

along the slotted bar 

AP  and thus causes 

AP   to oscillate about 

the pivoted point A . A 

short link PR  transmits 

the motion from AP  to 

the ram which carries 

the tool and 

reciprocates along the line of stroke 1 2R R . The line of stroke of the ram (i.e. 1 2R R ) is 

perpendicular to AC  produced.  



 
Fig. 2.44. Whitworth quick return motion mechanism.  

 

In the extreme positions, 
1AP  and 

2AP  are tangential to the circle and the 

cutting tool is at the end of the stroke. The forward or cutting stroke occurs when the 

crank rotates from the position 
1CB  to 

2CB  (or through an angle  ) in the clockwise 

direction. The return stroke occurs when the crank rotates from the position 
2CB  to 

1CB  (or through angle  ) in the clockwise direction. Since the crank has uniform 

angular speed, we have  

0

Time of cutting stroke 

Time of return stroke 360

 

 
 


=

0360 




. 

Since the tool travels a distance of 
1 2R R  during cutting and return stroke, 

therefore travel of the tool or length of stroke is 

1 2 1 2 1 1 12 2 sin    R R PP PQ AP PAQ 0

12 sin 90 2 cos
2 2

  
   

 
AP AP  

12  
CB

AP
AC

2 
CB

AP
AC

. 

From Fig. 2.43, we see that the angle   made by the forward or cutting stroke 

is greater than the angle   described by the return stroke. Since the crank rotates 

with uniform angular speed, therefore the return stroke is completed within shorter 

time. Thus it is called quick return motion mechanism.  

Now let’s analyze Whitworth quick return motion mechanism. In this 

mechanism, the link 

CD  (link 2) forming 

the turning pair is 

fixed, as shown in 

Fig. 2.44. The link 2 

corresponds to a 

crank in a 

reciprocating steam 

engine. The driving 

crank CA  (link 3) 

rotates at a uniform 

angular speed. The 

slider (link 4) 

attached to the crank 

pin at A  slides along the slotted bar PA  (link 1) which oscillates at a pivoted point 

D . The connecting rod PR  carries the ram at R  to which a cutting tool is fixed. The 

motion of the tool is constrained along the line RD  produced, i.e. along a line passing 

through D  and perpendicular to CD . 

When the driving crank CA  moves from the position 1CA  to 2CA  (or the link 

DP  from the position 1DP  to 2DP ) through an angle α in the clockwise direction, the 

tool moves from the left hand end of its stroke to the right hand end through a 

distance 2PD . Now when the driving crank moves from the position 2CA  to 1CA  (or 

the link DP  from 2DP  to 1DP ) through an angle β in the clockwise direction, the tool 



 
Fig. 2.45. Extreme 

positions of the crank 

moves back from right hand end of its stroke to the left hand end. A little 

consideration will show that the time taken during the left to right movement of the 

ram (i.e. during forward or cutting stroke) will be equal to the time taken by the 

driving crank to move from 
1CA  to 

2CA . Similarly, the time taken during the right to 

left movement of the ram (or during the idle or return stroke) will be equal to the time 

taken by the driving crank to move from 
2CA  to 

1CA .Since the crank link CA  rotates 

at uniform angular velocity therefore time taken during the cutting stroke (or forward 

stroke) is more than the time taken during the return stroke. In other words, the mean 

speed of the ram during cutting stroke is less than the mean speed during the return 

stroke. The ratio between the time taken during the cutting and return strokes is given 

by  

0

Time of cutting stroke 

Time of return stroke 360

 

 
 


=

0360 




. 

In order to find the length of effective stroke 
1 2R R , mark 

1 1 2 2PR P R PR  . The 

length of effective stroke is also equal to 2PD . 

Example 2.8. A crank and slotted lever mechanism used in a shaper has a 

center distance of 300 mm between the center of oscillation of the slotted lever and 

the center of rotation of the crank. The radius of the crank is 120 mm. Find the ratio 

of the time of cutting to the time of return stroke. 

Solution. Given: 300AC   mm; 1 120CD   mm. The extreme positions of the 

crank are shown in Fig. 2.45.  

We know that 

 0

1sin sin 90 / 2CAB     1 120
0.4

300

CB

AC
  , 

whence 
0

1 90 / 2CAB    1 0sin 0.4 23.6   or 
0 0 0/ 2 90 23.6 66.4     and 0 02 66.4 132.8    . 

Finally we have  
0Time of cutting stroke 360

Time of return stroke 






 = 

0 0

0

360 132.8
1.72

132.8


  . 

 

 

Example 2.9. In a crank and slotted lever quick return motion mechanism, the 

distance between the fixed centers is 240 mm and the length of the driving crank is 

120 mm. Find the inclination of the slotted bar with the vertical in the extreme 

position and the time ratio of cutting stroke to the return stroke. If the length of the 

slotted bar is 450 mm, find the length of the stroke if the line of stroke passes through 

the extreme positions of the free end of the lever.  

Solution. Given: 240AC   mm; 1 120CB   mm; 1 450AP   mm 



 
Fig. 2.46. Extreme positions of the crank 

 
Fig. 2.47. Quick return mechanism 

 
Fig. 2.48. Extreme positions of the crank 

Let 
1CAB  be an inclination of the 

slotted bar with the vertical. The extreme 

positions of the crank are shown in Fig. 2.46. 

We know that 

0

1sin sin 90
2

CAB
 

   
 

1 120
0.5

240

B C

AC
   , 

hence, 
0

1 90
2

CAB


   1 0sin 0.5 30  . 

We know that 0 090 / 2 30  , then 
0 0 0/ 2 90 30 60     or 0 02 60 120    . 

0 0 0

0

Time of cutting stroke 360 360 120
2.

Time of return stroke 120





 
    

 We know that length of the stroke, 

 0

1 2 1 2 1 12 2 sin 90 / 2R R PP PQ AP     

 0 02 250sin 90 60 900 0,5 450 mm.       

 

Example 2.10. Fig. 2.47 shows the layout of a quick return mechanism of the 

oscillating link type, for a special purpose 

machine. The driving crank BC  is 30 mm long 

and time ratio of the working stroke to the return 

stroke is to be 1.7. If the length of the working 

stroke of R  is 120 mm, determine the dimensions 

of AC  and AP . 

Solution. Given: 30BC   mm; 1 2 120R R   

mm; Time ratio of working stroke to the return 

stroke=1.7. 

We know that  

Time of working stroke 360

Time of return stroke






  or 

360
1.7






  

Hence, 0133.3  or 0/ 2 66.65  . 

The extreme positions of the crank 

are shown in Fig. 2.48. From right angled 

triangle 1ABC , we find that 

 0 1sin 90 / 2
B C

AC
  or     

 
1

0 cos / 2sin 90 / 2

B C BC
AC


 


. 



 
Fig. 2.49. Whitworth quick return motion mechanism 

 
Fig. 2.50. Extreme positions of the 

driving crank 

Since 
1 BC BC  we obtain 

0

30 30
75.7 mm.

cos66.65 0.3963
  AC  

We know that length of stroke, 

 0

1 2 1 2 1 1 12 2 sin 90 / 2 2 cos / 2R R PP PQ AP AP      , but 
1 AP AP . Then 

0120 2 cos66.65 0.7926 AP AP  and 120 / 0.7926 151.4 mm AP  

Example 2.11. In a Whitworth quick return motion mechanism, as shown in 

Fig. 2.49, the distance between the 

fixed centers is 50 mm and the 

length of the driving crank is 75 

mm. The length of the slotted lever 

is 150 mm and the length of the 

connecting rod is 135 mm. Find the 

ratio of the time of cutting stroke to 

the time of return stroke and also 

the effective stroke. 

Solution. Given: 

50CD  mm; 75CA mm; 150PA mm ; 

135PR  mm 

The extreme positions of the driving 

crank are shown in Fig. 2.50. From the 

geometry of the figure, 

2

50
cos / 2 0.667

75
   

CD

CA
, then 

096.4   

We know that  
0 0

0

Time of cutting stroke 360 360 96.4
 2.735.

Time of return stroke 96.4





 
    

In order to find the length of effective stroke (i.e. 1 2R R ), draw the space 

diagram of the mechanism to some suitable scale, as shown in Fig. 2.50. Mark 

1 2 2 2PR P R PR  . Therefore by measurement we find that, 

Length of effective stroke is 1 2 87.5 mmR R  

 

2.15. Inversions of Double Slider Crank Chain  

 

A kinematic chain which consists of two turning pairs and two sliding pairs is 

known as double slider crank chain, as shown in Fig. 2.51. We see that the link 2 and 

link 1 form one turning pair and link 2 and link 3 form the second turning pair. The 

link 3 and link 4 form one sliding pair and link 1 and link 4 form the second sliding 

pair. 



 
Fig. 2.51. Elliptical trammels 

 
Fig. 2.52. Scotch yoke mechanism 

 

The following three inversions of a double slider crank chain are important 

from the subject point of 

view: 

First inversion 

(Elliptical trammels). It is 

an instrument used for 

drawing ellipses. This 

inversion is obtained by 

fixing the slotted plate 

(link 4), as shown in Fig. 

2.51. The fixed plate or 

link 4 has two straight 

grooves cut in it, at right 

angles to each other. The 

link 1 and link 3 are known as sliders and form sliding pairs with link 4. The link AB  

(link 2) is a bar which forms turning pair with links 1 and 3.When the links 1 and 3 

slide along their respective grooves, any point on the link 2 such as P  traces out an 

ellipse on the surface of link 4, as shown in Fig. 2.51 (a). A little consideration will 

show that AP  and BP  are the semi-major axis and semi-minor axis of the ellipse 

respectively. This can be proved as follows: 

Let us take OX and OY  as horizontal and vertical axes and let the link BA  is 

inclined at an angle   with the horizontal, as shown in Fig. 2.51 (b). Now the co-

ordinates of the point P  on the link BA will be  

cosx PQ AP   ; and siny PR BP    or 

cos
x

AP
 ; and sin

y

BP
 . 

Squaring and adding, 

   

2 2
2 2

2 2
cos sin 1

x y

AP BP
     . 

This is the equation of an ellipse. Hence the path traced by point P  is an 

ellipse whose semi major axis is AP  and semi-minor axis is BP . 

If P  is the mid-point of link BA , then AP BP . The above equation can be 

written as 

   

2 2

2 2
1

AP

x y

AP
   or 

 
22 2x y AP  . 

This is the equation of a circle 

whose radius is AP . Hence if P  is the 

mid-point of link BA , it will trace 

circle. 

Second inversion (Scotch yoke 

mechanism). This mechanism is used 



 
Fig. 2.53. Oldham’s coupling 

for converting rotary motion into a reciprocating motion. The inversion is obtained by 

fixing either the link 1 or link 3. In Fig. 5.35, link 1 is fixed. In this mechanism, when 

the link 2 (which corresponds to crank) rotates about B  as center, the link4 (which 

corresponds to a frame) reciprocates. The fixed link 1 guides the frame.  

Third inversion (Oldham’s coupling). An Oldham’s coupling is used for 

connecting two parallel shafts whose axes are at a small distance apart. The shafts are 

coupled in such a way that if one shaft rotates, the other shaft also rotates at the same 

speed. This inversion is obtained by fixing the link 2, as shown in Fig. 2.53 (a). The 

shafts to be connected have two flanges (link 1 and link 3) rigidly fastened at their 

ends by forging. 

The link 1 and link 3 form turning pairs with link 2. These flanges have 

diametrical slots cut in their inner faces, as shown in Fig. 2.53 (b). The intermediate 

piece (link 4) which is a circular disc, have two tongues (i.e. diametrical projections) 

T1 and T2 on each face at right angles to each other, as shown in Fig. 2.53 (c). The 

tongues on the link 4 closely fit into the slots in the two flanges (link 1 and link 3). 

The link 4 can slide or reciprocate in the slots in the flanges. 

When the driving shaft A is rotated, the flange C  (link 1) causes the 

intermediate piece (link4) to rotate at the same angle through which the flange has 

rotated, and it further rotates the flange D  (link 3) at the same angle and thus the 

shaft B  rotates. Hence links 1, 3 and 4 have the same angular velocity at every 

instant. A little consideration will show that there is a sliding motion between the link 

4 and each of the other links 1 and 3. If the distance between the axes of the shafts is 

constant, the center of intermediate piece will describe a circle of radius equal to the 

distance between the axes of the two shafts. Therefore, the maximum sliding speed of 

each tongue along its slot is equal to the peripheral velocity of the center of the disc 

along its circular path.  



 
(a)          (b)      (c) 

Fig. 2.54. Structural analysis of plane mechanism 

Let   be an angular velocity of each shaft in rad/s, and r is a distance between 

the axes of the shafts in meters. Then maximum sliding speed of each tongue (in 

m/s), 

v r  . 

 

2.16. Assur-Artobolevsky Composition Principle and Structural Analysis 

 

2.16.1. Composition Principle of Mechanisms 

 

The links and the kinematic pairs of a mechanism can be divided into two 

parts. The first part consists of the frame, the driver and the kinematic pair connecting 

the frame and the driver. Other links and pairs belong to the second part. The first 

part we will call the basic mechanism and the second part the system of driven links. 

The mechanism in Fig. 2.54 can for example be divided into two such parts as shown 

in Fig. 2.54 (b). During such division and classification, the sum of links, the sum and 

types of kinematic pairs do not change. The sum of the d.o.f. of the two parts should 

therefore be equal to the d.o.f. of the original mechanism. 

We have learned that in any mechanism which has a determined motion, the 

number of drivers must be equal to the d.o.f. of the mechanism. In the basic 

mechanism, the driver is always connected to the frame by a lower pair. Every driver 

(and its corresponding lower pair) has one d.o.f. Thus the d.o.f. of the basic 

mechanism is equal to the number of drivers, or equal to the d.o.f. of the original 

mechanism. The d.o.f. of the system of driven links must thus be zero. In some cases, 

the system of driven links can be divided into smaller groups. If the d.o.f. of each 

group is zero and no group can be divided further into two or more zero-d.o.f. groups, 

then such groups are called Assur-Artobolevsky groups. For example, the system of 

driven links in Fig. 2.54 (b) can be further divided into two Assur groups as shown in 

Fig. 2.54 (c). 

In each Assur group, one or more pairs are used to connect the links within the 

group. Such a pair is called an inner pair. For example, the pair C in the group DCB 

and the pair F in the group GFE are the inner pairs for the groups concerned. Some 

pairs in an Assur group are used to connect the group to kinematically determined 

links. Such pairs are called outer pairs. For example, the group DCB is connected to 

the kinematically determined links (the frame and the driver) by lower pairs B and D. 

The pairs B and D are therefore the outer pairs of the group DCB. When the group 

DCB is connected to the determined links by the outer pairs D and B a four-bar 

mechanism ABCD is created and all links in the group DCB become kinematically 



 
(a)            (b) 

Fig. 2.55. 

 
(a)            (b) 

Fig. 2.56. 

determined. The group GFE is then connected to the determined link BCE and the 

frame by lower pairs E and G. The pairs E and G are therefore the outer pairs of the 

group GFE. Note: the revolute E is not an outer pair of the group DCB. From the 

assembly order of the Assur groups, we can see that the group DCB is the first group, 

while the group GFE is the second group. 

Hence, as mentioned above, we can see that any mechanism which has a 

determined motion can be assembled from a basic mechanism by connecting Assur 

groups to the determined links using outer pairs, group by group. This is the 

composition principle of mechanism. Only after the former Assur group is assembled 

can the later one be assembled. 

 

2.16.2. Classification of Assur Group and Mechanism  

 

In a lower-pair Assur group, 3 2 0.F n l    Therefore, 
3

2

n
l  . Since l and n 

are integers, the number n of links must be even. The groups in Fig. 2.54 (c) are the 

simplest lower-pair Assur groups in which there are two links and three pairs. If n = 

4, the lower-pair Assur group has two different constructions as shown in Fig. 2.55. 

In Fig. 2.55 (a), lower pairs A, B and C are used to connect links within the group. 

They are the inner pairs of the group. The group will be connected to determined 

links by lower pairs D, E and F. Thus, the lower pairs D, E and F are the outer pairs 

of the group. In Fig. 2.55 (b), lower pairs A, B, C and D are the inner pairs, while the 

lower pairs E and F are the outer pairs. Assur groups have different grades according 

to different number of links and different structure. The groups in Fig. 2.54 (c), Fig. 

2.55 (a) and Fig. 2.55 (b) are classified as grade II, III and IV Assur groups, 

respectively. 

 For the same kinematic chain, the composition can be changed if the frame 

and/or the driving link is changed. For example, the kinematic chain in Fig. 2.56 (a) 

is the same as that in Fig. 2.54 (a) but the driver in Fig. 2.56 (a) is the link GF. The 

mechanism in Fig. 2.56 (a) is then composed of a basic mechanism and a grade III 

Assur group, as shown in Fig. 2.56 (b). 

 The grade of a mechanism is defined as the highest grade of the Assur group in 

the mechanism. Hence the mechanism in Fig. 2.54 is a grade II mechanism, while the 

mechanism in Fig. 2.56 is of grade III. The basic mechanism is sometimes called the 



grade I mechanism, e.g., a ceiling fan (consisting of only a single rotating link) is a 

grade I mechanism. 

 If all pairs in Assur group are revolute pairs, the group is called the basic form 

of Assur group. If one or more revolute pairs are replaced by sliding pairs, some 

derivative forms of Assur groups will be created. The group name, schematic 

diagram, inner pair and outer pairs of some commonly used grade II Assur groups are 

shown in Fig. 2.57. The links in dashed lines are the kinematically determined ones.  

 

 

2.16.3. Structural Analysis  

 

As mentioned above, a mechanism is assembled starting with the basic 

mechanism and adding Assur groups to the determined links using the outer pairs, 

group by group. The purpose of structural analysis is to disconnect the Assur groups 

from the mechanism and to determine their types and assembly order. The steps of 

structural analysis for grade II linkage mechanisms are as follows. 

(1) Delete all redundant constraints. 

( 2) The frame and the basic mechanism are determined links. Other links are 

undetermined links. 

(3) From all undetermined links that are connected to determined links, choose 

two connected links. These two links constitute a grade II Assur group. 

 

 Table 2.2. Commonly used grade II Assur groups 

Group 

name 

RRR RRP RPR PRP 

 

 

 

 

 

 

 

 

Schematic 

diagram 

 

 

  

 

Inner pair B revolute pair B sliding pair revolute pair A 



 
Fig. 2.57. Structural analysis of 

mechanism 

Outer 

pairs 
C, A A, sliding pair A, revolute B 

sliding pair 1-3 sliding 

pair 2-4 

 

The pair connecting these two links is the inner pair of the group. The two pairs 

by which the group is connected to the determined links are the two outer pairs of the 

group. 

(4) When the group is connected to the determined links by the outer pairs, all 

links in the group become kinematically determined. Now repeat step (3) until all 

links become kinematically determined. 

This procedure is sometimes called group 

dividing. During group dividing, any link and 

kinematic pair can only belong to one group and 

cannot appear twice in different groups. 

According to the steps mentioned above, for the 

mechanism shown in Fig. 2.57, the assembly 

order of groups, type of group, link serial 

numbers, inner pair and outer pairs of each 

group are listed in Table 2.3. Since the highest 

grade of group in this mechanism is II, the 

mechanism is a grade II mechanism. During 

kinematic analysis of the mechanism, the first 

group must be analyzed first. Only after that, can 

the second group be analyzed. 

Table 2.3. Structural analysis for the mechanism shown in Fig. 2.57. 

 

Type 
Link serial 

numbers 
Inner pair Outer pairs 

First 

group 

RRR 2,3 A B,D 

Second 

group 

RPR 4,5 sliding pair C4-5 F, revolute C3-5 

 

The theory of structural analysis reveals the internal rule of the mechanism 

composition. It can help us to understand the structure of a mechanism, to analyze the 

transmission route in the mechanism, and to improve our ability in mechanism 

design. 

 

2.17. Structural Synthesis 

 

Whereas kinematic analysis aims at analyzing the motion inherent in a given 

machine or mechanism, kinematic synthesis aims at determining mechanisms that are 

required to fulfill certain motion specifications. Kinematic synthesis can, therefore, 



be thought of as a reverse problem to kinematic analysis of mechanisms. Synthesis is 

very fundamental of a design as it represents creation of a new hardware to meet 

particular needs of motion, namely displacement, velocity or acceleration-singly or in 

combination. 

Probably, the most obvious external characteristics of a kinematic chain or 

mechanism are: the number of links and number of joints. Movability studies based 

on only these two parameters come under the name ‘number synthesis.’ The oldest 

and still the most useful (although with limitations) estimate of movability/mobility is 

known as the ‘Grubler’s criterion’. Effect of link lengths, directions and locations of 

axis, position of instantaneous centers of velocity, complexity of connections, etc. are 

neglected in this approach. 

Mechanism number-synthesis is applied basically to linkages having turning 

pairs (pin joints) only. This does not, however, restrict its application to mechanisms 

with turning pairs alone. For it has been shown by that, having once developed 

complete variety of pin jointed mechanisms, the method can most readily be 

converted to accommodate cams, gears, belt drives, hydraulic cylinder mechanisms 

and clamping devices.  

Following deductions will be useful in deriving possible link combinations of a 

given number of links for given degree of freedom. It is assumed that all joints are 

simple and there is no singular link. 

 

From equation (2.1), 

3( 1) 2F n l   . 

Rewriting this equation, we have 

3( 1)

2 2

n F
l


  .      (2.4) 

Since total number of turning pairs must be an integer number, it follows that 

either ( 1)n   and F  should be both even or both odd. Thus, for l  to be an integer 

number: 

(1) If d.o.f. F is odd (say, 1,3,5…), ( 1)n   should also be odd. In other words, n  

must be eve. 

(2) If d.o.f. F  is even (say 2,4…), ( 1)n   should also be even. In other words for 

F  to be even, n  must be odd.  

Summing up, for F to be even, n  must be odd and for F  to be odd, n  must 

be even. 

Let 2n be a number of binary links, 3n  be a number of ternary links, 4n  - 

number of quaternary links, kn - number of k -nary links. 

The above number of links must add up to the total number of links in the 

mechanism.  

Thus, 

2 3 4 ... kn n n n n      or 

2

k

i

i

n n


 .       (2.5) 



 
Fig. 2.58. Minimum number of link's required for closure 

 

Since discussions are limited to simple jointed chains, each joint/pair consists 

of two elements. Thus, if e  is total number of elements in the mechanism, then 

2e l .       (2.6) 

By definition binary, ternary, quaternary, etc. links consist of 2, 3, 4 elements 

respectively. Hence, total number of elements is also given by  

2 3 42 3 4 ... ( )ke n n n k n     .    (2.7) 

Comparing right hand side of equations (2.6) and (2.7), we have 

2 3 42 2 3 4 ... ( )kl n n n k n     .    (2.8) 

Substituting (2.5) and (2.8) in (2.1), we have 

2 3 4 2 3 43[( ... ) 1] [2 3 4 ... ]k kF n n n n n n n kn           . 

Simplifying further,  

2 4 5 6[ 2 3 ... ( 3) ] 3kF n n n n k n         or rearranging, 

2 4 5 6( 3) [ 2 3 ... ( 3) ]kn F n n n k n        .   (2.9) 

Thus, number of binary links required in mechanism depends on d.o.f. and also 

on the number of links having elements greater than 3. Sacrificing exactness for fear 

of a complex relation, minimum number of binary links is deduced from eq. (2.9) as: 

    2 4,n   for F 1 , 

    
2 5,n   for F 2 , 

2 6n   for F 3 , etc.     (2.10) 

This proves that minimum number of binary links for F=1 is 4, while the 

minimum number of binary links required for F=2 is 5. 

Let’s determine maximum possible number of turning pairs on any of the n 

links in a mechanism 

The problem is 

approached in an 

indirect manner. We 

pose the problem to 

be that of finding 

minimum number of 

links n  required for 

closure when one of 

the links has largest 

number of elements 

equal .k  An attempt 

is now made to close 

the chain in Fig.2.58 

having link A  of k  elements.  

For completing the chain with a minimum number of links involving no 

multiple joint, it is necessary to interconnect ternary links at all the elements of link 

A  except the first and last element. Connecting ternaries at intermediate elements 

ensures a continuity of motion from link l  to link k . Links directly connected to link 

A  are labeled l  rough k , while the motion transfer links shown in Fig.2.58 are 

numbered as ( 1),( 2),( 3),...[ ( 2)],[ ( 1)].k k k k k k k        The last motion 



transfer link is thus numbered as (2 1).k   Clearly, minimum number of links 

required to complete the chain is (2 1),k   besides the link of highest elements.  

In other words, for a given number of links 2n k , a link can have a maximum 

of k  elements. Hence,  

2

n
k  .       (2.11) 

Thus when n  is even, maximum possible number of elements which a link can 

have is / 2n . 

An important conclusion emerging out of eq. (2.9) is that the number of ternary 

links does not have any influence on degrees of freedom of a mechanism.  

For a mechanism with d.o.f. =1, 

1
( ) 1

2
C n  ,  (2.12) 

where C  is a number of independent circuit or loops, n  is a number of links. 

 

2.18. Enumeration of kinematic Chains  

 

Let N  be the number of links and F  degree of freedom, for which all possible 

planar chains are needed to be established. 

Step 1. For given N  and F  establish the number of joints (hinges) using (2.4) 

3 ( 3)

2

N F
l

 
 . 

For F=1, this reduces to  

3 4

2

N
l


 . 

Step 2. For given N , establish maximum number of elements permissible on 

any link, using 

 

 

and 
( 1)

,for 2,4
2

N
k F


  . 

Step 3. Substituting expression for N  and 2l , namely,  

2 3 4 ... kN n n n n     , and 2 3 42 2 3 4 ... ( )kl n n n k n      

in Grubler’s eq. (2.1) we have 

2 3 4 2 3 43[( ... ) 1] [2 3 4 ... ]k kF n n n n n n n kn           or 

2 4 5[ ( 2 ... ( 3) ) 3]kF n n n k n       . 

Thus for 1F  , 

2 4 52 ... ( 3) 4kn n n k n      . 

Above equations may be used to list all possible combinations of 

2 4 5, , ,...n n n which satisfy given conditions. 

Example 2.12. Enumerate all chains possible with 6N  and 1F  . 

,for 1,3,5
2

N
k F 



 
(a) Undesirable due to existence of 3-link loop 1-2-3; (b) Undesirable due to formation of link 

loop 1-2-6; (c) Permissible combination as no3-link loop exists 

Fig. 2.59 

Solution: Total number of hinges 
3(6) 4

7
2

l


  . 

Also, for even number of links ( 6)N  , maximum number of hinges on any 

link is 6/2=3. Thus the chains will consist of binary and ternary links only. Hence, we 

have from eqs. (2.5) and (2.8), 

2 3 6n n N    and 
2 32 3 2 14n n l   .   (2.13) 

Substituting in Grubler’s criterion we have, 

2 3 2 33( ) (2 3 ) 4 0n n n n      or 
2 4 0n   . 

Thus, 
2 4n   and from eq. (2.13), 

3 2.n   

We begin by considering the ways in which links of highest degree (i.e., links 

having largest number of elements) can be interconnected. The two ternaries can be 

either connected directly through a common pair or can be connected only through 

one or two binary links. 

In Fig.2.59 we consider the first possibility. The two ternaries of 2.59(a) and 

(b) cannot be connected through a single link as it amounts to forming a structural 

loop (3-link loop). The only way to connect them through 4 binaries (avoiding 

formation of a 3-link loop) is therefore, as shown at Figs.2.59(c), which gives Watt’s 

chain. 

Considering the second alternative, Fig. 2.60 (a) shows the two ternary links 1 

and 2 being connected through a single binary link 3. Then, between one of 

remaining two pairs of elements of links 1 and 2, we may introduce a single binary 

and between the other pair of elements, two remaining binaries. The resulting 

arrangements are as at Fig.2.60 (b) and (c). It is easy to verify that arrangements at  

Figs. 2.60 (b) and (c) are structurally the same.  



 
(b) Valid Stephenson's chain; (c) Valid chain (same as that at b) 

Fig. 2.60 

 

Example 2.13. Enumerate all possible chains of 7N   and F =2. 

Solution: Total number of hinges 
3( ) ( 3) 3(7) (2 3)

8
2 2

N F
l

   
    

Maximum number of elements on any link: ( 1) / 2 4.N    

Hence, only binary, ternary and quaternary links are possible. Thus, from eqs. 

(2.5) and (2.8), 

2 3 4 ( 7)n n n N    , 2 3 42 3 4 2 ( 16)n n n l    .  

Substituting in Grubler’s equation,  

3( 1) 2F N l   , 

we have 

2 3 4 2 3 42 3[( ) 1] (2 3 4 )n n n n n n        or 2 4 5n n  . 

Thus, the possible combinations are (Note that for any mechanism with 

22, 5F n  ): 4 1;n   2 6n  ; 4 0;n   2 5n  . Also check that 2 3 4 7n n n   .  

Obviously, remaining links in above combinations will be the ternaries. Thus 

the two combinations possible are: 

4n  3n  2n  Total N  

1 0 6 7 

0 2 5 7 

Different chains that can be formed are as shown in Figs.2.61 (a), (b), (c) and 

(d). Chain at Fig.2.61 (a) involves a quaternary link with remaining 6 binary links 

forming two independent loops of F= 1. A mechanism of F=2 is possible only when 

any link other than quaternary is fixed. Chain at Fig. 2.61 (b) involves two ternary 

links that are directly connected. A binary cannot be used singly to connect these 

ternaries at any of the remaining pairs of elements as that leads to a 3-link loop. 

Therefore, the only option is to connect these ternaries through two binaries and 

through three binaries at remaining pairs of elements. This is shown in Fig. 2.61 (b). 

When the two ternaries are connected through a single binary, the two possible ways 

of incorporating remaining 4 binaries are shown at Fig. 2.61 (c) and (d). 



 
Fig. 2.61. Feasible chains of seven links 

 

 
Fig. 2.62. Feasible chains for first combination 

 

 

Example 2.14. Enumerate combination of links possible in case of a 8-link 

chain with 1F  . 

Solution: Number, of hinges 
3(8) 4

10
2

l


  . 

Maximum number of elements on one link is 
8

4.
2
  

Hence the chains can have binary, ternary and quaternary links only. From 

equations (2.5) and (2.8), 

2 3 4 8n n n    and 2 3 42 3 4 20n n n   . 

Substituting in Grubler’s criterion,  

2 3 4 2 3 4 2 43( ) (2 3 4 ) 4 0 ( ) 4n n n n n n or n n         . 

We study various combinations indicated by above expression in respect of 

their viability: 

4n  

(assumed) 
2 4 4n n   3 2 48 ( )n n n    Remark 

4 8 - Not acceptable as 2 4n n N   

3 7 - Not acceptable as 2 4n n N   

2 6 - acceptable 

1 5 2 acceptable 

0 4 4 acceptable 

Thus the three valid combinations of links are: 

(1) 4 2n  ; 3 0n  ; 2 6n  ; 

(2) 4 1n  ; 3 2n  ; 2 5n  ; 

(3) 4 0n  ; 3 4n  ; 2 4n  . 

The first combination yields the 

following two chains 

( 4 3 22; 0; 6n n n   ). (Fig. 2.62). 

The second combination of 



 
Fig. 2.63. Feasible chains for second combination 

 
Fig. 2.64. Feasible chains for third combination 

 

links yields the following five chains (
4 3 21; 2; 5n n n   ) (see Fig. 2.63). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The third combination (
4 3 20; 4; 4n n n   ) of links yields following chains 

(see Fig 2.64) 

 


