7. LAGRANGIAN DYNAMICS

7.1. Generalized Coordinates, Velocities and Accelerations

As the problems in dynamics become more complex it, naturally, becomes
increasingly difficult to work out the solutions. This difficulty is associated not only
with the solution of the equations of motion, but with their formulation as well. In
fact, the derivation of the basic differential equations of motion in a form suitable for
a particular complicated problem may well be the most difficult part of the
investigation. A number of methods, more powerful than those hitherto considered in
this manual, have been developed for deriving the equations for these more involved
situations. Perhaps the most generally useful of these more advanced methods for
engineering problems is that of Lagrange, who has put the basic equations of motion
in such a form that the simplifying features of a particular problem can be utilized
most advantageously. In the present chapter we shall derive Lagrange's equations.

One of the principal advantages of Lagrange's method is that one uses for each
problem that coordinate system which most conveniently describes the motion. We
have already seen that the position of a particle can be described in a large number of
different ways, and we have found in the problems already discussed that the choice
of a proper coordinate system may introduce a considerable simplification into the
solution of a problem. In general, the requirement for a system of coordinates is that
the specification of the coordinates must locate completely the position of each part
of the system. This means that there must be one coordinate associated with each
degree of freedom of the system. More exactly, there must be at least one coordinate
associated with each degree of freedom. So called non-holonomic systems exist, for
which, because of the particular geometrical constraints involved, more coordinates
are required than there are degrees of freedom. Such systems are not often
encountered and will not be considered here. We shall restrict the following treatment
to systems whose coordinates are independent, in the sense that a change can be
given to any one of the coordinates without changing any of the other coordinates. By
the generalized coordinates (qq,q5,...qs) we shall mean a set of independent
coordinates, equal in number to the s degrees of freedom of the system. We use the
word "generalized" to emphasize the fact that such coordinates are not necessarily of
the type of the simple (x,y,z) or (r, 6, @) systems and to indicate that they are not
necessarily lengths or angles, but may be any quantity appropriate to the description
of the position of the system.

The (xy, Vi, 2;) coordinates of a point k are expressible in terms of the
generalized coordinates (q, g5, ... g5) by functional relations:

X = Xk (q1, G2, Gs),
Vi = Yk(q1, 925 - Gs), (7.1)

z = 2k (q1, Gz, -+, Gs)-
For example, if (g, g, q3) are the cylindrical coordinates of a point (7, 6, @),
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the foregoing equations become:
X =r1rcosO, y=rsinf, z =z

We have supposed that the relation between the coordinate systems does not
involve time. In the more general treatment in which x = x(q4, q5, ... q5, t) analysis
can proceed along essentially the same lines. The equations of motion in generalized
coordinates for any particular system could always be obtained by writing the
equations first in an (x,y, z) system, and then transforming to the ¢'s by Egs.(7.1).
This procedure usually leads to involved algebraic manipulations, and it is better to
make the transformation in general terms and to write the equations of motion
directly in generalized coordinates.

Thus, the parameters of any dimensions (qq,q5,...qs) describing the
configuration of the system in space are called generalized coordinates. Their first
derivatives with respect to time (g, 45, ... 45) are called generalized velocities and the
second derivatives (4, G5, ... ) are said to be generalized accelerations.

7.2. Generalized Forces

Let theq;, for i = 1,s,be a set of generalized coordinates which uniquely
specifies the instantaneous position of some dynamical system which has s degrees of
freedom. Here, it is assumed that each of q; can vary independently. Since the
generalized  coordinates are independent, their elemental increments
(6q1,8q,, ...0q,) are also independent. Each of these quantities defines a virtual
displacement of the system. Let the system be under the action of the active
forces Fq,F,,...,F,. Since the radius-vector of any point is a function of their
coordinates r, = xii + y;j + z,k, one can write

T = 1T(q1, 92, - Gs)- (7.2)

We now calculate the virtual (elementary) work in terms of displacements of the
n particles assumed to make up the system and the forces Fq, Fo, ..., F,, acting on
them. The virtual work is

Z5Aa = ;{1.:1 Fk . 51‘k. (73)
Now, since 1, = xii + Yij + zk , we can write:
7]
81y = Xica5.-00; (74)
for k=1,n.
Substituting (7.4) into (7.3), one can obtain
0
26 Ak = Xik=1Fr f=1an’:5CIi-
The above expression can be rearranged to give
Z S A = Zf=1 Qi ' Sqii (75)
where
d
Qi = Xk=1Fy anl:- (7.6)

Here the Q; are called generalized forces. Note that generalized forces do not
necessarily have the dimensions of force. However, the product- Q;5q; must have the
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dimension of work. Thus, if particular g; is a lineal parameter, then the associated Q;
is a force. Conversely, if g; is an angle, then Q; is a torque.

Formula (7.5) represents the elementary work of the acting forces in terms of
generalized coordinates. This definition of the @Q; indicates the way in which they can
be determined in specific problems. To find Q;, the total work done by all of external
forces during an infinitesimal displacement 6q; of one of the coordinates is
calculated, and Q; is then obtained by dividing this total work by §g;.

Thus, the generalized forces are coefficients of the increments of the generalized
coordinates in the expression for the total elementary work of all forces applied to the
system. It is obvious that the number of generalized forces is equal to the number of
degrees of freedom.

If the forces acting on the system are conservative, their total elementary work
can be written A = —4Il, where I1 is a potential energy of the system which is a
function of the coordinates xy, yi, zx. But these coordinates are the functions of
generalized coordinates. Thus, I1 = I1(q, q3, ---, qs). Calculating a total differential
of this function, one can obtain

64 = =811 = = |Z28q) + 52 8qy + -+ 5284,

Comparing this expression with equation (7.5) we have
ol oI oI

Q1 =—5-,0 Qs = — 5~ (7.7)

9q," 2 " 0qy’ " 94ds
Therefore, when the forces applied to the system are conservative, generalized
forces are the partial derivatives of the potential energy of the system with respect to
correspondent generalized coordinates taken with sign minus.

7.3. Conditions of Equilibrium in Terms of Generalized Coordinates

In accordance with principle of virtual works the necessary and sufficient
conditions for the equilibrium of a system subjected to ideal constraints is that the
total virtual work done by all the active forces is equal to zero for any and all virtual
displacements consistent with the constraints, soY.p_; 64, =0. In terms of
generalized coordinates this condition, taking into account equation (7.5), can be
written

i=1Qi-6q; = 0.

Since §¢;, as independent variables, can not be equal to 0, the generalized forces
Q; must disappear in an equilibrium position, i.e., Q; = 0, i=1,2,...,s

Upon solving the above equations with respect to s unknown generalized
coordinates q; one may always obtain all possible system’s equilibrium positions.

Hence, a holonomic system with perfect constraints is in its equilibrium only if
all generalized forces corresponding to generalized coordinates are equal to zero.

For conservative systems, taking into account Eq (7.7), we have

A0 f=-9f=0p
dq,  9qz aqs '
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7.4. Lagrange’s Equations of Motion

Let us consider the general equation of dynamics:
Y 5A% + ¥ SA =0, (7.8)

where §A¢ and §AY™ are virtual works of applied impressed forces and inertial forces
respectively.

By analogy with Eq.(7.5) one can write

| S 64T = X8, QI 8,

where Q;™are generalized forces of inertia which can be defined as
in a7‘k

= Fk . (7.9)
Then from Eq.(7.8) we have for i= 1
Q;+Qm = (7.10)
Let us express Q;" in terms of kinetic energy T. Since Fi* = —m, a;=
=—my, d" Eq.(7.9 ) yields
dvy 0
—Q" = Thar mue A 5k (7.11)
Notice that
dvi dri _ d ory or
dt dq; dt (vk aql) Ykt dt (aql) (7.12)
Further,
aT‘k _ d ary avk
(aql) 0q; ( ) 0q;’ (7.13)

Any position vector assoc1ated with holonomic system has the form of Eq.(7.2).
Since the generalized coordinates are themselves functions of time, the first
derivative of the position vector with respect to time is

. ory .
i = i 284, (7.14)
o= e 5o A4
where 1, = i = )
Since all position vectors do not depend on g;, the partial derivative an’f do not
9 (9K _
depend on ¢; either. Hence, 3 ( aql) = 0.
Therefore, dlfferentlatlon of Eq. (7.14) with respect to g; yields
Otk _ Ok _ vk (7.15)

dq; 0q;  9q;

Making use of formulas (7.13) and (7.15), expression (7. 12) can be written
dvg ark d ( avk) avk (1 avk) 16_17,2(
dt 9q; dt Uk 04q; Uk aq; 29q; 20q;

Taking into account that mass is constant, the Eq. (7 11) yields

Q G ( n mkv,i)]_i( n mkvi)_i(ar) ar
~ atlag, \Fk=1"" ag; \“k=1"5") = a4t \aq;,)  aq;

(7.16)

where T = Y ;4
Hence, from Eq.(7.10) we have finally
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4(my_or_g, (7.17)

de \ag; dq;
where i=1,...,s.

Eqgs. (7.17) are called Lagrange’s equations. They represent the differential
equations of motion of a system in terms of generalized coordinates. It is obvious that
their number is equal to the number of degrees of freedom of a system.

If all impressed forces acting on a system are conservative, one can obtain

taking into account formulas (7.7)

d (8T 9T , am _ d (d(T-M)\ _ a(r-m) _

dat (6ql) aq; aq; =0or dt( aq; ) aq; o (718)
The last equation is valid since a potential energy II depends only on

generalized coordinates and does not depend on generalized velocities. Hence,
)1
%, 0.
It is helpful to introduce a function L, called the Lagrangian, which is defined
as the difference between the kinetic and potential energies of the dynamical system

under investigation: L=T7-11. Then, from (7.18), we have

wGa)—sc=0. (7.19)

7.5. Solution of Problems

Problem 62. Resolve problem 61 by means of Lagrange’s equations.

Solution. Mechanical system has two
degrees of freedom (the rotation of the
cylinder with respect to the thread, when
the load A is at rest, and the displacement
of the load when the cylinder does not
rotate, fig. 94).

Let wus choose as generalized
coordinates displacement of bodies with
thread S, and angle of rotation of
cylinderp. Then we have two
independent virtual displacements s,
and J&¢@. Now consider a virtual
displacement &s, of the system in which the cylinder does not rotate and is translated
together with the load. The force P, does no work in this displacement. There are
forces Pq and Fp, which produce work on elemental displacement §s,. It equals

§A = (—Fp + Py)8sy,
whence, as Fr. = P,f, we find generalized force corresponding to generalized
coordinate Sy,

Fig. 94

QSA =P, — fP;.
Consider the other independent virtual displacement in which the load A remains
at rest while the cylinder turns about point B (which in this displacement is the
instantaneous centre of rotation) through angle §¢. For this displacement there is
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only one force of the weight of the cylinder which produces work on elemental
displacement §¢. It equals
0A = P;8s. = Pyréo,
where 71is the radius of the cylinder. So we have found generalized force
corresponding to generalized coordinate ¢,
Qp = Pyr.

Now determine kinetic energy of a system. It equals T = T; + T,, where T; is a
kinetic energy of a cylinder and T, is kinetic energy of a load.

Cylinder is in a resultant motion which consists of the transport motion (this is a
motion of a tread with velocity v,) and relative motion (this is a motion of a cylinder
with respect to the thread, i.e., plane motion). Therefore,

Pvé  lcw?
Ty = + )
29 2
where v 1s absolute velocity of the center C, /. is a moment of inertia of cylinder
and w is its relative angular velocity since transport motion is a translational one).

From the problem 61 we have J. = 0,5m,7r?. Calculate v:

V=V, + Tw.

Taking into account that v, = 54 and w = ¢, we have

T, = Pi(34+79)* + P17”2<P2‘
2g 49
Load 4 is in translational motion, then
P,v3 P,s2
, = =

29 29

Thus,

Pi(84 +T9)? Pir2¢g?  P,$2
T = 1(Sa ®) 1 §0+2A

29 4g 29
Motion of the system considered is governed by Lagrange’s equations of the
following form:

d <6T) oT _
dt\ds,) ds, 4
d (6T> oT B
dt\d¢/) d¢ Cy-
Therefore,
T P (S4+79) N P,s, 0T Py (S84 +rd)r N Pirtg
0S4 g g’ 09 g 29’
aT _ dT _ 0
ds, 0

Hence, we have following Lagrange’s equations:
Py(84 +7¢) + P25y = g(Py — fPy),
25,4+ 3rp = 2g.
But §4 is acceleration of the load 4, i.e., a,. At the same time it is a transport
acceleration of the cylinder. The product r¢ = re represents relative acceleration of
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the point C. Since relative and transport accelerations have the same sense, §, +
r¢ = a.. Then we obtain
Piac + Pyay = g(Py — fP,),

3ac —ay = 2g9.
This set of equations gives
a4, = P1—=3fP, — P1+(2-f)P,
A" p+3p, I’ € P, +3P,

Problem 63. An uniform and thin bar 2 of mass m and length [ is hinged to link
1 which rotates with a constant angular speed w (Fig. 95). Derive the differential

equation of motion of link 2 by means of Lagrange’s equations. Neglect the mass of
the link /.

Solution. Assume that [ is the generalized
coordinate. Absolute angular velocity of the link 2
is a sum of the transport angular velocity of the
link / w and the relative velocity of the link 2
with respect to the link /(Fig. 96).

w, =w+ i, =kiow+i,p.

Since

k; = j,sin + k, cosf3,
the absolute angular velocity of the link 2 is

Fig. 95

w, = i,f + j,wsin B + kyw cos B.
Its components are
Woy = B, W2y = W Sinf,w,, = w cos f.
The link 2 performs rotational motion about point
O. The moment of inertia of the link 2 about z axis is
zero. Hence, its total kinetic energy is

1 1 .
T = El(a)%x +wd)) = El(ﬁz + w?sin? B).

There is only one force of the weight of the link 2
which produces work on elemental displacement 6. It

Y2

equals 64 = —%mgl sin 6. Hence, generelized
force is Qp = —émgl sin .
Motion of the system considered is governed by

Lagrange’s equations of the following form:

d (dT\ 9T
2 (a) 35 = %
where Fig. 96

d (0T _1p G_T_ 2
E(ﬁ)_l'g’ aﬁ—lw sin f§ cos f5.

Then one can obtain
I — Iw?sin B cos B + %mgl sinf = 0.
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Since I = %ml2 the final form of equation of motion is

B — w?sin B cos B +%gsinﬁ’ = 0.
Problem 64. The bead 1 which can be considered as a particle of mass m, may

slides without any friction along the slide 2.
The slide 2 rotates with the constant angular
velocity w about the vertical axis Z (Fig. 97).
By means of Lagrange’s equations derive
equation of motion of the bead / and
determine all possible equilibrium positions.

Givenare: R =25cm, w = 10rad/s.

Solution. The angle a can be considered
as the generalized coordinate.

In Fig. 98 the inertial system of
coordinates is denoted by XYZ. System of
coordinates xyz is rigidly attached to the slide
and rotates with the angular velocity w about

| Z

\®|/
ml\

Fig. 97

wt

axis Z. This is a transport angular velocity of
the bead. The relative velocity of the bead is
its velocity along slide. Vector of the absolute
velocity of the bead / is
Vo =V + Vyp,

where v, = Ra, vy, = Rw sina . Since
v, L v, v2 = @?R? + w?R?sin? a.

Hence,

mv,% 1 <212 2p2 i.2
T = - =5m(aR + w“R* sin” a).

By analogy with problem 63 Q, =
—mgR sin a. Lagrange’s equations may be
taken in the following form:

d(ar) aT_Q
dt \da da ¥

where
oT . d (0T ..
i o5~ mR?q, E(%) = mR?q,
- Z—Z = mR?w? sina cos a.
Fig. 98. Hence, these expressions yield equation

of motion

mR?& — mw?R?sina cosa + mgR sina = 0.

Since for the static equilibrium position @ = & = 0, then, according to the last

equation, we have

w?Rsina cosa = gsina.

Hence, the possible equilibrium positions are
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_ _ 9.81
1.9 — (o5t = +66.89°,
w2R 102.0.25

Problem 65. Fig. 99 shows an arm of a robot operating in the horizontal plane.
Motion of the arm is controlled by two actuators installed at joints 0; and 0,. The
actuators produce moments M; and M,. Derive differential equations of motion of the
robot’s arm.

Given are:

I, — moment of inertia of the link / about a vertical axis through its centre of
gravity G;.

I, — moment of inertia of the link 2 about a vertical axis through its centre of
gravity G,.

m;, m, — masses of the link / and 2 respectively.

ai, az, I, I, — dimensions shown in Fig. 99.

ap =0, ap =1, ag = cos

Fig. 99 Fig. 100
Solution. The system considered has 2 degrees of freedom and the angles a; and
a, may be considered as the generalized coordinates. Hence, Lagrange’s equations
for this case can be adopted in the following form:

d (0T oT
2(oe) ~ () = @
d (0T oT
2 (o) ~ () = @2
The kinetic energy T is a sum of kinetic energy of the link 1 and kinetic energy
of the link 2.

Iy = %(11 +miai)ai, T, = %(mzvgz + 1d3),

where v, is the absolute velocity of the centre of gravity G,.

The position vector of centre of gravity G is (Fig. 100)

e, = i(lycosa; +a,cosay) + j(l; sina; + a, sina,).
Its first derivative yields the velocity of the centre of gravity G,
Vg = i(—lia; sina; — a,a, sina,) + j(lyda, cosay + a,a, cos ay).
Squared magnitude of the velocity is
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vé, = (—lyda;sina; — azdz sina,)? + (Iyd&, cos a; + a,d, cos a,)?

= 12a% + a3d3 + 2l,a,d, 6, cos(a; — ay).
Upon introducing this expression, one can obtain
1
TZ - Emz(l%d% + a%d% + 2l1a2d1d2 COS(al - az)) + Elzd%.
Hence, the total kinetic energy is
T=T,+T, = —(11 +myai)ai + = mz(llcz1 + a3a3 + 2l,a,d,a, cos(a; —

az)) + 3 12 @z,
Since the robot operates in the horizontal plane, the only non-conservative
forces acting on the system are the driving moments.
The virtual work produced by these forces is 64 = (M; + M,)da; — My6a,.
Therefore, the generalized forces are
Q1= M; + M,, Q; = —M,.

Then
aT Co aT Co.
Py —2mylia,aq ¢, sin(a; — ay), Py 2mylia,aqa, sin(ay — ay),
1 2
aT

: : : oT :
- = (b +myad)d; + my(lfds+layd; cos(ay — ay)),5— = my(ad, +
1 2

lya,dq cos(a; — ay)) + Ld,.
Therefore, the final form of equations of motion is
[(I; + mya?) + myl2]d; + 2mylia,a,d, sin(a; — ay) = My + My,
(I, + mya3) — 2mylya,a,d, sin( a; — ay)=—M,.

Problem 66. The angle a locates the angular position of the stationary slide 4

Fig. 101
with respect to the vertical plane XY of the inertial system of coordinates XYZ (Fig.
101). The massless link 1 is free to move along this slide and is supported by the
spring 3 of stiffness k. The length of the uncompressed spring is /. The link 2 is
hinged to the link 1 at the point 4. The distance c locates the position of the centre of
gravity G of the link 2. The link 2 possesses mass m and its moment of inertia about
axis through the centre of gravity G is /.

Produce the equations of motion of the system and the expressions for the
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generalized coordinates corresponding to the possible equilibrium positions of the
system.

Solution. This system possesses two degrees of freedom and q; and g, stand for
the generalized independent coordinates. In fact g, is an angle of rotation of the link
2 about point A. Since the link / is massless, the total kinetic energy of the system is
associated with the link 2 only. The link 2 performs plane motion, hence its kinetic
energy 1s

T =-mvg + 13,
where v stands for the absolute linear velocity of the centre of gravity G of the link
2 and g, is its absolute angular velocity.
The velocity v; can be produced by differentiation of the following absolute
position vector
re =1(q cosa +asina + ccosq,) +J(q; sina —acosa + csinq,).
Hence, the wanted velocity is
v; =1 = I1(q; cosa — c q,sing,) + J(§, sina + ¢ ,cos q,).
Then
vE = (4, cosa — ¢ §,5in q;)? + (¢, sina + ¢q, sin q,)2.
Introduction of these expressions yields the wanted kinetic energy function
T = %m((ql cos a — ¢ §,sin q;)? + (¢, sina + ¢ g,cos q,)?) + %qu =
%mqlz + mcq, g, sin(a — q,) + %mczqg + %qu.
The elemental work of the force of weight and elastic force of the spring is
6A =mgcosadq, —kq,6q, —mgcsing, §q,.
Therefore, the generalized forces are
Q; =mgcosa — kq,,Q, = —mgcsingq,.
Since the system is of two degrees of freedom and the generalized coordinates

are q; and qg,, one can obtain the following Lagrange’s equations:
d (9T oT d (9T oT

2 (53) ~ 50 = @ 5 53,) 50, = @

Taking into account the formulas obtained above, we have the equations of
motion

md, + mcsin(a — q;) §, — mccos(a — q,)42 —mgcosa + kg, = 0,
(I + mc?)§, + mesin(a — q3) §; + mgc sing, = 0.

The above set of equations allows the equilibrium position of the system to be

determined. If ¢, and ¢, are constant,
mg cosa — kg, =0,
mgcsing, = 0.
mg cosa

Hence, g1 = pa— q; =

Problem 67. The circular slide of radius R is free to rotate about the horizontal
axis Y of the inertial system of coordinates XYZ (Fig. 102). Its moment of inertia
about that axis is /. The body 2, which can be considered as a particle of mass m, can
move along the slide without friction. System of coordinates xyz, shown in Fig. 102,
1s rigidly attached to the slide /.
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By means of Lagrange equations derive the differential equations of motion of
Z  the system along the generalized
coordinates a and /.

Solution. The system considered
has 2 degrees of freedom and the
angles @ and f may be considered as
the generalized coordinates. Hence,
Lagrange’s equations for this case can
be adopted in the following form:

d (3T oT
g(g) B (g) = Qo
x(a3) ~ (55) = @
The kinetic energy T is a sum of
kinetic energy of the body (particle)

Fig. 102
and kinetic energy of the slide T =T; + T,, where T; is a kinetic energy of the
particle and T, is a kinetic energy of the slide.

mv?

Tl =
2
where v, is a reletive velocity and v, is a transport velocity of the particle.
Relative motion is a motion of the particle along the slide. Hence, v, = Rf.
Transport motion is a motion of the slide. Therefore, v, = Ra sin . But v, L v,

. 2,22 .2 o
sov2 = R?*(a?sin? B+ B?) and T; = mR*(« s;n B+B ).

, where v is an absolute velocity of a particle. Then v, = v, + vV,

Dy . . 1&?
Slide is in rotational motion, then T, = %

The total kinetic energy is
mR?(&?sin® B+p%) | 1a?

T = +—.
2 2

By derivation one can obtain
Z—Z = la+mR?a sin? B, Z—; = mR2p, Z—Z =0, Z—; = mR?d? sin B cos B.

Now determine the generalized forces. Considering elemental work done by a

gravity force in virtual displacement §a, we have
6A, = mgR sinasinf da.
The elemental work done by a gravity force in virtual displacement 60 is
6Ap = —mgR cos a cos 5.
Thus, Q,=mgR sin a sin f and Qg = —mgR cos a cos f5.
Finally we have the differential equations of motion of the system
(I + mR?sin? B)& + 2mR?af sin B cos f — mgR sina sin = 0,
mR?f — mR?a? sin 8 cos B + mgR cosa cos f = 0.
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