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7. LAGRANGIAN DYNAMICS 

 
 
7.1. Generalized Coordinates, Velocities and Accelerations 
 
As the problems in dynamics become more complex it, naturally, becomes 

increasingly difficult to work out the solutions. This difficulty is associated not only 
with the solution of the equations of motion, but with their formulation as well. In 
fact, the derivation of the basic differential equations of motion in a form suitable for 
a particular complicated problem may well be the most difficult part of the 
investigation. A number of methods, more powerful than those hitherto considered in 
this manual, have been developed for deriving the equations for these more involved 
situations. Perhaps the most generally useful of these more advanced methods for 
engineering problems is that of Lagrange, who has put the basic equations of motion 
in such a form that the simplifying features of a particular problem can be utilized 
most advantageously. In the present chapter we shall derive Lagrange's equations.  

One of the principal advantages of Lagrange's method is that one uses for each 
problem that coordinate system which most conveniently describes the motion. We 
have already seen that the position of a particle can be described in a large number of 
different ways, and we have found in the problems already discussed that the choice 
of a proper coordinate system may introduce a considerable simplification into the 
solution of a problem. In general, the requirement for a system of coordinates is that 
the specification of the coordinates must locate completely the position of each part 
of the system. This means that there must be one coordinate associated with each 
degree of freedom of the system. More exactly, there must be at least one coordinate 
associated with each degree of freedom. So called non-holonomic systems exist, for 
which, because of the particular geometrical constraints involved, more coordinates 
are required than there are degrees of freedom. Such systems are not often 
encountered and will not be considered here. We shall restrict the following treatment 
to systems whose coordinates are independent, in the sense that a change can be 
given to any one of the coordinates without changing any of the other coordinates. By 
the generalized coordinates , , …  we shall mean a set of independent 
coordinates, equal in number to the s degrees of freedom of the system. We use the 
word "generalized" to emphasize the fact that such coordinates are not necessarily of 
the type of the simple , ,  or , ,  systems and to indicate that they are not 
necessarily lengths or angles, but may be any quantity appropriate to the description 
of the position of the system. 

The , ,  coordinates of a point k are expressible in terms of the 
generalized coordinates , , …  by functional relations: 

 , , … , , 
          , , … , ,     (7.1) 

 , , … , . 
For example, if , ,  are the cylindrical coordinates of a point    , , , 
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the foregoing equations become: 
cos ,    sin ,    . 

We have supposed that the relation between the coordinate systems does not 
involve time. In the more general treatment in which , , … ,  analysis 
can proceed along essentially the same lines. The equations of motion in generalized 
coordinates for any particular system could always be obtained by writing the 
equations first in an , ,  system, and then transforming to the q's by Eqs.(7.1). 
This procedure usually leads to involved algebraic manipulations, and it is better to 
make the transformation in general terms and to write the equations of motion 
directly in generalized coordinates. 

 Thus, the parameters of any dimensions , , …  describing the 
configuration of the system in space are called generalized coordinates. Their first 
derivatives with respect to time , , …  are called generalized velocities and the 
second derivatives , , …  are said to be generalized accelerations. 

 
7.2. Generalized Forces 
 
Let the  , for 1, , be a set of generalized coordinates which uniquely 

specifies the instantaneous position of some dynamical system which has s degrees of 
freedom. Here, it is assumed that each of    can vary independently. Since the 
generalized coordinates are independent, their elemental increments 

, , …  are also independent. Each of these quantities defines a virtual 
displacement of the system. Let the system be under the action of the active 
forces   , , … , . Since the radius-vector of any point is a function of their 
coordinates  , one can write 

, , … .      (7.2) 
We now calculate the virtual (elementary) work in terms of displacements of the 

n particles assumed to make up the system and the forces  , , … ,  acting on 
them. The virtual work is 

∑ ∑ · .      (7.3) 
Now, since   , we can write: 

∑ ·      (7.4) 
for  k=1,n. 

Substituting (7.4) into (7.3), one can obtain 
∑ ∑ ∑ .  

The above expression can be rearranged to give  
 

∑ ∑ · ,      (7.5) 
where 

∑ .      (7.6) 
Here the  are called generalized forces. Note that generalized forces do not 

necessarily have the dimensions of force. However, the product·  must have the 
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dimension of work. Thus, if particular  is a lineal parameter, then the associated  
is a force. Conversely, if  is an angle, then   is a torque. 

 Formula (7.5) represents the elementary work of the acting forces in terms of 
generalized coordinates. This definition of the    indicates the way in which they can 
be determined in specific problems. To find  , the total work done by all of external 
forces during an infinitesimal displacement  of one of the coordinates is 
calculated, and   is then obtained by dividing this total work by  . 

Thus, the generalized forces are coefficients of the increments of the generalized 
coordinates in the expression for the total elementary work of all forces applied to the 
system. It is obvious that the number of generalized forces is equal to the number of 
degrees of freedom. 

If the forces acting on the system are conservative, their total elementary work 
can be written  П, where П is a potential energy of the system which is a 
function of the coordinates  , , . But these coordinates are the functions of 
generalized coordinates. Thus,  П П , , … , . Calculating a total differential 
of this function, one can obtain 

П П П П .  
Comparing this expression with equation (7.5) we have 

П , П , … , П .      (7.7) 
Therefore, when the forces applied to the system are conservative, generalized 

forces are the partial derivatives of the potential energy of the system with respect to 
correspondent generalized coordinates taken with sign minus. 

 
7.3. Conditions of Equilibrium in Terms of Generalized Coordinates 
 
In accordance with principle of virtual works the necessary and sufficient 

conditions for the equilibrium of a system subjected to ideal constraints is that the 
total virtual work done by all the active forces is equal to zero for any and all virtual 
displacements consistent with the constraints, so ∑ 0. In terms of 
generalized coordinates this condition, taking into account equation (7.5), can be 
written  

∑ · 0. 
Since , as independent variables, can not be equal to 0, the generalized forces 

 must disappear in an equilibrium position, i.e., 0, i=1,2,...,s. 
Upon solving the above equations with respect to s unknown generalized 

coordinates  , one may always obtain all possible system’s equilibrium positions. 
Hence, a holonomic  system with perfect constraints is in its equilibrium only if 

all generalized forces corresponding to generalized coordinates are equal to zero. 
For conservative systems, taking into account Eq.(7.7), we have 

П 0, П 0, П 0.  
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7.4. Lagrange’s Equations of Motion 
 
Let us consider the general equation of dynamics: 

∑ ∑ 0,      (7.8) 
where   and   are virtual works of  applied impressed forces and inertial forces 
respectively. 

By analogy with Eq.(7.5) one can write 
∑ ∑ · ,  

where are generalized forces of inertia which can be defined as 
∑ .      (7.9) 

Then from Eq.(7.8) we have for i=1,...,s 
0.      (7.10) 

Let us express  in terms of kinetic energy T. Since = 
= , Eq.(7.9 ) yields 

  ∑ .     (7.11) 
Notice that  

· .     (7.12) 
Further,  

.     (7.13) 
Any position vector associated with holonomic  system has the form of Eq.(7.2). 

Since the generalized coordinates are themselves functions of time, the first 
derivative of the position vector with respect to time is 

∑ ,      (7.14) 

where ,  . 

Since all position vectors do not depend on , the partial derivative  do not 

depend on  either. Hence,  0. 
Therefore, differentiation of Eq. (7.14) with respect to   yields 

 
.      (7.15) 

Making use of formulas (7.13) and (7.15), expression (7.12) can be written 

· · · .  
Taking into account that mass is constant, the Eq. (7.11) yields 

 
∑ ∑ ,  

 (7.16) 
where ∑  is kinetic energy of a system. 

Hence, from Eq.(7.10) we have finally 
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,      (7.17) 
where i=1,...,s. 

 Eqs. (7.17) are called Lagrange’s equations. They represent the differential 
equations of motion of a system in terms of generalized coordinates. It is obvious that 
their number is equal to the number of degrees of freedom of a system. 

 If all impressed forces acting on a system are conservative, one can obtain 
taking into account formulas (7.7) 

П 0 or  П П 0.    (7.18) 
 The last equation is valid since a potential energy П depends only on 

generalized coordinates and does not depend on generalized velocities. Hence, 
П 0. 

 It is helpful to introduce a function L, called the Lagrangian, which is defined 
as the difference between the kinetic and potential energies of the dynamical system 
under investigation: L=T-П. Then, from (7.18), we have 

0.      (7.19) 
 
7.5. Solution of Problems   
 
Problem 62. Resolve problem 61 by means of Lagrange’s equations. 

Solution. Mechanical system has two 
degrees of freedom (the rotation of the 
cylinder with respect to the thread, when 
the load A is at rest, and the displacement 
of the load when the cylinder does not 
rotate, fig. 94). 

Let us choose as generalized 
coordinates displacement of bodies with 
thread  and angle of rotation of 
cylinder  . Then we have two 
independent virtual displacements  
and . Now consider a virtual 

displacement  of the system in which the cylinder does not rotate and is translated 
together with the load. The force  does no work in this displacement. There are 
forces  and    which produce work on elemental displacement .  It equals 

, 
whence, as , we find generalized force corresponding to generalized 
coordinate   , 

. 
Consider the other independent virtual displacement in which the load  remains 

at rest while the cylinder turns about point  (which in this displacement is the 
instantaneous centre of rotation) through angle  . For this displacement there is 
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only one force of the weight of the cylinder which produces work on elemental 
displacement .  It equals  

, 
where  is the radius of the cylinder. So we have found generalized force 
corresponding to generalized coordinate , 

. 
Now determine kinetic energy of a system. It equals , where  is a 

kinetic energy of a cylinder and  is kinetic energy of a load.  
Cylinder is in a resultant motion which consists of the transport motion (this is a 

motion of a tread with velocity ) and relative motion (this is a motion of a cylinder 
with respect to the thread, i.e., plane motion). Therefore, 

2 2
, 

where  is absolute velocity of the center ,  is a moment of inertia of cylinder 
and  is its relative angular velocity since transport motion is a translational one). 

From the problem 61 we have 0,5 . Calculate  : 
= . 

Taking into account that  and , we have 
. 

Load A is in translational motion, then 

2 2
. 

Thus,  

2 4 2
. 

Motion of the system considered is governed by Lagrange’s equations of the 
following form: 

, 

. 

Therefore, 

,
2

, 

0. 

Hence, we have following Lagrange’s equations: 
, 

2 3 2 . 
But  is acceleration of the load A, i.e., . At the same time it is a transport 

acceleration of the cylinder. The product   represents relative acceleration of 
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generalized coordinates corresponding to the possible equilibrium positions of the 
system.  

Solution. This system possesses two degrees of freedom and  and  stand for 
the generalized independent coordinates. In fact    is an angle of rotation of the link 
2 about point A. Since the link 1 is massless, the total kinetic energy of the system is 
associated with the link 2 only. The link 2 performs plane motion, hence its kinetic 
energy is 

, 
where  stands for the absolute linear velocity of the centre of gravity G of the link 
2 and  is its absolute angular velocity. 

The velocity  can be produced by differentiation of the following absolute 
position vector 

cos sin cos sin cos sin . 
Hence, the wanted velocity is 

cos sin sin cos . 
Then 

cos sin sin sin . 
Introduction of these expressions yields the wanted kinetic energy function 

cos sin sin cos

sin .  
The elemental work of the force of weight and elastic force of the spring is 

cos sin . 
Therefore, the generalized forces are  

cos ,   sin .  
Since the system is of two degrees of freedom and the generalized coordinates 

are  and , one can obtain the following Lagrange’s equations: 
,  .  

Taking into account the formulas obtained above, we have the equations of 
motion  

sin cos cos 0, 
sin sin 0. 

The above set of equations allows the equilibrium position of the system to be 
determined. If q1 and q2 are constant, 

cos 0, 
sin 0. 

Hence,  ,   0. 
 

Problem 67. The circular slide of radius R is free to rotate about the horizontal 
axis Y of the inertial system of coordinates XYZ (Fig. 102). Its moment of inertia 
about that axis is I. The body 2, which can be considered as a particle of mass m, can 
move along the slide without friction. System of coordinates xyz, shown in Fig. 102, 
is rigidly attached to the slide 1. 
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