3. VIBRATION OF A PARTICLE

3.1. Free Harmonic Motion

The study of vibrations is essential for a number of physical and engineering
fields. Although the vibrations studied in such different fields as mechanics, radio
engineering, and acoustics are of different physical nature, the fundamental laws hold
good for all of them. The study of mechanical vibrations is therefore of importance
not only because they are frequently encountered in engineering but also because the
results obtained in investigating mechanical vibrations can be used in studying and
understanding vibration phenomena in other fields.

We shall start with examining free harmonic motion of a particle. Consider a
particle M (Fig.11) moving rectilinearly under the action of a restoring force F
directed towards a fixed centre O and proportional to the distance from that centre.
The projection of F on the axis Ox is

E, = —cx. (3.1)
) F W 7 We see that the force F tends to return the
: | particle to its position of equilibrium 0, where F = 0,
] — which is why it is called a "restoring™ force. Let us
Fig. 11 derive the equation of motion of the particle M.
Writing the differential equation of motion (2.1), we
obtain
d?x
mﬁ = —CX.
Dividing both sides of the equation by m and introducing notation
¢ 2
g =k » (32)
we reduce the equation to the form
d?x
mﬁ+k2x = 0. (3.3)

Eq. (3.3) is the differential equation of free harmonic motion. Referring to the
theory of differential equations, as the roots of a characteristic equation of the type of
Eq. (3.3) are imaginary, its general solution will be

x = C; sinkt + C, cos kt, (3.4)
where C; and C, are constants of integration.
If we replace C; and C, by constants ¢ and « such that C; = acosa and
C, = asin a, we obtain
x = a(sinkt cos a + cos kt sina) or
x = asin(kt + a). (3.5)
This is another form of the solution of Eg. (3.3) in which the constants of
integration appear as a and «, and which is more convenient for general analyses.
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The velocity of a particle in this type of motion is
dx

Uy =— = ak sin(kt + a). (3.6)

The vibration of a particle described by Eq. (3.5) is called simple harmonic
motion.

The quantity a, which is the maximum distance of M from the centre of
vibration, is called the amplitude of vibration (Fig. 12). The quantity ¢ = kt + a is
called the phase of vibration. Unlike the coordinate x, the phase ¢ defines both the

position of the particle at any given time and the

x direction of its subsequent motion.
— The quantity % is called the angular, or
' circular, frequency of vibration. The time T in
/Iit\ /\ /\ , which the moving particle makes one complete

\/ oscillation is called the period of vibration. In

T
o o=

one period the phase changes by 2n.
Consequently, we must have k7=2~ whence the

Fj.g. 12 period
T=2 (3.7)
The quantity v, which is the inverse of the period and specifies the number of

oscillations per second, is called the frequency of vibration:
1 k

T o
It can be seen from this that the quantity % differs from v only by a constant
multiplier 2z Usually we shall speak of the quantity & as of frequency.

The values of @ and « are determined from the initial conditions. Assuming that,
at =0, x=x, and v,=v, we obtain from Egs. (3.5) and (3.6) x, = asina and %" =
a cos a. By first squaring and adding these equations and then dividing them, we

obtain
— /v_o 2 _ kxo
a= p + x5, tana = .

Note the following properties of free harmonic motion:

1) The amplitude and initial phase depend on the initial conditions;

2) The frequency k, and consequently the period 7, do not depend on the initial
conditions and are invariable characteristics for a given vibrating system.

It follows, in particular, that if a problem requires that only the period (or
frequency) of vibration be determined, it is necessary to write a differential equation
of motion in the form (3.3). Then T is found immediately from Eq. (3.7) without
integrating.

Consider the next example: a weight is attached to end B of a vertical spring AB
and released from rest (Fig.13). Determine the law of motion of the weight if the
elongation of the spring in the equilibrium condition is &; (the static elongation of
the spring).
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Place the origin O of the coordinate axis in the position of static equilibrium of
the system and direct the axis Ox vertically down. The elastic
force F = c|Al|. In our case Al = §¢; + x, hence
E, = —c(65t + x).
Writing the differential equation of motion, we obtain
d?x

m— = —c(8s¢ +x) + P.

Y s

But from the conditions of the problem the gravitational force
P =mg = cdg; (in the position of equilibrium force P is balanced

by the elastic force cdy,). Introducing the notation — = - = k?,
st

Fig. 13 we reduce the equation to the form

dzx 2 _
F-l‘k X = 0,
whence immediately we find the period of vibration

T =20 = o |9t
k N

Thus, the period of vibration is proportional to the square root of the static
elongation of the spring (this holds good also for a load vibrating on an elastic beam,
where §; is the static deflection of the beam).

The solution of the obtained differential equation is

x = C; sinkt + C, cos kt.

From the initial conditions, at t=0, x=8y,andv, =0. AS v, = % =
kC, cos kt — kC, sin kt, substituting the initial conditions, we obtain C, =
—d&,:, C; = 0. Hence, the amplitude of vibration is &,; and the motion is according to

the law

x = —0g; cos kt.

We see that the maximum elongation of the spring in this motion is 24;.

This solution shows that a constant force P does not change the type of motion
under the action of an elastic force F but only shifts the center of the vibrations in the
direction of the action of the force by the quantity &s.(without the force P the
vibration would, evidently, be about B).

3.2. Damped Vibration

Let us see how the resistance of a surrounding medium affects vibrations,
v assuming the resisting force proportional to the first

—r = power of the velocity: R = —uwv (the minus indicates
that force R is opposite to ). Let a moving particle be

28 M
Fig. 14 acted upon by a restoring force F and a resisting force R
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(Fig. 14).

Then E, = —cx, R, = —uv, = —M% and the differential equation of motion is

Ex_
o _ M = "X~y
Dividing both sides by m, we obtain

—+2b—+k2x—0 (3.8)

dt2
where — = k2 = =2b. (3.9)
It is easy to verify that k and b have the same dimension (sec™), which makes it
possible to compare them.
Eq. (3.8) is called the differential equation of damped vibration. The solution of
Eq (3.8) can be found by passing to a new variable z through the equality x = ze ~P¢,

Then
%ze‘bt(g—bz); %= e‘bt(ﬁ—Zb + b?z )

Substituting these expressions and the expression of x |nto Eq. (3.8), and after
the necessary computation, we obtain

dtz 2+ (k2 — b?)z = 0. (3.10)

Let us consider the case when k>b, i.e., when the resistance is small as
compared with the restoring force. Introducing the notation

k =Vk2 — b2, (3.11)
we see that Eq. (3.10) coincides with Eg. (3.3).Consequently, z = asin(kt + a) or,
passing to x,

x = ae Psin(kt + ). (3.12)

The expression (3.12) gives the solution of differential equation (3.8). The

quantities a and «a are constants of integration and are determined by the initial
conditions.

Vibrations according to the law (3.12) are called damped because, due to the

multiplier e =%, the value of x decreases with time and tends to zero. A graph of such

vibrations is given in Fig. 15. The graph shows that

I the vibrations are not periodic, though they do show
ol ,:_‘__,__f_,___l a f:ertgin repetition. For example, a particle
Ao ‘;I - oscnl_atlpg about a centre O returns t'o that gent[e at
/A ‘m“,: certain intervals T equal to the period of sm(kt +
0 : T 9
D VA T The~ref0re, the qzljrantity
- =% =0 (3.13)

, is conventionally called the period of damped
Fig. 15 vibration. Comparing, Egs. (3.13) and (3.7), we see
that T > T,i.e., that resistance to vibration tends to increase the period of the
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vibration. When however, the resistance is small (b «< k) the quantity h? can be
neglected in comparison with k% and we can assume T = T. Thus, a small resistance
has no practical effect on the period of vibration.

The time interval between two successive displacements of an oscillating
particle to the right or to the left is also equal to T. Hence, if the maximum
displacement x, to the right takes place at time ¢, the second displacement x, will be
at time £, = ,+T, etc. Then, by Eq. (3.12) and taking into account that kT = 2m, we
have

x; = ae P sin(kt; + a),
x, = ae PG* D sin(kt, + kT + a) = x,e7"7.

Similarly, for any displacement x,,,; we will have x,,,; = x,e~2T.Thus we find
that the amplitude of vibration decreases in geometric progression. The denominator

of this progression e~?7 is called the damping decrement, and the modulus of its
logarithm, i.e., the quantity bT, the logarithmic decrement.

It follows from these results that a small resistance has practically no effect on
the period of vibration, but gradually damps it by virtue of the amplitude of vibration
decreasing according to a law of geometric progression.

When the resistance is large and b > k, the solution of Eq. (3.10) contains no
trigonometric functions. The particle no longer oscillates but instead, under the
influence of the restoring force, gradually approaches the position of equilibrium.

3.3. Damped Forced Vibrations. Resonance

Consider the motion of a particle on which are acting a restoring force F, a
damping force R proportional to the velocity (see § 3.2), and a disturbing force Q,
whose projection on the axis Ox is Q,, = Q, sin pt. The differential equation of this
motion has the form

d?x

dx .
m-——=-—cx—pd_—+ Qo sin pt.

Dividing both sides of the equation by m, assuming % = P, and taking into
account the expression (3.9), we obtain

2

S +2b 2+ k?x = Qg sinpt. (3.14)
Eq. (3.14) is the differential equation of damped forced vibration of a particle.

Its general solution, as is known, has the form x=x;+x, where x; is the general

solution of the equation without the right side, i.e., of Eq. (3.8) [at £>5 this solution is

given by Eq. (3.12)], and x,, is a particular solution of the complete equation (3.14).

Let us find the solution x, in the form

Xy = A Sln(pt - B);
where 4 and g are constants so chosen that Eq. (3.14) should become an identity.
Differentiating, we obtain
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% = Ap cos(pt — ), d;:zz = —Ap? sin(pt — p).

Substituting these expressions of the derivatives and x, into the left side of Eq.
(3.14) and introducing for the sake of brevity the notation pt — f =y (or pt = Y+
/), we obtain

A(—p?+k?) siny + 2bpA cos Y=P,(cos  sinyp + sin  cos ).

For this equation to be satisfied at any value of ¥, i.e., at any instant of time, the
factors of siny and cosy in the left and right sides should be separately equal.
Hence,

A(k? —p?) = Pycosf, 2bpA = P,sinp.
First squaring and adding these equations, and then dividing one by the other,

we obtain:
A= J(kz_pf) = (3.15)
As x=x;+x,, and the expression x; is given by Eq. (3.12), we have the final
solution of Eq. (3.14) in the form
x = ae Ptsin(kt + a) + Asin(pt — B). (3.16)
Here a and a are constants of integration determined from the initial
conditions, and the expressions for 4 and g are given by Egs. (3.15) and do not

depend on the initial conditions. These vibrations are compounded of natural

vibration [the first term in Eq. (3.16); Fig. 16 a] and forced vibration [the second

term in Eq. (3.16); Fig. 16 b]. The natural vibration of the particle in such a case was

discussed in § 3.2. It was established that it is transient

x and is damped fairly quickly, and after a certain

’ —_ ' interval of time ¢ called the transient period, can be

S neglected. A curve showing the transient vibration is

given in Fig. 16 c. For practical purposes it can thus be

assumed that after a certain transient period a particle
will vibrate according to the law

x = Asin(pt — B).

This is steady-state forced vibration, a sustained
periodic motion with amplitude 4 defined by Eq.
(3.15) and a frequency p equal to the impressed
frequency. The quantity 8 characterizes the phase shift
of forced vibration with respect to the disturbing force.
Let us investigate the results obtained. First let us
introduce the notation

Py

%=A,%=h,ﬁ=%=5o; (3-18)
where A is the frequency ratio, /4 a quantity characterizing the damping effect, §, the
magnitude of the static deflection of a particle under the action of force Q,.

Then, dividing the numerator and denominator of Eq. (3.15) by k2, we obtain
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_ 8o 2hA

— Ja-22)Z+ah222’ 1-22"

It can be seen from Eq. (3.19) that 4 and S depend on two dimensionless

parameters A and 4. Graphs of this relation for certain values of # are given in Fig. 17.

The values of 6,, 4 and % can be computed for each specific problem from its

conditions, and the values of 4 and p determined from the respective graphs or Eqgs.
(3.19).

These graphs (and equations) also show that by altering the frequency ratio A we

tanf = (3.19)

: can induce forced
Afby 1 fl: | vibrations of  different
j - — 1 Jil.l -
amplitude.

When the resistance
is very small (as ordinarily
in the atmosphere) and A is
not close to unity, it is
possible in Egs. (3.19)
assume approximately ~ ~
0. In this case we obtain

~_ %0 . 5
, A~mam Bx
f” ¢ Ak 0(atrA<1), B=

180° (at A > 1).

Let us consider also
the following special cases: 1) If the frequency ratio A is very small (p < k), then,
assuming as an approximation A =~ 0, we obtain from Eq. (3.19) A = §,. The vibration
in this case has an amplitude equal to the static deflection §, and the phase shift is
g = 0.

2) If the frequency ratio A is very large(p > k), A becomes very small. This case
is of special interest for the absorption of vibrations in structures, instruments, etc.
Assuming the resistance to be small and neglecting 2hA and 1 as compared with A2 in
Eqg. (3.19), we obtain for computing A an approximate formula:

—% _F
a2 p2’

3) In all cases of practical interest /4 is very small. Then, from Eq. (3.19), if A is
almost unity the amplitude of forced vibrations becomes very large. This
phenomenon is called resonance.

At resonance we can assume A = 1 in Eq. (3.19), and then
)
Ar =g Br=7% (3.20)
We see that when # is small A, can become very large. When the damping
force, and with it 4, tends to zero, the limiting value of the amplitude A, as Eq. (3.20)
shows, tends to infinity. Thus, with no damping force the vibration amplification

process in resonance conditions is unlimited and the amplitude increases indefinitely.
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A graph of resonance vibration is given in Fig. 18. When the damping forces are
very small the picture is similar.

r - General Properties of Forced Vibration. It
. follows from the results obtained above that forced

5 ﬂ vibration has the following important properties,

p which distinguish it from the natural vibration of a

2 t )
‘“\/j particle:
1) The amplitude of forced vibration does not

depend on the initial conditions.
e 2) Forced vibration does not die out in the
Fig. 18 presence of resistance.

3) The frequency of forced vibration is equal
to the frequency of the disturbing force and does not depend on the characteristics of
the vibrating system (the disturbing force "impresses" its own vibration frequency on
the system).

4) Even when the disturbing force Q is small, large forced vibration can be
induced if the resistance is small and the frequency p is almost equal to & (resonance).

5) Even if the disturbing force is large, forced vibration can be damped if the
frequency p is much larger than £.

Forced vibration, and resonance in particular, plays an important part in many
branches of physics and engineering. Lack of balance in working machines and
motors, for example, usually causes forced vibration to appear in the machine or its
foundation.

In radio engineering the reverse is true. Resonance is extremely useful and is
used to separate the signals of one radio station from those of all others (tuning).

3.4. Solution of Problems

Problem 8. Determine the periods of vibration of a load of weight P attached to
two springs of stiffness C; and C, as shown in Figs. 19 and 20.
Solution. @) In the first case, in the static position both springs are subjected toa

tensile force P. Therefore the static elongations are Ll
P
6lst - C_' 62515 - C_'
. . 1 2 C
and the total elongation is *
8t = Brst + Bzse = e and
C1C, i
_ GG a
Coq = C1+C,)’
where C,, is the equivalent spring constant of the two
given springs. In particular, at C; = C, we have Fig. 19
1
Ceqg =5 C.

The period of vibration is
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T = 217 ’ﬁ — 2 M_
g gc.C;

b) In the second case the top spring is subjected to a tensile force P;, and the
bottom spring is subjected to a compressive force P,, such that P, + P, = P. For

these springs we have §,; = ?, Opst = %. But obviously 8,4 = 6,5 = &5, and by
1 2

virtue of the property of proportions

Py P, P1+P; P
6St =—=—=—0r5st = —
Cq Cy C1+C2 C1+C2

The equivalent stiffness c., = ¢, + ¢, and the period of vibration
T =2n /ﬁ =21 |——.
g g(ci1+c2)

Problem 9. The deflection caused in a beam by the weight of a motor mounted
as shown in Fig. 21 is §;; = 1 cm. At how many rpm of the shaft will resonance
appear?

Solution. The period of natural vibration of the beam is

T =2n /ﬁ
)

If the centre of gravity of the shaft is not
concentric with its axis, a centrifugal force Q,
will develop (Fig. 21). Its component Q, =
Qo sin wt (where w is the angular velocity of the
shaft) is the disturbing force acting on the beam;

its frequency is p = w. Hence, the period of the

forced vibration is Ty = 2

w .

Resonance will appear when Ts =T, i.e., at

4

Wey = Sist = 31.3 sec™L.

Hence, the critical speed
__ 30wy

Nep =—— = 300 rpm.

The working speed of the motor should be much greater than n,. .

Problem 10. Analyze the forced vibration of a load attached to a spring (see
example in p.3.1) if the upper end 4 of the spring oscillates vertically according to the
law & = a, sin pt.

Solution. Draw axis Ox as in Fig. 13. If we imagine the upper end of the spring
displaced from point 4 downwards by a quantity &, the length of the spring will be
l=1ly—&+64+x. Then F, = —cAl = —c(6s5 +x—&), and the differential
equation of motion, neglecting the resistance of the air and taking into account that
P = cd, will be
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m—— = —c(6st +x—&) + P =—cx+cé.
Introducing the notation% = k?,
we obtain
d?x
a4
Consequently, the load will experience forced vibration, since, if we assume
b = 0and P, = k?a,, the equation coincides with Eq. (3.14). It can be seen from Eq.
(3.18) that in the present case 6, = a, , and h = 0. The amplitude of forced vibration
and the phase shift are determined by the Eq. (3.19).
If p < k (the top end of the spring oscillates very slowly), then 4 = 0 and
A = a, and the phase shift § = 0. The load will oscillate as if the spring were a rigid
rod, which physically corresponds to the condition k > p. At p=k resonance appears
and the amplitude increases sharply. If the frequency p becomes larger than £ (4 > 1)
the load will vibrate in such a way that it will move down when the end of the spring
moves up and vice versa (a phase shift of § = 180°), and the larger the value of p the
smaller the amplitude. Finally, when p is much greater than & (1 > 1), the
amplitude A = 0. The load will remain in the position of static equilibrium (point O)
even though the top end of the spring will oscillate with amplitude a, (the frequency
of this vibration is so large that the load, as it were, is unable to keep up with it).

+ k2x = k?a, sin pt.

4. INTRODUCTION TO THE DYNAMICS OF A SYSTEM
4.1. Mechanical Systems. External and Internal Forces

A mechanical system is defined as such a collection of material points (particles)
or bodies in which the position or motion of each particle or body of the system
depends on the position and motion of all the other particles or bodies. We shall thus
regard a material body as a system of its particles.

A classical example of a mechanical system is the solar system, all the
component bodies of which are connected by the forces of their mutual attraction.

A collection of bodies not connected by interacting forces does not comprise a
mechanical system. In this summary we shall consider only mechanical systems,
calling them just "systems" for short.

The forces acting on the particles or bodies of a system can be subdivided into
external and internal forces.

External forces are defined as the forces exerted on the members of a system by
particles or bodies not belonging to the given system. Internal forces are defined as
the forces of interaction between the members of the same system. We shall denote
external forces by the symbol F¢, and internal forces by the symbol Ft. Both external
and internal forces can be either active forces or the reactions of constraints. The
division of forces into external and internal is purely relative, and it depends on the
extent of the system whose motion is being investigated. In considering the motion of

32



the solar system as a whole, for example, the gravitational attraction of the sun acting
on the earth is an internal force; in investigating the earth's motion about the sun, the
same force is external.

Internal forces possess the following properties:

1. The geometrical sum (the principal vector) of all the internal forces of a
system is zero. This follows from the third law of
dynamics, which states that any two particles of a system
(Fig. 22) act on each other with equal and oppositely
directed forces Fi, and Fi,, the sum of which is zero.
Since the same is true for any pair of particles of a system,
then

[ =0. (4.1)

2. The sum of the moments (the principal moment) of

Fig. 22 all the internal forces of a system with respect to any

centre or axis is zero. For if we take an arbitrary centre 0,

it is apparent from Fig. 22 that my(F%,) + my(F5,) = 0. The same result holds
good for the moments about any axis. Hence, for the system as a whole we have

Y my(F,) =0or Y, m.(Fi) = 0. (4.2)

It does not follow from the above, however, that the internal forces are mutually
balanced and do not affect the motion of the system, for they are applied to different
particles or bodies and may cause their mutual displacement. The internal forces will
be balanced only when a given system is a rigid body.

4.2. Mass of a System. Centre of Mass

The motion of a system depends, besides the acting forces, on its total mass and
the distribution of this mass. The mass of a system is equal to the arithmetical sum of
the masses of all the particles or bodies comprising it:

The distribution of mass is characterized primarily by the location of a point
called the centre of mass. The centre of mass or centre of inertia, of a system is

defined as a geometrical point C whose coordinates are given by the equations:
_ X mgXg _ MYk g = X My Zk (4.4)

xc - » Jc — )y Lc T )
M M M
where my, is the mass of a particle of the system, and x;, y;, z; are its coordinates.
If the position of a centre of mass is defined by its radius vector r., we can

obtain from Eqgs. (4.4) the following expression
r. = m’ (4.5)

¢ M
where 1 is the radius vector of a particle of the system.

For a body in a uniform gravitational field, the centre of mass coincides with the
centre of gravity. The concepts of centre of gravity and centre of mass, however, are
not identical. The concept of centre of gravity, as the point through which the
resultant of the forces of gravity passes, has meaning only for a rigid body in a
uniform field of gravity. The concept of centre of mass, as a characteristic of the
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distribution of mass in a system, on the other hand, has meaning for any system of
particles or bodies, regardless of whether a given system is subjected to the action of
forces or not.

4.3. Moment of Inertia of a Body about an Axis. Radius of Gyration

The position of centre of mass does not characterize completely the distribution
of mass in a system. For if in the system in Fig. 23 the distance / of each of two
identical spheres 4 and B from the axis Oz is increased by the same quantity, the

location of the centre of mass will not

R —ie—h change, though the distribution of mass
'ﬂ_E]_E will change and influence the motion
. { of the system (all other conditions
' remaining the same, the rotation about
g . !
4 ;El-a g axis Oz will be slower).
Fig. 23 Accordingly, another characteristic

- - of the distribution of mass, called the
moment of inertia, is introduced in mechanics. The moment of inertia of a body with
respect to a given axis Oz is defined as a scalar quantity equal to the sum of the
masses of the particles of the body, each multiplied by the square of its perpendicular
distance from the axis

J = Y myhi. (4.6)

It will be shown further on that moment of inertia plays the same part in the
rotational motion of a body as mass does in translational motion, i.e., moment of
inertia is a measure of a body's inertia in rotational motion.

By Eq. (4.6), the moment of inertia of a body is equal to the sum of the moments
of inertia of all its parts with respect to the same axis. For a material point located at a
distance # from an axis, J, = mh?. The dimension of moment of inertia in the
international system of units is [/] = kg - m2.

The concept of radius of gyration is often employed in calculations. The radius
of gyration of a body with respect to an axis Oz is a linear quantity p defined by the
equation

J. = Mp?, 4.7)
where M is the mass of the body.

It follows from the definition that geometrically the radius of gyration is equal to
the distance from the axis Oz to a point, such that if the mass of the whole body were
concentrated in it the moment of inertia of the point would be equal to the moment of
inertia of the whole body. Knowing the radius of gyration, we can obtain the moment
of inertia of a body from Eq. (4.7) and vice versa.

4.4. Moments of Inertia of Some Homogeneous Bodies

If we divide a body into elements, in the limit the sum in Eq. (4.6) will become
an integral and we obtain
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= Jff h? dm, (4.8)
where the integration is over the whole volume of the body and depends on the
coordinates of the points of the body. Eg. (4.8) is convenient in

: . : A
computing the moments of inertia of homogeneous bodies. Let us ¢
examine some examples.

1. Thin Homogeneous Rod of Length | and Mass M. Let us find its z

moment of inertia with respect to an axis Az perpendicular to the rod  ¢]. l
(Fig. 24). If we lay off an axis Ax along AB, for any line element of

length dx we have h = x and its mass dm = p; dx, where p; = M/l BE
is the mass of a unit length of the rod, and Eq. (4. 8) gives:

]A—fx dm = Plfx dx—p13
Substituting the expression for p;,we obtain finally
Ja =M.
2. Thin Circular Homogeneous Ring of Radius R and Mass M. Let us find its
moment of inertia with respect to an axis Cz perpendicular to the plane of the ring
) through its centre (Fig. 25). As all the points of the ring
' are at a distance h; = R from axis Cz, Eq. (4.6) gives
= kaRZ = (Z mk)Rz = MR2
Hence, for the ring
J. = MR?,
Fig. 25 It is evident that the same result is obtained for the
moment of inertia of a cylindrical shell of mass M
and radius R with respect to its axis.

3. Circular Homogeneous Disc or Cylinder of Radius R and Mass M. Let us
compute the moment of inertia of a circular disc with respect to an axis Cz
perpendicular to it through its centre (Fig. 26a). Consider an elemental ring of radius
rand width dr. Its area is 2rr dr, and its

mass dm = p,2nr dr, where p, = % IS
the mass of a unit area of the disc. From
Eq.(4.8) we have for the elemental ring
dj, =r?dm = 2mp,r3dr
and for the whole disc
J. = 2mp, fOR r3dr = %nsz‘*.
Substituting the expression for p, we
obtain finally

Fig. 24

1
J. = EMRZ.

It is evident that the same formula is obtained for the moment of inertia J, of a
homogeneous circular cylinder of mass M and radius R with respect to its axis Cz
(Fig. 26b).

The moments of inertia of non-homogeneous and composite bodies can be
determined experimentally with the help of appropriate instruments.
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4.5. Moments of Inertia of a Body about Parallel Axes. The Parallel-Axis
(Huygens') Theorem

In the most general case, the moments of inertia of the same body with respect
to different axes are different. Let us see how to determine the moment of inertia of a
body with respect to any axis if its moment of inertia with respect to a parallel axis
through the body is known.

Draw an axis Cz through the centre of mass C of a body, and an axis Oz; parallel
to it (Fig.27), denoting the distance between the two axes by the symbol 4. By
definition we have

]021 = kahlzci Jez = ka h;czi
where 7, is the distance of an arbitrary point B of the body from axis Oz;, and h, is
the distance of the same point from axis Cz, It follows
from ABae that
hZ = h,” + d? — 2dh, cos ay.

Let us draw from point C, as the origin of a
coordinate system, axes x and y perpendicular to Cz,
such that x intersects with axis Oz;. It is evident that
Cx || ae. Denoting the coordinates of point B as x;, yx,
z,we obtain

hy cos ay = xj and hZ = h? + d? — 2dx,.

Substituting this expression of hZ into the
expression for J,, and taking the common factors d?
and 24 outside the summation signs, we have

2
Joz, = Zmy by, + (X my)d? — 2d ¥ my, xy.

The first summation in the right side of the equation is equal to /., and the
second to the mass M of the body. Let us find the value of the third summation. From
Eq. (4.4) we know that, for the coordinates of the centre of mass, ) myx;, = Mx.
But since in our case point C is the origin, x, = 0, and consequently Y, m; x;, = 0.
We finally obtain

]021 =Jez T Md?. (4.9)

Eq. (4.9) expresses the parallel-axis theorem enunciated by Huygens:

the moment of inertia of a body with respect to any axis is equal to the moment
of inertia of the body with respect to a parallel axis through the centre of mass of the
body plus the product of the mass of the body and the square of the distance between
the two axes.

It follows from Eq. (4.9) that J,,, > J¢,. Consequently, of all the axes of same
direction, the moment of inertia is least with respect to the one through the centre of
mass.
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4.6. The Differential Equations of Motion of a System

Suppose we have a system of »n particles. Choosing any particle of mass m;
belonging to the system, let us denote the resultant of all the external forces acting on
the particle (both active forces and the forces of reaction) by the symbol Fj, and the
resultant of all the internal forces by FL. If the particle has an acceleration ay, then,
by the fundamental law of dynamics,

mya, = F¢ + FL,.

Similar results are obtained for any other particle, whence, for the whole system,

we have
m,a, = F¢ + F}

mua, = F¢ + F},
These equations, from which we can develop the law of motion of any particle

of the system, are called the differential equations of motion of a system in vector

2
form. Egs. (4.10) are differential because a; = % = dd;". In the most general case

the forces in the right side of the equations depend on the time, the coordinates of the
particles of the system, and their velocities.

By projecting Egs. (4.10) on coordinate axes, we can obtain the differential
equations of motion of a given system in terms of the projections on these axes.

The complete solution of the principal problem of dynamics for a system would
be to develop the equation of motion for each particle of the system from the given
forces by integrating the corresponding differential equations. For two reasons,
however, this solution is not usually employed.

Firstly, the solution is too involved and will almost inevitably lead into
insurmountable mathematical difficulties.

Secondly, in solving problems of mechanics it is usually sufficient to know
certain overall characteristics of the motion of a system without investigating the
motion of each particle. These overall characteristics can be found with the help of
the general theorems of systems dynamics, which we shall now study.

The main application of Eqs.(4.10) or their corollaries will be to develop the
respective general theorems.
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